14 results on '"Flora Garofalo"'
Search Results
2. Joint inversion of seismic and electrical data in saturated porous media
- Author
-
Laura Socco, Sebastiano Foti, and Flora Garofalo
- Subjects
Inversion (geology) ,Electrical resistivity ,Mineralogy ,Surface wave ,Saturated porous medium ,Refraction ,Geophysics ,Electrical resistivity and conductivity ,Joint Inversion ,Refraction (sound) ,Porosity ,Joint (geology) ,Geology - Published
- 2021
- Full Text
- View/download PDF
3. InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface-wave and borehole methods
- Author
-
C. Vergniault, Vincent Perron, Sebastiano Foti, David P. Teague, Matthias Ohrnberger, Brady R. Cox, Aline Dechamp, Flora Garofalo, P. Y. Bard, Deborah Sicilia, Fabrice Hollender, Cécile Cornou, Politecnico di Torino [Torino] (Polito), CEA-DEN Cadarache (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Laboratoire de Géodynamique des Chaines Alpines (LGCA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut des Sciences de la Terre (ISTerre), University of Potsdam, Institute of geosciences, CEA Cadarache, EDF Ceidre TEGG, Politecnico di Torino = Polytechnic of Turin (Polito), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Geosciences [Potsdam], and University of Potsdam = Universität Potsdam
- Subjects
P-S suspension logging ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,0211 other engineering and technologies ,Borehole ,Soil Science ,Soil science ,site characterization ,02 engineering and technology ,010502 geochemistry & geophysics ,01 natural sciences ,cross-hole test ,Cross hole ,symbols.namesake ,Rayleigh wave ,Rayleigh waves ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Civil and Structural Engineering ,Remote sensing ,021110 strategic, defence & security studies ,surface wave methods ,Non invasive ,Significant difference ,Wave velocity ,Geotechnical Engineering and Engineering Geology ,geophysical methods ,Surface wave ,symbols ,MASW ,down-hole test ,SDMT ,Geology ,Longitudinal wave - Abstract
The InterPACIFIC project was aimed at assessing the reliability, resolution, and variability of geophysical methods in estimating the shear-wave velocity profile for seismic ground response analyses. Three different subsoil conditions, which can be broadly defined as soft-soil, stiff-soil, and hard-rock, were investigated. At each site, several participants performed and interpreted invasive measurements of shear wave velocity ( Vs ) and compression wave velocity ( Vp ) in the same boreholes. Additionally, participants in the project analysed a common surface-wave dataset using their preferred strategies for processing and inversion to obtain Vs profiles. The most significant difference between the invasive borehole methods and non-invasive surface wave methods is related to resolution of thin layers and abrupt contrasts, which is inherently better for invasive methods. However, similar variability is observed in the estimated invasive and non-invasive Vs profiles, underscoring the need to account for such uncertainty in site response studies. V S,30 estimates are comparable between invasive and non-invasive methods, confirming that the higher resolution provided by invasive methods is quite irrelevant for computing this parameter.
- Published
- 2016
- Full Text
- View/download PDF
4. InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods
- Author
-
Fabrice Hollender, Brady R. Cox, Antony Martin, Diego Mercerat, Deborah Sicilia, G. Di Giulio, Valerio Poggi, Shinichi Matsushima, Michael Asten, Matthias Ohrnberger, Hiroaki Yamanaka, Koichi Hayashi, Thomas Forbriger, Cécile Cornou, Bertrand Guillier, P. Y. Bard, Flora Garofalo, Sebastiano Foti, Politecnico di Torino = Polytechnic of Turin (Polito), CEA-DEN Cadarache (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Geosciences [Potsdam], University of Potsdam = Universität Potsdam, Institute of Engineering Seismology & Earthquake Engineering, Laboratoire National de Métrologie et d'Essais [Trappes] (LNE ), Milieux aquatiques, écologie et pollutions (UR MALY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Géoazur (GEOAZUR 6526), Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), University of Potsdam, Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Politecnico di Torino [Torino] (Polito), Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Institute of geosciences, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, and Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microtremors ,Outcrop ,V S ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,0211 other engineering and technologies ,Site characterization ,Soil Science ,02 engineering and technology ,010502 geochemistry & geophysics ,Dispersion curve ,01 natural sciences ,Physics::Geophysics ,symbols.namesake ,Rayleigh wave ,Rayleigh waves ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Civil and Structural Engineering ,021110 strategic, defence & security studies ,Geophysical methods ,Inversion ,MASW ,Surface-wave methods ,V S,30 ,Geotechnical Engineering and Engineering Geology ,Non invasive ,Wave velocity ,Active data ,Surface wave ,symbols ,Institut für Geowissenschaften ,Geology ,Seismology - Abstract
The main scope of the InterPACIFIC (Intercomparison of methods for site parameter and velocity profile characterization) project is to assess the reliability of in-hole and surface-wave methods, used for estimating shear wave velocity. Three test-sites with different subsurface conditions were chosen: a soft soil, a stiff soil and a rock outcrop. This paper reports the surface-wave methods results. Specifically 14 teams of expert users analysed the same experimental surface-wave datasets, consisting of both passive and active data. Each team adopted their own strategy to retrieve the dispersion curve and the shear-wave velocity profile at each site. Despite different approaches, the dispersion curves are quite in agreement with each other. Conversely, the shear-wave velocity profiles show a certain variability that increases in correspondence of major stratigraphic interfaces. This larger variability is mainly due to non-uniqueness of the solution and lateral variability. As expected, the observed variability in V-s,V-30 estimatesis small, as solution non-uniqueness plays a limited role. (C) 2015 Elsevier Ltd. All rights reserved.
- Published
- 2016
- Full Text
- View/download PDF
5. Joint inversion of seismic and electric data applied to 2D media
- Author
-
Guillaume Sauvin, Isabelle Lecomte, Laura Socco, and Flora Garofalo
- Subjects
geophysics ,Apparent resistivity ,Inversion (meteorology) ,Geometry ,Geophysics ,joint inversion ,Poisson distribution ,Synthetic data ,seismic data ,resistivity ,symbols.namesake ,Data Applied ,Geochemistry and Petrology ,Electrical resistivity and conductivity ,Surface wave ,symbols ,Seismic inversion ,Geology - Abstract
Methods based on the seismic P-wave, seismic surface wave, and apparent resistivity are commonly used in the solution of several near-surface problems. However, the solution nonuniqueness and the intrinsic limitations of these methods can cause inconsistency in the final results. Dispersion curves of surface waves, P-wave traveltimes, and apparent-resistivity data were jointly inverted to obtain internally consistent and more reliable final model of P- and S-wave velocities and resistivity. A collection of 1D layered models was obtained by a deterministic joint-inversion algorithm based on the laterally constrained inversion scheme. The three data sets were jointly inverted imposing the same structure and Poisson’s ratio was introduced as a physical link between P- and S-wave velocities to better constrain the inversion. No physical link was imposed between the resistivity and the seismic velocities. The inversion algorithm was tested on synthetic data and then applied to a field case, where benchmark borehole data were available. The synthetic and field examples provided results in agreement with the true model and the existing geologic information, respectively.
- Published
- 2015
6. Surface wave tomography to retrieve near surface velocity models
- Author
-
Daniele Boiero, Huajian Yao, Federico Da Col, Flora Garofalo, Robert D. van der Hilst, Paolo Bergamo, and Laura Socco
- Subjects
Surface (mathematics) ,surface waves ,tomography ,Scale (ratio) ,business.industry ,Phase (waves) ,Geophysics ,Surface velocity ,Optics ,Surface wave ,Group velocity ,Tomography ,Dispersion (water waves) ,business ,Geology - Abstract
Surface-wave tomography is usually applied at regional or planetary scale but represent an interesting approach also for near surface applications. We present a surface wave dispersion tomography that does not require the construction of phase or group velocity maps and which inverts path-specific dispersion data directly for 3-D Swave velocity variations. To compare it with classical multichannel surface-wave analysis we here present the application to a 2D seismic line.
- Published
- 2014
7. Surface Wave Dispersion Analysis - From Local 1D Models to Tomography
- Author
-
Flora Garofalo, Laura Socco, and Paolo Bergamo
- Subjects
Regional geology ,Hydrogeology ,surface waves analysis ,Surface wave ,Engineering geology ,Inversion (meteorology) ,Tomography ,Statistical physics ,Economic geology ,Geomorphology ,Geology ,Environmental geology - Abstract
The analysis of surface wave dispersion represents an important exploration method at different scales. The basic scheme of the method is mainly based on 1D assumption, but laterally varying sites can be resolved if an opportune processing and inversion strategy is applied. Spatially constrained inversion (SCI), joint inversion with P-wave travel times and tomography represent possible techniques to apply to retrieve 2D models.
- Published
- 2014
- Full Text
- View/download PDF
8. Laterally constrained inversion of surface wave data at Najaf city (Iraq)
- Author
-
Basim R. Hijab, Flora Garofalo, Amer A. Laftah, Sebastiano Foti, and Ammar M. Shakir
- Subjects
seismic site characterization ,Lithology ,Monte Carlo method ,Rayleigh waves ,MASW ,Geophysical test ,seismic surface waves ,Borehole ,Soil Science ,Inversion (meteorology) ,Geotechnical Engineering and Engineering Geology ,Physics::Geophysics ,symbols.namesake ,Surface wave ,symbols ,A priori and a posteriori ,Rayleigh wave ,Geology ,Seismology ,Civil and Structural Engineering - Abstract
A case history is reported to outline a possible strategy for the construction of a pseudo-2D model of shear-wave velocity for seismic site response studies. Experimental data have been collected using the Multichannel Analysis of Surface Wave technique (MASW) at six sites in the city of Najaf (Southern Iraq). The sites are aligned along the route of a proposed subway. The dataset has been processed to extract the dispersion curves of each site and then it has been inverted by using a Laterally Constrained Inversion (LCI) algorithm. The initial model for the local search algorithm has been obtained with a preliminary Monte Carlo Inversion (MCI). A priori information from borehole logs and lateral constraints between neighbors 1D models are used to mitigate the non-uniqueness of the solution. The result is a pseudo-2D shear-wave velocity model of the area which is in good agreement with sediment lithology and thicknesses obtained from borehole logs.
- Published
- 2013
9. Determining Hydrological and Soil Mechanical Parameters from Multichannel Surface Wave Analysis across the Alpine Fault at Inchbonnie, New Zealand
- Author
-
Laura Socco, Flora Garofalo, L.A. Konstantaki, S. F. A. Carpentier, and Paolo Bergamo
- Subjects
Regional geology ,geography ,geography.geographical_feature_category ,Hydrogeology ,Engineering geology ,site characterization ,Fault (geology) ,surface waves ,Fault detection and isolation ,Physics::Geophysics ,Geophysics ,Discontinuity (geotechnical engineering) ,Fault detection ,Economic geology ,Geomorphology ,Seismology ,Geology ,Environmental geology - Abstract
Combining S-wave data, resulting from surface-wave dispersion analysis with P-wave tomographic data, is a valuable tool to improve the understanding of near-surface soil properties and allows the estimation of soil mechanical parameters and the determination of the depth of the water table. To achieve this combination of methods in a complex fault zone setting, active-source seismic data were acquired at Inchbonnie, New Zealand across the Alpine Fault. This is a major transpressional strike-slip fault that has generated magnitude > 7.8 earthquakes in the past. In this study, we focus on the surface-wave component of these data, to determine elastic parameters for the shallow (~60 m) subsurface as well as the depth of the water table. We achieve this by combining S-wave velocity models from surface-wave dispersion curve inversion and P-wave velocity models obtained from traveltime tomographic inversion in a previous study. The surface-wave dispersion curve inversion is done by means of a laterally constrained inversion algorithm. As a result, we are able to obtain elastic parameters and map the water table and the geology around the Alpine Fault at Inchbonnie, New Zealand. The Alpine Fault itself appears as a relatively sharp lateral discontinuity in all investigated parameters.
- Published
- 2013
10. Joint inversion of surface wave, refracted P-wave and apparent resistivity data to retrieve porosity of saturated layers
- Author
-
Sebastiano Foti, Laura Socco, and Flora Garofalo
- Subjects
joint inversion ,surface wave ,body wave ,resistivity ,Earth structure ,Soil resistivity ,Petrophysics ,Mineralogy ,Inversion (meteorology) ,Geometry ,engineering.material ,Refraction ,Physics::Geophysics ,Maxima and minima ,Surface wave ,engineering ,Porosity ,Geology - Abstract
We present an algorithm for the joint inversion of surface wave, P-wave refraction ad apparent resistivity data. The algorithm solves the model parameters imposing the same earth structure as well as the respect of some petrophysical relationships. P- and S-wave velocities are linked to each other through the Poisson's ratio in order to avoid unrealistic values. Moreover, for layers made of saturated porous media, both seismic velocities and the soil resistivity are further constrained by using rock physics relationship and imposing a common value of porosity. The final model is thus internally consistent not only in term of geometry but also in terms of physical properties. A synthetic example is provided. Individual inversions of each set of data are compared both to a structural joint inversion, where no physical links are applied, and to the full joint inversion in which physical constraints are imposed. While the individual inversions fall in local minima far from the correct solution, the structural joint inversion supplies a very good final model that is further refined applying the physical links. Finally, since the seismic velocities and the resistivity of the saturated layer are solved imposing the convergence to the same value of porosity, this parameter represents an additional result of the joint inversion algorithm
- Published
- 2013
11. Joint Inversion of Surface-wave Dispersion, P-wave Refraction and Apparent Resistivity Data
- Author
-
Laura Socco, Guillaume Sauvin, Isabelle Lecomte, and Flora Garofalo
- Subjects
Regional geology ,Hydrogeology ,Engineering geology ,geophysical data integration ,joint inversione ,Inversion (meteorology) ,Computational physics ,Electrical resistivity and conductivity ,Surface wave ,Economic geology ,Petrology ,Geology ,Environmental geology - Abstract
We present here a joint-inversion algorithm to build a resistivity, P-wave, and S-wave velocity model from apparent resistivity, surface wave dispersion and P-wave refraction data. This algorithm can also include a-priori information available for the site, as well as any physical links among the model parameters, and the result is an internally consistent multi-parametric model. The obtained model resolves more properly the true model because the joint inversion mitigates some problems related to the individual inversion of each type of experimental data like solution non-uniqueness, illness, or lack of resolution, which might lead to interpretation ambiguities. We describe the proposed algorithm and we show the result of its application on a smoothly laterally varying synthetic model.
- Published
- 2012
12. Surface wave analysis for S‐wave static correction computation
- Author
-
Laura Socco, Daniele Boiero, Paolo Bergamo, Sebastiano Foti, Flora Garofalo, Margherita Maraschini, G. Del Molino, Claudio Piatti, and M. Pastori
- Subjects
Computer science ,Surface wave ,Computation ,Mathematical analysis ,Monte Carlo method ,Seismic line ,S-wave ,Inversion (meteorology) ,Algorithm ,Synthetic data - Abstract
Ground roll and mud roll in seismic reflection data can be analysed to infer a near surface S-wave velocity model from which converted-wave static correction can be computed. A workflow that exploits processing tools available in industrial processing codes has been implemented to extract dispersion curves and related uncertainties along a seismic line. The dispersion curves are then inverted with a laterally constrained inversion algorithm based on an initial model previously determined through a Monte Carlo inversion. The final S-wave velocity models are finally used for static computation. The application of the method to synthetic data supplied static correction values with error lower than 5%
- Published
- 2010
- Full Text
- View/download PDF
13. The interpacific project-A cooperative exercise for assessing reliability and accuracy of seismic methods
- Author
-
Pierre-Yves Bard, Flora Garofalo, D. Sicilia, Fabrice Hollender, Brady R. Cox, Matthias Ohrnberger, Sebastiano Foti, and Cécile Cornou
- Subjects
Regional geology ,geography ,Hydrogeology ,geography.geographical_feature_category ,VS ,Engineering geology ,Bedrock ,Borehole ,site characterization ,surface waves ,geophysical methods ,30 ,Economic geology ,Igneous petrology ,Geomorphology ,Geology ,Seismology ,Environmental geology - Abstract
The InterPacific (Intercomparison of methods for site parameter and velocity profile characterization) project aims to assess the reliability/variability of seismic site characterization methods (borehole and surface wave methods) used for estimating shear wave velocity (Vs) profiles and corresponding lumped parameters (e.g., Vs,30). The ultimate goal of the project is to determine procedures that can be used for the construction of consistent ground models for seismic studies. Three sites have been selected in France and Italy for the implementation of the project. They are representative of different geological conditions relevant for the evaluation of seismic site response effects: a stiff rock outcrop, a deep soft deposit, and an intermediate case with thick stiff soils and large bedrock depth.
14. Gathering GPR inspections and UAV survey in Cultural Heritage documentation context
- Author
-
Giulia Sammartano, Flora Garofalo, Antonia Teresa Spano, and Alessandro Arato
- Subjects
Geographic information system ,Ground Penetrating Radar (GPR) ,Context (archaeology) ,business.industry ,Interoperability ,Environmental resource management ,Geomatics ,UAV Photogrammetry ,Cultural Heritage ,GIS ,Historical Maps ,Cultural heritage ,Geography ,Documentation ,Photogrammetry ,Ground-penetrating radar ,business ,UAV Photogrammetry, Ground Penetrating Radar (GPR), Historical Maps, GIS, Cultural Heritage ,Cartography - Abstract
The archaeological researches and more generally the Cultural Heritage (CH) documentation and conservation activities have been favourably disposed to the use of new technologies, with renewed and increasing interest in the use of integrated techniques. In the field of Geomatics the advent of advanced technologies has allowed and facilitated multidisciplinary studies as well as combined approaches to the documentation in various contexts. The production of spatially located data (e.g. from active or passive sensors placed in different system segments, from terrestrial to aerial to satellite position) and their interoperability from different source, with the help of Geographic Information Systems (GIS), were then made easier. The work has the aim of investigating the integration of multiple data derived from aerial photogrammetry products through Unmanned Aerial Vehicles (UAV) survey, from geophysical Ground Penetrating Radar (GPR) prospection technique and analysis of historical ma ps. An archaeological area in the south of Piedmont (Italy), next to the ancient Roman settlement of Pollentia, has been the test case. The present fulfilled test was objected to exclude ancient presences, although this type of workflow is generally aimed to analyse and compare results in order to formulate some hypothesis about the potential presence of submerged elements or built substructures in the investigated area
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.