5 results on '"Fleischanderl, K"'
Search Results
2. Validation Study for Non-Invasive Prediction of IDH Mutation Status in Patients with Glioma Using In Vivo 1 H-Magnetic Resonance Spectroscopy and Machine Learning.
- Author
-
Bumes E, Fellner C, Fellner FA, Fleischanderl K, Häckl M, Lenz S, Linker R, Mirus T, Oefner PJ, Paar C, Proescholdt MA, Riemenschneider MJ, Rosengarth K, Weis S, Wendl C, Wimmer S, Hau P, Gronwald W, and Hutterer M
- Abstract
The isocitrate dehydrogenase ( IDH ) mutation status is an indispensable prerequisite for diagnosis of glioma (astrocytoma and oligodendroglioma) according to the WHO classification of brain tumors 2021 and is a potential therapeutic target. Usually, immunohistochemistry followed by sequencing of tumor tissue is performed for this purpose. In clinical routine, however, non-invasive determination of IDH mutation status is desirable in cases where tumor biopsy is not possible and for monitoring neuro-oncological therapies. In a previous publication, we presented reliable prediction of IDH mutation status employing proton magnetic resonance spectroscopy (
1 H-MRS) on a 3.0 Tesla (T) scanner and machine learning in a prospective cohort of 34 glioma patients. Here, we validated this approach in an independent cohort of 67 patients, for which1 H-MR spectra were acquired at 1.5 T between 2002 and 2007, using the same data analysis approach. Despite different technical conditions, a sensitivity of 82.6% (95% CI, 61.2-95.1%) and a specificity of 72.7% (95% CI, 57.2-85.0%) could be achieved. We concluded that our1 H-MRS based approach can be established in a routine clinical setting with affordable effort and time, independent of technical conditions employed. Therefore, the method provides a non-invasive tool for determining IDH status that is well-applicable in an everyday clinical setting.- Published
- 2022
- Full Text
- View/download PDF
3. Transcription of intragenic CpG islands influences spatiotemporal host gene pre-mRNA processing.
- Author
-
Amante SM, Montibus B, Cowley M, Barkas N, Setiadi J, Saadeh H, Giemza J, Contreras-Castillo S, Fleischanderl K, Schulz R, and Oakey RJ
- Subjects
- Animals, Cell Differentiation genetics, Chromatin genetics, CpG Islands genetics, DNA Methylation genetics, Genome genetics, Histone Code genetics, Humans, Promoter Regions, Genetic, Pseudogenes genetics, RNA Precursors metabolism, Epigenesis, Genetic, Protein Processing, Post-Translational genetics, RNA Precursors genetics, Transcription, Genetic
- Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) generate diverse transcripts in mammalian genomes during development and differentiation. Epigenetic marks such as trimethylation of histone H3 lysine 36 (H3K36me3) and DNA methylation play a role in generating transcriptome diversity. Intragenic CpG islands (iCGIs) and their corresponding host genes exhibit dynamic epigenetic and gene expression patterns during development and between different tissues. We hypothesise that iCGI-associated H3K36me3, DNA methylation and transcription can influence host gene AS and/or APA. We investigate H3K36me3 and find that this histone mark is not a major regulator of AS or APA in our model system. Genomewide, we identify over 4000 host genes that harbour an iCGI in the mammalian genome, including both previously annotated and novel iCGI/host gene pairs. The transcriptional activity of these iCGIs is tissue- and developmental stage-specific and, for the first time, we demonstrate that the premature termination of host gene transcripts upstream of iCGIs is closely correlated with the level of iCGI transcription in a DNA-methylation independent manner. These studies suggest that iCGI transcription, rather than H3K36me3 or DNA methylation, interfere with host gene transcription and pre-mRNA processing genomewide and contributes to the spatiotemporal diversification of both the transcriptome and proteome., (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2020
- Full Text
- View/download PDF
4. Mutant Muscle LIM Protein C58G causes cardiomyopathy through protein depletion.
- Author
-
Ehsan M, Kelly M, Hooper C, Yavari A, Beglov J, Bellahcene M, Ghataorhe K, Poloni G, Goel A, Kyriakou T, Fleischanderl K, Ehler E, Makeyev E, Lange S, Ashrafian H, Redwood C, Davies B, Watkins H, and Gehmlich K
- Subjects
- Animals, Cardiomyopathy, Hypertrophic physiopathology, Disease Models, Animal, Gene Knock-In Techniques, Humans, Mice, Mutation, Sarcomeres genetics, Adaptor Proteins, Signal Transducing genetics, Apoptosis Regulatory Proteins genetics, Cardiomyopathy, Hypertrophic genetics, Heart physiopathology, LIM Domain Proteins genetics, Muscle Proteins genetics
- Abstract
Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations., (Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
5. Myofilament Remodeling and Function Is More Impaired in Peripartum Cardiomyopathy Compared with Dilated Cardiomyopathy and Ischemic Heart Disease.
- Author
-
Bollen IAE, Ehler E, Fleischanderl K, Bouwman F, Kempers L, Ricke-Hoch M, Hilfiker-Kleiner D, Dos Remedios CG, Krüger M, Vink A, Asselbergs FW, van Spaendonck-Zwarts KY, Pinto YM, Kuster DWD, and van der Velden J
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Myocardial Ischemia physiopathology, Myocytes, Cardiac metabolism, Myofibrils metabolism, Pregnancy, Cardiomyopathies physiopathology, Cardiomyopathy, Dilated physiopathology, Myocytes, Cardiac pathology, Myofibrils pathology, Peripartum Period
- Abstract
Peripartum cardiomyopathy (PPCM) and dilated cardiomyopathy (DCM) show similarities in clinical presentation. However, although DCM patients do not recover and slowly deteriorate further, PPCM patients show either a fast cardiac deterioration or complete recovery. The aim of this study was to assess if underlying cellular changes can explain the clinical similarities and differences in the two diseases. We, therefore, assessed sarcomeric protein expression, modification, titin isoform shift, and contractile behavior of cardiomyocytes in heart tissue of PPCM and DCM patients and compared these with nonfailing controls. Heart samples from ischemic heart disease (ISHD) patients served as heart failure control samples. Passive force was only increased in PPCM samples compared with controls, whereas PPCM, DCM, and ISHD samples all showed increased myofilament Ca
2+ sensitivity. Length-dependent activation was significantly impaired in PPCM compared with controls, no impairment was observed in ISHD samples, and DCM samples showed an intermediate response. Contractile impairments were caused by impaired protein kinase A (PKA)-mediated phosphorylation because exogenous PKA restored all parameters to control levels. Although DCM samples showed reexpression of EH-myomesin, an isoform usually only expressed in the heart before birth, PPCM and ISHD did not. The lack of EH-myomesin, combined with low PKA-mediated phosphorylation of myofilament proteins and increased compliant titin isoform, may explain the increase in passive force and blunted length-dependent activation of myofilaments in PPCM samples., (Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.