Liusheng Huang, Grant Dorsey, Beth Osterbauer, James Kapisi, Moses R. Kamya, Francesca T. Aweeka, Stephen Kinara, Mary K. Muhindo, Jane Achan, Diane V. Havlir, Tamara D. Clark, Victor Bigira, Florence Mwangwa, and Philip J. Rosenthal
Grant Dorsey and colleagues investigate the efficacy of three antimalarial drugs for preventing malaria in children living in Uganda, an area of high transmission intensity. Please see later in the article for the Editors' Summary, Background Chemoprevention offers a promising strategy for prevention of malaria in African children. However, the optimal chemoprevention drug and dosing strategy is unclear in areas of year-round transmission and resistance to many antimalarial drugs. To compare three available regimens, we conducted an open-label randomized controlled trial of chemoprevention in Ugandan children. Methods and Findings This study was conducted between June 28, 2010, and September 25, 2013. 400 infants were enrolled and 393 randomized at 6 mo of age to no chemoprevention, monthly sulfadoxine-pyrimethamine (SP), daily trimethoprim-sulfamethoxazole (TS), or monthly dihydroartemisinin-piperaquine (DP). Study drugs were administered at home without supervision. Piperaquine (PQ) levels were used as a measure of compliance in the DP arm. Participants were given insecticide-treated bednets, and caregivers were encouraged to bring their child to a study clinic whenever they were ill. Chemoprevention was stopped at 24 mo of age, and participants followed-up an additional year. Primary outcome was the incidence of malaria during the intervention period. During the intervention, the incidence of malaria in the no chemoprevention arm was 6.95 episodes per person-year at risk. Protective efficacy was 58% (95% CI, 45%–67%, p, Editors' Summary Background Malaria is a parasitic disease that kills more than 600,000 people (mainly young children living in sub-Saharan Africa) every year. Malaria parasites, which are transmitted to people through the bites of night-flying mosquitoes, cause a characteristic fever that needs to be treated promptly with antimalarial drugs to prevent anemia and organ damage. Prompt treatment also helps to reduce malaria transmission and is a component of the Global Malaria Action Plan, which aims to control and eventually eliminate malaria. Other components of this plan include the provision of insecticide-treated bednets for people to sleep under to avoid mosquito bites and indoor residual spraying with insecticides. Widespread deployment of these preventative tools and the increased availability of effective antimalarial drugs have greatly reduced malaria-related deaths worldwide over the past decade, but new strategies are still urgently needed to reduce the burden of malaria among those most at risk—young children living in Africa. Why Was This Study Done? One promising strategy for the prevention of malaria in African children is the use of antimalarial drugs to prevent rather than treat malaria. In trials, giving infants sulfadoxine-pyrimethamine (SP) alongside routine vaccinations, for example, reduced the incidence of malaria (the number of new cases in the population in a year) by about 30% during the first year of life (a protective efficacy of 30%). However, the optimal chemoprevention drug and dosing strategy for children living in African regions where there is year-round transmission of malaria and where resistance to antimalarial drugs is common remains unclear. Here, the researchers undertake an open-label randomized controlled trial (RCT) of chemoprevention in infants in the Tororo District of eastern Uganda, an area with intense year-round malaria transmission. RCTs compare outcomes in groups of people chosen to receive different interventions through the play of chance; in open-label RCTs, both the researchers and the participants know which treatment is being administered. What Did the Researchers Do and Find? The researchers assigned 393 six-month-old infants to receive no chemoprevention, monthly SP, daily trimethoprim-sulfamethoxazole (TS), or monthly dihydroartemisinin-piperaquine (DP) until they were 24 months old. SP and TS block the production of folic acid, which malaria needs for survival, whereas DP is a newer artemisinin-based combination therapy (ACT). All the drugs were given at home without supervision, and caregivers were asked to bring their children to a study clinic whenever they were ill. During the intervention, the incidence of malaria was 6.95 episodes per person-year at risk in the no chemoprevention arm but only three episodes per person-year at risk in the DP arm. That is, the protective efficacy of DP was 58%. By contrast, the protective efficacies of TS and SP were 28% and 7%, respectively. However, for SP the protective efficacy was not statistically different compared to the no chemoprevention arm. Notably, piperaquine levels on the day that malaria was diagnosed were below the detection limit in half of the malaria episodes in the DP arm, which suggests that a complete dose of DP had not been given to the infant in the previous month, despite caregivers reporting that they had administered virtually all the assigned doses. Finally, the incidence of serious adverse events was similar in all the study arms during the intervention, as was the incidence of malaria during the year after the intervention, which suggests that the chemoprevention strategies did not affect the development of naturally acquired immunity. What Do These Findings Mean? These findings show that, for children living in an area of intense malaria transmission, monthly DP was the most efficacious strategy for malaria chemoprevention but that adherence to the strategy may have been a problem. These findings also suggest that monthly SP and daily TS may not be appropriate chemoprevention strategies in areas of high transmission intensity, particularly those where resistance to antifolate drugs is common. The accuracy of these findings may be affected by drug administration being self-reported and by the number of comparisons included in the trial, which may have increased the risk of false-positive results. Moreover, the results of this trial may not be generalizable to other regions of sub-Saharan Africa. Overall, however, these results suggest that monthly DP is a strategy worth considering in regions in need of improved malaria control measures, with the important caveat that widespread ACT use for chemoprevention could compromise the efficacy of ACT when used for treatment. Additional Information Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001689. Information is available from the World Health Organization on malaria (in several languages), including information on malaria chemoprevention; the World Malaria Report 2013 provides details of the current global malaria situation, including information on malaria in Uganda The US Centers for Disease Control and Prevention provide information on malaria, including information on ways to reduce malaria cases and deaths; it also provides a selection of personal stories about malaria, including a story about malaria in a child in Africa Information is available from the Roll Back Malaria Partnership on the global control of malaria and on the Global Malaria Action Plan (in English and French); its website includes fact sheets about malaria in Africa and about children and malaria MedlinePlus provides links to additional information on malaria (in English and Spanish) More information about this trial is available