1. Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints
- Author
-
Pekepok, Kevin, Kirkwood, Persephone, Christopolous, Esme, Braithwaite, Florence, and Nightingale, Oliver
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence - Abstract
The increasing sophistication of encryption-based ransomware has demanded innovative approaches to detection and mitigation, prompting the development of a hierarchical framework grounded in probabilistic cryptographic analysis. By focusing on the statistical characteristics of encryption patterns, the proposed methodology introduces a layered approach that combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies. Through comprehensive testing across diverse ransomware families, the framework demonstrated exceptional accuracy, effectively distinguishing malicious encryption operations from benign activities while maintaining low false positive rates. The system's design integrates dynamic feedback mechanisms, enabling adaptability to varying cryptographic complexities and operational environments. Detailed entropy-based evaluations revealed its sensitivity to subtle deviations in encryption workflows, offering a robust alternative to traditional detection methods reliant on static signatures or heuristics. Computational benchmarks confirmed its scalability and efficiency, achieving consistent performance even under high data loads and complex cryptographic scenarios. The inclusion of real-time clustering and anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection. Performance comparisons with established methods highlighted its improvements in detection efficacy, particularly against advanced ransomware employing extended key lengths and unique cryptographic protocols.
- Published
- 2025