1. Engineering nanoscale hypersonic phonon transport
- Author
-
Florez, O., Arregui, G., Albrechtsen, M., Ng, R. C., Gomis-Bresco, J., Stobbe, S., Sotomayor-Torres, C. M., and García, P. D.
- Subjects
Physics - Optics ,Quantum Physics - Abstract
Controlling the vibrations in solids is crucial to tailor their mechanical properties and their interaction with light. Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level. One strategy to avoid these vibrations is to structure a solid such that it possesses a phononic stop band, i.e., a frequency range over which there are no available mechanical modes. Here, we demonstrate the complete absence of mechanical vibrations at room temperature over a broad spectral window, with a 5.3 GHz wide band gap centered at 8.4 GHz in a patterned silicon nanostructure membrane measured using Brillouin light scattering spectroscopy. By constructing a line-defect waveguide, we directly measure GHz localized modes at room temperature. Our experimental results of thermally excited guided mechanical modes at GHz frequencies provides an eficient platform for photon-phonon integration with applications in optomechanics and signal processing transduction.
- Published
- 2022
- Full Text
- View/download PDF