7 results on '"Flath T"'
Search Results
2. 3D-printed poly-ε-caprolactone-CaCO3-biocompositescaffolds for hard tissue regeneration.
- Author
-
Neumann, R., Neunzehn, J., Hinüber, C., Flath, T., Schulze, F. P., and Wiesmann, H-P.
- Subjects
POLYMERS ,CALCIUM carbonate ,ENVIRONMENTAL degradation ,POLYCAPROLACTONE ,SCANNING electron microscopy - Abstract
Adopting the beneficial chemical composition of mineral bone grafts and the interesting biomedical properties of the approved polycaprolactone, versatile manufacturing processes offering a near-net-shape fabrication and cost-effective scalability, has been used to fabricate highly porous polymer-ceramic biocomposite scaffolds with different amounts of the inorganic component CaCO3 by molded casting and fused deposition modelling. The mechanical properties and surface characteristics were evaluated after several steps of degradation by means of compression tests and scanning electron microscopy, respectively. Calcium release has been determined over a period of 4 weeks and the calcium phosphate phase formation on the surface was observed and validated by energy dispersive x-ray spectroscopy. The established production path and the use of the material combination polycaprolactone and calcium carbonate has enormous potential to manufacture individual and application-oriented open-porous scaffolds for hard tissue replacement. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Extrusion-Printing of Multi-Channeled Two-Component Hydrogel Constructs from Gelatinous Peptides and Anhydride-Containing Oligomers.
- Author
-
Krieghoff J, Rost J, Kohn-Polster C, Müller BM, Koenig A, Flath T, Schulz-Siegmund M, Schulze FP, and Hacker MC
- Abstract
The performance of artificial nerve guidance conduits (NGC) in peripheral nerve regeneration can be improved by providing structures with multiple small channels instead of a single wide lumen. 3D-printing is a strategy to access such multi-channeled structures in a defined and reproducible way. This study explores extrusion-based 3D-printing of two-component hydrogels from a single cartridge printhead into multi-channeled structures under aseptic conditions. The gels are based on a platform of synthetic, anhydride-containing oligomers for cross-linking of gelatinous peptides. Stable constructs with continuous small channels and a variety of footprints and sizes were successfully generated from formulations containing either an organic or inorganic gelation base. The adjustability of the system was investigated by varying the cross-linking oligomer and substituting the gelation bases controlling the cross-linking kinetics. Formulations with organic N ‑methyl-piperidin-3-ol and inorganic K
2 HPO4 yielded hydrogels with comparable properties after manual processing and extrusion-based 3D-printing. The slower reaction kinetics of formulations with K2 HPO4 can be beneficial for extending the time frame for printing. The two-component hydrogels displayed both slow hydrolytic and activity-dependent enzymatic degradability. Together with satisfying in vitro cell proliferation data, these results indicate the suitability of our cross-linked hydrogels as multi-channeled NGC for enhanced peripheral nerve regeneration.- Published
- 2021
- Full Text
- View/download PDF
4. Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering.
- Author
-
Kuzmenka D, Sewohl C, König A, Flath T, Hahnel S, Schulze FP, Hacker MC, and Schulz-Siegmund M
- Abstract
In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. In a first approach, we investigated the integration of 1 to 10% CaCl
2 in order to test the hypothesis that small CaCl2 amounts can be physically entrapped and slowly released from hybrid glass scaffolds. With 5 and 10% CaCl2 we observed an extensive burst release, whereas slightly improved release profiles were found for lower Calcium(II) contents. In contrast, introduction of melt-derived bioactive 45S5 glass microparticles (BG-MP) into the hybrid glass scaffolds as another Calcium(II) source led to an approximately linear release of Calcium(II) in Tris(hydroxymethyl)aminomethane (TRIS) buffer over 12 weeks. pH increase caused by BG-MP could be controlled by their amount integrated into the scaffolds. Compression strength remained unchanged compared to scaffolds without BG-MP. In cell culture medium as well as in simulated body fluid, we observed a rapid formation of a carbonated hydroxyapatite layer on BG-MP containing scaffolds. However, this mineral layer consumed the released Calcium(II) ions and prevented an additional increase in Calcium(II) concentration in the cell culture medium. Cell culture studies on the different scaffolds with osteoblast-like SaOS-2 cells as well as bone marrow derived mesenchymal stem cells (hMSC) did not show any advantages concerning osteogenic differentiation due to the integration of BG-MP into the scaffolds. Nonetheless, via the formation of a hydroxyapatite layer and the ability to control the pH increase, we speculate that implant integration in vivo and bone regeneration may benefit from this concept.- Published
- 2020
- Full Text
- View/download PDF
5. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks.
- Author
-
Kascholke C, Hendrikx S, Flath T, Kuzmenka D, Dörfler HM, Schumann D, Gressenbuch M, Schulze FP, Schulz-Siegmund M, and Hacker MC
- Subjects
- Adipose Tissue cytology, Cell Adhesion, Cell Proliferation, Humans, Linear Models, Molecular Weight, Polymers chemical synthesis, Porosity, Proton Magnetic Resonance Spectroscopy, Silanes chemistry, Stem Cells cytology, Stem Cells metabolism, Glass chemistry, Phase Transition, Polymers chemistry, Tissue Scaffolds chemistry
- Abstract
Biodegradability is a crucial characteristic to improve the clinical potential of sol-gel-derived glass materials. To this end, a set of degradable organic/inorganic class II hybrids from a tetraethoxysilane(TEOS)-derived silica sol and oligovalent cross-linker oligomers containing oligo(d,l-lactide) domains was developed and characterized. A series of 18 oligomers (Mn: 1100-3200Da) with different degrees of ethoxylation and varying length of oligoester units was established and chemical composition was determined. Applicability of an established indirect rapid prototyping method enabled fabrication of a total of 85 different hybrid scaffold formulations from 3-isocyanatopropyltriethoxysilane-functionalized macromers. In vitro degradation was analyzed over 12months and a continuous linear weight loss (0.2-0.5wt%/d) combined with only moderate material swelling was detected which was controlled by oligo(lactide) content and matrix hydrophilicity. Compressive strength (2-30MPa) and compressive modulus (44-716MPa) were determined and total content, oligo(ethylene oxide) content, oligo(lactide) content and molecular weight of the oligomeric cross-linkers as well as material porosity were identified as the main factors determining hybrid mechanics. Cytocompatibility was assessed by cell culture experiments with human adipose tissue-derived stem cells (hASC). Cell migration into the entire scaffold pore network was indicated and continuous proliferation over 14days was found. ALP activity linearly increased over 2weeks indicating osteogenic differentiation. The presented glass-based hybrid concept with precisely adjustable material properties holds promise for regenerative purposes., Statement of Significance: Adaption of degradation kinetics toward physiological relevance is still an unmet challenge of (bio-)glass engineering. We therefore present a glass-derived hybrid material with adjustable degradation. A flexible design concept based on degradable multi-armed oligomers was combined with an established indirect rapid prototyping method to produce a systematic set of porous sol-gel-derived class II hybrid scaffolds. Mechanical properties in the range of cancellous bone were narrowly controlled by hybrid composition. The oligoester introduction resulted in significantly increased compressive moduli. Cytocompatible hybrids degraded in physiologically relevant time frames and a promising linear and controllable weight loss profile was found. To our knowledge, our degradation study represents the most extensive long-term investigation of sol-gel-derived class II hybrids. Due to the broad adjustability of material properties, our concept offers potential for engineering of biodegradable hybrid materials for versatile applications., (Copyright © 2017. Published by Elsevier Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
6. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.
- Author
-
Hendrikx S, Kascholke C, Flath T, Schumann D, Gressenbuch M, Schulze FP, Hacker MC, and Schulz-Siegmund M
- Subjects
- Cell Line, Tumor, Compressive Strength drug effects, Cryoultramicrotomy, Elastic Modulus drug effects, Humans, Molecular Weight, Polyesters pharmacology, Proton Magnetic Resonance Spectroscopy, Silicon Dioxide chemistry, Bone Regeneration drug effects, Cross-Linking Reagents pharmacology, Glass chemistry, Materials Testing methods, Phase Transition drug effects, Tissue Scaffolds chemistry
- Abstract
We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation., Statement of Significance: We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials of relevant porosity and pore size with compressive moduli, covering the range reported for cancellous bone while an even higher compressive strength was maintained. By multiple linear regression, we identified crosslinker parameters, namely organic content and the content of ethylene oxide units in the hybrids that predominantly determined the mechanics of the hybrid materials. The scaffolds proved to be cytocompatible and induced mineralization in SaOS-2 cells. This provides new insight on the critical parameters for the design of the organic components of covalent hybrid sol-gel glasses., (Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
7. Enhanced intestinal adenomatous polyp formation in Pms2-/-;Min mice.
- Author
-
Baker SM, Harris AC, Tsao JL, Flath TJ, Bronner CE, Gordon M, Shibata D, and Liskay RM
- Subjects
- Adenomatous Polyposis Coli Protein, Animals, DNA Repair, Mice, Mice, Knockout, Mice, Mutant Strains, Microsatellite Repeats genetics, Mismatch Repair Endonuclease PMS2, Neoplasms, Experimental, Polymorphism, Single-Stranded Conformational, Adenoma genetics, Adenosine Triphosphatases, Cytoskeletal Proteins genetics, DNA Repair Enzymes, DNA-Binding Proteins, Intestinal Polyps genetics, Proteins physiology
- Abstract
Analysis of two human familial cancer syndromes, hereditary nonpolyposis colorectal cancer and familial adenomatous polyposis, indicates that mutations in either one of four DNA mismatch repair gene homologues or the adenomatous polyposis coli (APC) gene, respectively, are important for the development of colorectal cancer. To further investigate the role of DNA mismatch repair in intestinal tumorigenesis, we generated mice with mutations in both Apc and the DNA mismatch repair gene, Pms2. Whereas Pms2-deficient mice do not develop intestinal tumors, mice deficient in Pms2 and heterozygous for Min, an allele of Apc, develop approximately three times the number of small intestinal adenomas and four times the number of colon adenomas relative to Min and Pms2+/-;Min mice. Although Pms2 deficiency clearly increases adenoma formation in the Min background, histological analysis indicated no clear evidence for progression to carcinoma.
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.