1. Efficient derivatization-free monitoring of glycosyltransferase reactions via flow injection analysis-mass spectrometry for rapid sugar analytics.
- Author
-
Thiele U, Crocoll C, Tschöpe A, Drayß C, Kirschhöfer F, Nusser M, Brenner-Weiß G, Franzreb M, and Bleher K
- Subjects
- Chromatography, High Pressure Liquid methods, Amino Sugars analysis, Spectrometry, Mass, Electrospray Ionization methods, Flow Injection Analysis methods, Glycosyltransferases metabolism
- Abstract
The widespread application of enzymes in industrial chemical synthesis requires efficient process control to maintain high yields and purity. Flow injection analysis-electrospray ionization-mass spectrometry (FIA-ESI-MS) offers a promising solution for real-time monitoring of these enzymatic processes, particularly when handling challenging compounds like sugars and glycans, which are difficult to quickly analyze using liquid chromatography-mass spectrometry due to their physical properties or the requirement for a derivatization step beforehand. This study compares the performance of FIA-MS with traditional hydrophilic interaction liquid chromatography (HILIC)-ultra high-performance liquid chromatography (UHPLC)-mass spectrometry (MS) setups for the monitoring of the enzymatic synthesis of N-acetyllactosamine (LacNAc) using beta-1,4-galactosyltransferase. Our results show that FIA-MS, without prior chromatographic separation or derivatization, can quickly generate accurate mass spectrometric data within minutes, contrasting with the lengthy separations required by LC-MS methods. The rapid data acquisition of FIA-MS enables effective real-time monitoring and adjustment of the enzymatic reactions. Furthermore, by eliminating the derivatization step, this method offers the possibility of being directly coupled to a continuously operated reactor, thus providing a rapid on-line methodology for glycan synthesis as well., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF