19 results on '"Fischer, Felícia M."'
Search Results
2. Effects of defoliation frequencies on above- and belowground biodiversity and ecosystem processes in subtropical grasslands of southern Brazil
- Author
-
Jorge, Bruna Claudia S., Fischer, Felícia M., Debastiani, Vanderlei J., Hoss, Daniela, Pillar, Valério D., and Winck, Bruna
- Published
- 2022
- Full Text
- View/download PDF
3. Extreme drought impacts have been underestimated in grasslands and shrublands globally
- Author
-
Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Smith, Melinda D., Wilkins, Kate D., Holdrege, Martin C., Wilfahrt, Peter, Collins, Scott L., Knapp, Alan K., Sala, Osvaldo, Dukes, Jeffrey S., Phillips, Richard P., Yahdjian, Laura, Gherardi, Laureano A., An, Hui, Anacker, Brian, Anderson, Maggie, Auge, Harald, Bachle, Seton, Bahalkeh, Khadijeh, Bahn, Michael, Batbaatar, Amgaa, Bauerle, Taryn, Beard, Karen H., Loydi, Alejandro, Behn, Kai, Beil, Ilka, Biancari, Lucio, Blindow, Irmgard, Bondaruk, Viviana Florencia, Borer, Elizabeth T., Bork, Edward W., Bruschetti, Carlos Martin, Byrne, Kerry M., Cahill Jr., James F., Luan, Junwei, Calvo, Dianela A., Carbognani, Michele, Cardoni, Augusto, Carlyle, Cameron N., Castillo-Garcia, Miguel, Chang, Scott X., Chieppa, Jeff, Cianciaruso, Marcus V., Cohen, Ofer, Cordeiro, Amanda L., Lubbe, Frederick Curtis, Cusack, Daniela F., Dahlke, Sven, Daleo, Pedro, D'Antonio, Carla M., Dietterich, Lee H., Doherty, Tim S., Dubbert, Maren, Ebeling, Anne, Eisenhauer, Nico, Fischer, Felícia M., Macfarlane, Craig, Forte, T'ai G.W., Gebauer, Tobias, Gozalo, Beatriz, Greenville, Aaron C., Guidoni-Martins, Karlo G., Hannusch, Heather J., Haugum, Siri Vatsø, Hautier, Yann, Hefting, Mariet, Henry, Hugh A.L., Mackie-Haas, Kathleen, Hoss, Daniela, Ingrisch, Johannes, Iribarne, Oscar, Isbell, Forest, Johnson, Yari, Jordan, Samuel, Kelly, Eugene F., Kimmel, Kaitlin, Kreyling, Juergen, Kröel-Dulay, György, Malyshev, Andrey V., Kröpfl, Alicia, Kübert, Angelika, Kulmatiski, Andrew, Lamb, Eric G., Larsen, Klaus Steenberg, Larson, Julie, Lawson, Jason, Leder, Cintia V., Linstädter, Anja, Liu, Jielin, Maturano-Ruiz, Adrián, Liu, Shirong, Lodge, Alexandra G., Longo, Grisel, Merchant, Thomas, Metcalfe, Daniel B., Mori, Akira S., Ohlert, Timothy, Mudongo, Edwin, Newman, Gregory S., Nielsen, Uffe N., Nimmo, Dale, Niu, Yujie, Nobre, Paola, O'Connor, Rory C., Ogaya, Romà, Oñatibia, Gastón R., Orbán, Ildikó, Beier, Claus, Osborne, Brooke, Otfinowski, Rafael, Pärtel, Meelis, Peñuelas Reixach, Josep, Peri, Pablo L., Peter, Guadalupe, Petraglia, Alessandro, Picon-Cochard, Catherine, Pillar, Valério D., Piñeiro-Guerra, Juan Manuel, Fraser, Lauchlan H., Ploughe, Laura W., Plowes, Robert M., Portales-Reyes, Cristy, Prober, Suzanne M., Pueyo, Yolanda, Reed, Sasha C., Ritchie, Euan G., Rodríguez, Dana Aylén, Rogers, William E., Roscher, Christiane, Jentsch, Anke, Sánchez, Ana M., Santos, Bráulio A., Scarfó, María Cecilia, Seabloom, Eric W., Shi, Baoku, Souza, Lara, Stampfli, Andreas, Standish, Rachel J., Sternberg, Marcelo, Sun, Wei, Loik, Michael E., Sünnemann, Marie, Tedder, Michelle, Thorvaldsen, Pål, Tian, Dashuan, Tielbörger, Katja, Valdecantos, Alejandro, van den Brink, Liesbeth, Vandvik, Vigdis, Vankoughnett, Mathew R., Velle, Liv Guri, Maestre, Fernando T., Wang, Changhui, Wang, Yi, Wardle, Glenda M., Werner, Christiane, Wei, Cunzheng, Wiehl, Georg, Williams, Jennifer L., Wolf, Amelia A., Zeiter, Michaela, Zhang, Fawei, Power, Sally A., Zhu, Juntao, Zong, Ning, Zuo, Xiaoan, Yu, Qiang, Felton, Andrew J., Munson, Seth M., Luo, Yiqi, Abdoli, Hamed, Abedi, Mehdi, Alados, Concepción L., Alberti, Juan, Alon, Moshe, Universidad de Alicante. Departamento de Ecología, Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Smith, Melinda D., Wilkins, Kate D., Holdrege, Martin C., Wilfahrt, Peter, Collins, Scott L., Knapp, Alan K., Sala, Osvaldo, Dukes, Jeffrey S., Phillips, Richard P., Yahdjian, Laura, Gherardi, Laureano A., An, Hui, Anacker, Brian, Anderson, Maggie, Auge, Harald, Bachle, Seton, Bahalkeh, Khadijeh, Bahn, Michael, Batbaatar, Amgaa, Bauerle, Taryn, Beard, Karen H., Loydi, Alejandro, Behn, Kai, Beil, Ilka, Biancari, Lucio, Blindow, Irmgard, Bondaruk, Viviana Florencia, Borer, Elizabeth T., Bork, Edward W., Bruschetti, Carlos Martin, Byrne, Kerry M., Cahill Jr., James F., Luan, Junwei, Calvo, Dianela A., Carbognani, Michele, Cardoni, Augusto, Carlyle, Cameron N., Castillo-Garcia, Miguel, Chang, Scott X., Chieppa, Jeff, Cianciaruso, Marcus V., Cohen, Ofer, Cordeiro, Amanda L., Lubbe, Frederick Curtis, Cusack, Daniela F., Dahlke, Sven, Daleo, Pedro, D'Antonio, Carla M., Dietterich, Lee H., Doherty, Tim S., Dubbert, Maren, Ebeling, Anne, Eisenhauer, Nico, Fischer, Felícia M., Macfarlane, Craig, Forte, T'ai G.W., Gebauer, Tobias, Gozalo, Beatriz, Greenville, Aaron C., Guidoni-Martins, Karlo G., Hannusch, Heather J., Haugum, Siri Vatsø, Hautier, Yann, Hefting, Mariet, Henry, Hugh A.L., Mackie-Haas, Kathleen, Hoss, Daniela, Ingrisch, Johannes, Iribarne, Oscar, Isbell, Forest, Johnson, Yari, Jordan, Samuel, Kelly, Eugene F., Kimmel, Kaitlin, Kreyling, Juergen, Kröel-Dulay, György, Malyshev, Andrey V., Kröpfl, Alicia, Kübert, Angelika, Kulmatiski, Andrew, Lamb, Eric G., Larsen, Klaus Steenberg, Larson, Julie, Lawson, Jason, Leder, Cintia V., Linstädter, Anja, Liu, Jielin, Maturano-Ruiz, Adrián, Liu, Shirong, Lodge, Alexandra G., Longo, Grisel, Merchant, Thomas, Metcalfe, Daniel B., Mori, Akira S., Ohlert, Timothy, Mudongo, Edwin, Newman, Gregory S., Nielsen, Uffe N., Nimmo, Dale, Niu, Yujie, Nobre, Paola, O'Connor, Rory C., Ogaya, Romà, Oñatibia, Gastón R., Orbán, Ildikó, Beier, Claus, Osborne, Brooke, Otfinowski, Rafael, Pärtel, Meelis, Peñuelas Reixach, Josep, Peri, Pablo L., Peter, Guadalupe, Petraglia, Alessandro, Picon-Cochard, Catherine, Pillar, Valério D., Piñeiro-Guerra, Juan Manuel, Fraser, Lauchlan H., Ploughe, Laura W., Plowes, Robert M., Portales-Reyes, Cristy, Prober, Suzanne M., Pueyo, Yolanda, Reed, Sasha C., Ritchie, Euan G., Rodríguez, Dana Aylén, Rogers, William E., Roscher, Christiane, Jentsch, Anke, Sánchez, Ana M., Santos, Bráulio A., Scarfó, María Cecilia, Seabloom, Eric W., Shi, Baoku, Souza, Lara, Stampfli, Andreas, Standish, Rachel J., Sternberg, Marcelo, Sun, Wei, Loik, Michael E., Sünnemann, Marie, Tedder, Michelle, Thorvaldsen, Pål, Tian, Dashuan, Tielbörger, Katja, Valdecantos, Alejandro, van den Brink, Liesbeth, Vandvik, Vigdis, Vankoughnett, Mathew R., Velle, Liv Guri, Maestre, Fernando T., Wang, Changhui, Wang, Yi, Wardle, Glenda M., Werner, Christiane, Wei, Cunzheng, Wiehl, Georg, Williams, Jennifer L., Wolf, Amelia A., Zeiter, Michaela, Zhang, Fawei, Power, Sally A., Zhu, Juntao, Zong, Ning, Zuo, Xiaoan, Yu, Qiang, Felton, Andrew J., Munson, Seth M., Luo, Yiqi, Abdoli, Hamed, Abedi, Mehdi, Alados, Concepción L., Alberti, Juan, and Alon, Moshe
- Abstract
Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
- Published
- 2024
4. Extreme drought impacts have been underestimated in grasslands and shrublands globally
- Author
-
Smith, Melinda D., Wilkins, Kate D., Holdrege, Martin C., Wilfahrt, Peter, Collins, Scott L., Knapp, Alan K., Sala, Osvaldo E., Dukes, Jeffrey S., Phillips, Richard P., Yahdjian, Laura, Gherardi, Laureano A., Ohlert, Timothy, Beier, Claus, Fraser, Lauchlan H., Jentsch, Anke, Loik, Michael E., Maestre, Fernando T., Power, Sally A., Yu, Qiang, Felton, Andrew J., Munson, Seth M., Luo, Yiqi, Abdoli, Hamed, Abedi, Mehdi, Alados, Concepción L., Alberti, Juan, Alon, Moshe, An, Hui, Anacker, Brian, Anderson, Maggie, Auge, Harald, Bachle, Seton, Bahalkeh, Khadijeh, Bahn, Michael, Batbaatar, Amgaa, Bauerle, Taryn, Beard, Karen H., Behn, Kai, Beil, Ilka, Biancari, Lucio, Blindow, Irmgard, Bondaruk, Viviana Florencia, Borer, Elizabeth T., Bork, Edward W., Bruschetti, Carlos Martin, Byrne, Kerry M., Cahill, James F., Calvo, Dianela A., Carbognani, Michele, Cardoni, Augusto, Carlyle, Cameron N., Castillo-Garcia, Miguel, Chang, Scott X., Chieppa, Jeff, Cianciaruso, Marcus V., Cohen, Ofer, Cordeiro, Amanda L., Cusack, Daniela F., Dahlke, Sven, Daleo, Pedro, D'Antonio, Carla M., Dietterich, Lee H., Doherty, Tim S., Dubbert, Maren, Ebeling, Anne, Eisenhauer, Nico, Fischer, Felícia M., Forte, Tai G.W., Gebauer, Tobias, Gozalo, Beatriz, Greenville, Aaron C., Guidoni-Martins, Karlo G., Hannusch, Heather J., Haugum, Siri Vatsø, Hautier, Yann, Hefting, Mariet, Henry, Hugh A.L., Hoss, Daniela, Iribarne, Oscar, Isbell, Forest, Johnson, Yari, Jordan, Samuel, Kelly, Eugene F., Kimmel, Kaitlin, Kreyling, Juergen, Kröel-Dulay, György, Ingrisch, Johannes, Kröpfl, Alicia, Kübert, Angelika, Kulmatiski, Andrew, Lamb, Eric G., Larsen, Klaus Steenberg, Larson, Julie, Leder, Cintia V., Linstädter, Anja, Liu, Jielin, Liu, Shirong, Lodge, Alexandra G., Longo, Grisel, Loydi, Alejandro, Luan, Junwei, Lawson, Jason, Lubbe, Frederick Curtis, Macfarlane, Craig, Mackie-Haas, Kathleen, Malyshev, Andrey V., Maturano-Ruiz, Adrián, Merchant, Thomas, Metcalfe, Daniel B., Mori, Akira S., Mudongo, Edwin, Newman, Gregory S., Nielsen, Uffe N., Nimmo, Dale, Niu, Yujie, Nobre, Paola, O'Connor, Rory C., Ogaya, Romà, Oñatibia, Gastón R., Orbán, Ildikó, Osborne, Brooke, Otfinowski, Rafael, Pärtel, Meelis, Penuelas, Josep, Peri, Pablo L., Peter, Guadalupe, Petraglia, Alessandro, Picon-Cochard, Catherine, Pillar, Valério D., Piñeiro-Guerra, Juan Manuel, Ploughe, Laura W., Plowes, Robert M., Portales-Reyes, Cristy, Prober, Suzanne M., Pueyo, Yolanda, Reed, Sasha C., Ritchie, Euan G., Rodríguez, Dana Aylén, Rogers, William E., Roscher, Christiane, Sánchez, Ana M., Santos, Bráulio A., Scarfó, María Cecilia, Seabloom, Eric W., Shi, Baoku, Souza, Lara, Stampfli, Andreas, Standish, Rachel J., Sternberg, Marcelo, Sun, Wei, Sünnemann, Marie, Tedder, Michelle, Thorvaldsen, Pål, Tian, Dashuan, Tielbörger, Katja, Valdecantos, Alejandro, van den Brink, Liesbeth, Vandvik, Vigdis, Vankoughnett, Mathew R., Velle, Liv Guri, Wang, Changhui, Wang, Yi, Wardle, Glenda M., Werner, Christiane, Wei, Cunzheng, Wiehl, Georg, Williams, Jennifer L., Wolf, Amelia A., Zeiter, Michaela, Zhang, Fawei, Zhu, Juntao, Zong, Ning, Zuo, Xiaoan, Smith, Melinda D., Wilkins, Kate D., Holdrege, Martin C., Wilfahrt, Peter, Collins, Scott L., Knapp, Alan K., Sala, Osvaldo E., Dukes, Jeffrey S., Phillips, Richard P., Yahdjian, Laura, Gherardi, Laureano A., Ohlert, Timothy, Beier, Claus, Fraser, Lauchlan H., Jentsch, Anke, Loik, Michael E., Maestre, Fernando T., Power, Sally A., Yu, Qiang, Felton, Andrew J., Munson, Seth M., Luo, Yiqi, Abdoli, Hamed, Abedi, Mehdi, Alados, Concepción L., Alberti, Juan, Alon, Moshe, An, Hui, Anacker, Brian, Anderson, Maggie, Auge, Harald, Bachle, Seton, Bahalkeh, Khadijeh, Bahn, Michael, Batbaatar, Amgaa, Bauerle, Taryn, Beard, Karen H., Behn, Kai, Beil, Ilka, Biancari, Lucio, Blindow, Irmgard, Bondaruk, Viviana Florencia, Borer, Elizabeth T., Bork, Edward W., Bruschetti, Carlos Martin, Byrne, Kerry M., Cahill, James F., Calvo, Dianela A., Carbognani, Michele, Cardoni, Augusto, Carlyle, Cameron N., Castillo-Garcia, Miguel, Chang, Scott X., Chieppa, Jeff, Cianciaruso, Marcus V., Cohen, Ofer, Cordeiro, Amanda L., Cusack, Daniela F., Dahlke, Sven, Daleo, Pedro, D'Antonio, Carla M., Dietterich, Lee H., Doherty, Tim S., Dubbert, Maren, Ebeling, Anne, Eisenhauer, Nico, Fischer, Felícia M., Forte, Tai G.W., Gebauer, Tobias, Gozalo, Beatriz, Greenville, Aaron C., Guidoni-Martins, Karlo G., Hannusch, Heather J., Haugum, Siri Vatsø, Hautier, Yann, Hefting, Mariet, Henry, Hugh A.L., Hoss, Daniela, Iribarne, Oscar, Isbell, Forest, Johnson, Yari, Jordan, Samuel, Kelly, Eugene F., Kimmel, Kaitlin, Kreyling, Juergen, Kröel-Dulay, György, Ingrisch, Johannes, Kröpfl, Alicia, Kübert, Angelika, Kulmatiski, Andrew, Lamb, Eric G., Larsen, Klaus Steenberg, Larson, Julie, Leder, Cintia V., Linstädter, Anja, Liu, Jielin, Liu, Shirong, Lodge, Alexandra G., Longo, Grisel, Loydi, Alejandro, Luan, Junwei, Lawson, Jason, Lubbe, Frederick Curtis, Macfarlane, Craig, Mackie-Haas, Kathleen, Malyshev, Andrey V., Maturano-Ruiz, Adrián, Merchant, Thomas, Metcalfe, Daniel B., Mori, Akira S., Mudongo, Edwin, Newman, Gregory S., Nielsen, Uffe N., Nimmo, Dale, Niu, Yujie, Nobre, Paola, O'Connor, Rory C., Ogaya, Romà, Oñatibia, Gastón R., Orbán, Ildikó, Osborne, Brooke, Otfinowski, Rafael, Pärtel, Meelis, Penuelas, Josep, Peri, Pablo L., Peter, Guadalupe, Petraglia, Alessandro, Picon-Cochard, Catherine, Pillar, Valério D., Piñeiro-Guerra, Juan Manuel, Ploughe, Laura W., Plowes, Robert M., Portales-Reyes, Cristy, Prober, Suzanne M., Pueyo, Yolanda, Reed, Sasha C., Ritchie, Euan G., Rodríguez, Dana Aylén, Rogers, William E., Roscher, Christiane, Sánchez, Ana M., Santos, Bráulio A., Scarfó, María Cecilia, Seabloom, Eric W., Shi, Baoku, Souza, Lara, Stampfli, Andreas, Standish, Rachel J., Sternberg, Marcelo, Sun, Wei, Sünnemann, Marie, Tedder, Michelle, Thorvaldsen, Pål, Tian, Dashuan, Tielbörger, Katja, Valdecantos, Alejandro, van den Brink, Liesbeth, Vandvik, Vigdis, Vankoughnett, Mathew R., Velle, Liv Guri, Wang, Changhui, Wang, Yi, Wardle, Glenda M., Werner, Christiane, Wei, Cunzheng, Wiehl, Georg, Williams, Jennifer L., Wolf, Amelia A., Zeiter, Michaela, Zhang, Fawei, Zhu, Juntao, Zong, Ning, and Zuo, Xiaoan
- Abstract
Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought., Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
- Published
- 2024
5. Extreme drought impacts have been underestimated in grasslands and shrublands globally
- Author
-
Smith, Melinda D., primary, Wilkins, Kate D., additional, Holdrege, Martin C., additional, Wilfahrt, Peter, additional, Collins, Scott L., additional, Knapp, Alan K., additional, Sala, Osvaldo E., additional, Dukes, Jeffrey S., additional, Phillips, Richard P., additional, Yahdjian, Laura, additional, Gherardi, Laureano A., additional, Ohlert, Timothy, additional, Beier, Claus, additional, Fraser, Lauchlan H., additional, Jentsch, Anke, additional, Loik, Michael E., additional, Maestre, Fernando T., additional, Power, Sally A., additional, Yu, Qiang, additional, Felton, Andrew J., additional, Munson, Seth M., additional, Luo, Yiqi, additional, Abdoli, Hamed, additional, Abedi, Mehdi, additional, Alados, Concepción L., additional, Alberti, Juan, additional, Alon, Moshe, additional, An, Hui, additional, Anacker, Brian, additional, Anderson, Maggie, additional, Auge, Harald, additional, Bachle, Seton, additional, Bahalkeh, Khadijeh, additional, Bahn, Michael, additional, Batbaatar, Amgaa, additional, Bauerle, Taryn, additional, Beard, Karen H., additional, Behn, Kai, additional, Beil, Ilka, additional, Biancari, Lucio, additional, Blindow, Irmgard, additional, Bondaruk, Viviana Florencia, additional, Borer, Elizabeth T., additional, Bork, Edward W., additional, Bruschetti, Carlos Martin, additional, Byrne, Kerry M., additional, Cahill Jr., James F., additional, Calvo, Dianela A., additional, Carbognani, Michele, additional, Cardoni, Augusto, additional, Carlyle, Cameron N., additional, Castillo-Garcia, Miguel, additional, Chang, Scott X., additional, Chieppa, Jeff, additional, Cianciaruso, Marcus V., additional, Cohen, Ofer, additional, Cordeiro, Amanda L., additional, Cusack, Daniela F., additional, Dahlke, Sven, additional, Daleo, Pedro, additional, D'Antonio, Carla M., additional, Dietterich, Lee H., additional, S. Doherty, Tim, additional, Dubbert, Maren, additional, Ebeling, Anne, additional, Eisenhauer, Nico, additional, Fischer, Felícia M., additional, Forte, T'ai G. W., additional, Gebauer, Tobias, additional, Gozalo, Beatriz, additional, Greenville, Aaron C., additional, Guidoni-Martins, Karlo G., additional, Hannusch, Heather J., additional, Vatsø Haugum, Siri, additional, Hautier, Yann, additional, Hefting, Mariet, additional, Henry, Hugh A. L., additional, Hoss, Daniela, additional, Ingrisch, Johannes, additional, Iribarne, Oscar, additional, Isbell, Forest, additional, Johnson, Yari, additional, Jordan, Samuel, additional, Kelly, Eugene F., additional, Kimmel, Kaitlin, additional, Kreyling, Juergen, additional, Kröel-Dulay, György, additional, Kröpfl, Alicia, additional, Kübert, Angelika, additional, Kulmatiski, Andrew, additional, Lamb, Eric G., additional, Larsen, Klaus Steenberg, additional, Larson, Julie, additional, Lawson, Jason, additional, Leder, Cintia V., additional, Linstädter, Anja, additional, Liu, Jielin, additional, Liu, Shirong, additional, Lodge, Alexandra G., additional, Longo, Grisel, additional, Loydi, Alejandro, additional, Luan, Junwei, additional, Curtis Lubbe, Frederick, additional, Macfarlane, Craig, additional, Mackie-Haas, Kathleen, additional, Malyshev, Andrey V., additional, Maturano-Ruiz, Adrián, additional, Merchant, Thomas, additional, Metcalfe, Daniel B., additional, Mori, Akira S., additional, Mudongo, Edwin, additional, Newman, Gregory S., additional, Nielsen, Uffe N., additional, Nimmo, Dale, additional, Niu, Yujie, additional, Nobre, Paola, additional, O'Connor, Rory C., additional, Ogaya, Romà, additional, Oñatibia, Gastón R., additional, Orbán, Ildikó, additional, Osborne, Brooke, additional, Otfinowski, Rafael, additional, Pärtel, Meelis, additional, Penuelas, Josep, additional, Peri, Pablo L., additional, Peter, Guadalupe, additional, Petraglia, Alessandro, additional, Picon-Cochard, Catherine, additional, Pillar, Valério D., additional, Piñeiro-Guerra, Juan Manuel, additional, Ploughe, Laura W., additional, Plowes, Robert M., additional, Portales-Reyes, Cristy, additional, Prober, Suzanne M., additional, Pueyo, Yolanda, additional, Reed, Sasha C., additional, Ritchie, Euan G., additional, Rodríguez, Dana Aylén, additional, Rogers, William E., additional, Roscher, Christiane, additional, Sánchez, Ana M., additional, Santos, Bráulio A., additional, Cecilia Scarfó, María, additional, Seabloom, Eric W., additional, Shi, Baoku, additional, Souza, Lara, additional, Stampfli, Andreas, additional, Standish, Rachel J., additional, Sternberg, Marcelo, additional, Sun, Wei, additional, Sünnemann, Marie, additional, Tedder, Michelle, additional, Thorvaldsen, Pål, additional, Tian, Dashuan, additional, Tielbörger, Katja, additional, Valdecantos, Alejandro, additional, van den Brink, Liesbeth, additional, Vandvik, Vigdis, additional, Vankoughnett, Mathew R., additional, Guri Velle, Liv, additional, Wang, Changhui, additional, Wang, Yi, additional, Wardle, Glenda M., additional, Werner, Christiane, additional, Wei, Cunzheng, additional, Wiehl, Georg, additional, Williams, Jennifer L., additional, Wolf, Amelia A., additional, Zeiter, Michaela, additional, Zhang, Fawei, additional, Zhu, Juntao, additional, Zong, Ning, additional, and Zuo, Xiaoan, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Long-term effects of grazing intensity on strategies and spatial components of functional diversity in subtropical grassland
- Author
-
Fischer, Felícia M., Bonnet, Olivier J. F., Cezimbra, Ian M., and Pillar, Valério D.
- Published
- 2019
7. A conceptual model for linking traits to plant community assembly using experiments and simulations
- Author
-
Pillar, Valério D., primary, Guido, Anaclara, additional, Hoss, Daniela, additional, and Fischer, Felícia M., additional
- Published
- 2023
- Full Text
- View/download PDF
8. Spatial plant resource acquisition traits explain plant community effects on soil microbial properties
- Author
-
Steinauer, Katja, Fischer, Felícia M., Roscher, Christiane, Scheu, Stefan, and Eisenhauer, Nico
- Published
- 2017
- Full Text
- View/download PDF
9. Plant species richness and functional traits affect community stability after a flood event
- Author
-
Fischer, Felícia M., Wright, Alexandra J., Eisenhauer, Nico, Ebeling, Anne, Roscher, Christiane, Wagg, Cameron, Weigelt, Alexandra, Weisser, Wolfgang W., and Pillar, Valério D.
- Published
- 2016
10. Seasonal beta-diversity of dry grassland vegetation: Divergent peaks of above-ground biomass and species richness
- Author
-
Masaryk University, Czech Science Foundation, Fischer, Felícia M., Chytrý, Kryštof, Chytrá, Helena, Chytrý, Milan, Těšitel, Jakub, Masaryk University, Czech Science Foundation, Fischer, Felícia M., Chytrý, Kryštof, Chytrá, Helena, Chytrý, Milan, and Těšitel, Jakub
- Abstract
[Question]: Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae). [Location]: Pavlov Hills, SE Czech Republic. [Methods]: For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients. [Results]: We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community. [Conclusions]: Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peak
- Published
- 2023
11. Traits of dominant plant species drive normalized difference vegetation index in grasslands globally
- Author
-
German Research Foundation, European Commission, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), European Research Council, Ministry of Education, Youth and Sports (Czech Republic), Czech Science Foundation, Academy of Sciences of the Czech Republic, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, National Science Foundation (US), Engel, Thore, Bruelheide, Helge, Hoss, Daniela, Sabatin, Francesco M., Altman, Jan, Arfin-Khan, Mohammed A. S., Bergmeier, Erwin, Černý, Tomáš, Chytrý, Milan, Dainese, Matteo, Dengler, Jürgen, Doležal, Jiří, Field, Richard, Fischer, Felícia M., Huygens, Dries, Jandt, Ute, Jansen, Florian, Jentsch, Anke, Karger, Dirk N., Kattge, Jens, Lenoir, Jonathan, Lens, Frederic, Loos, Jaqueline, Niinemets, Ülo, Overbeck, Gerhard E., Ozinga, Wim A., Peñuelas, Josep, Peyre, Gwendolyn, Phillips, Oliver, Reich, Peter B., Römermann, Christine, Sandel, Brody, Schmidt, Marco, Schrodt, Franziska, Velez-Martin, Eduardo, Violle, Cyrille, Pillar, Valério D., German Research Foundation, European Commission, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), European Research Council, Ministry of Education, Youth and Sports (Czech Republic), Czech Science Foundation, Academy of Sciences of the Czech Republic, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, National Science Foundation (US), Engel, Thore, Bruelheide, Helge, Hoss, Daniela, Sabatin, Francesco M., Altman, Jan, Arfin-Khan, Mohammed A. S., Bergmeier, Erwin, Černý, Tomáš, Chytrý, Milan, Dainese, Matteo, Dengler, Jürgen, Doležal, Jiří, Field, Richard, Fischer, Felícia M., Huygens, Dries, Jandt, Ute, Jansen, Florian, Jentsch, Anke, Karger, Dirk N., Kattge, Jens, Lenoir, Jonathan, Lens, Frederic, Loos, Jaqueline, Niinemets, Ülo, Overbeck, Gerhard E., Ozinga, Wim A., Peñuelas, Josep, Peyre, Gwendolyn, Phillips, Oliver, Reich, Peter B., Römermann, Christine, Sandel, Brody, Schmidt, Marco, Schrodt, Franziska, Velez-Martin, Eduardo, Violle, Cyrille, and Pillar, Valério D.
- Abstract
[Aim]: Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non-exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small-extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world-wide. [Location]: Two thousand nine hundred and forty-one grassland plots globally. [Time period]: 2000–2014. Major taxa studied. Vascular plants. [Methods]: We obtained plot-based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community-weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite-derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. [Results]: Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF
- Published
- 2023
12. Traits of dominant plant species drive normalized difference vegetation index in grasslands globally
- Author
-
Engel, Thore, Bruelheide, Helge, Hoss, Daniela, Sabatini, Francesco M., Altman, Jan, Arfin‐Khan, Mohammed A. S., Bergmeier, Erwin, Černý, Tomáš, Chytrý, Milan, Dainese, Matteo, Dengler, Jürgen, Dolezal, Jiri, Field, Richard, Fischer, Felícia M., Huygens, Dries, Jandt, Ute, Jansen, Florian, Jentsch, Anke, Karger, Dirk N., Kattge, Jens, Lenoir, Jonathan, Lens, Frederic, Loos, Jaqueline, Niinemets, Ülo, Overbeck, Gerhard E., Ozinga, Wim A., Penuelas, Josep, Peyre, Gwendolyn, Phillips, Oliver, Reich, Peter B., Römermann, Christine, Sandel, Brody, Schmidt, Marco, Schrodt, Franziska, Velez‐Martin, Eduardo, Violle, Cyrille, Pillar, Valério, Engel, Thore, Bruelheide, Helge, Hoss, Daniela, Sabatini, Francesco M., Altman, Jan, Arfin‐Khan, Mohammed A. S., Bergmeier, Erwin, Černý, Tomáš, Chytrý, Milan, Dainese, Matteo, Dengler, Jürgen, Dolezal, Jiri, Field, Richard, Fischer, Felícia M., Huygens, Dries, Jandt, Ute, Jansen, Florian, Jentsch, Anke, Karger, Dirk N., Kattge, Jens, Lenoir, Jonathan, Lens, Frederic, Loos, Jaqueline, Niinemets, Ülo, Overbeck, Gerhard E., Ozinga, Wim A., Penuelas, Josep, Peyre, Gwendolyn, Phillips, Oliver, Reich, Peter B., Römermann, Christine, Sandel, Brody, Schmidt, Marco, Schrodt, Franziska, Velez‐Martin, Eduardo, Violle, Cyrille, and Pillar, Valério
- Abstract
Aim: Theoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non-exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small-extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world-wide. Location: Two thousand nine hundred and forty-one grassland plots globally. Time period: 2000–2014. Major taxa studied: Vascular plants. Methods: We obtained plot-based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community-weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite-derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. Results: Grassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relations
- Published
- 2023
13. Seasonal beta‐diversity of dry grassland vegetation: Divergent peaks of above‐ground biomass and species richness
- Author
-
Fischer, Felícia M., primary, Chytrý, Kryštof, additional, Chytrá, Helena, additional, Chytrý, Milan, additional, and Těšitel, Jakub, additional
- Published
- 2023
- Full Text
- View/download PDF
14. Traits of dominant plant species drive normalized difference vegetation index in grasslands globally
- Author
-
Engel, Thore, primary, Bruelheide, Helge, additional, Hoss, Daniela, additional, Sabatini, Francesco M., additional, Altman, Jan, additional, Arfin‐Khan, Mohammed A. S., additional, Bergmeier, Erwin, additional, Černý, Tomáš, additional, Chytrý, Milan, additional, Dainese, Matteo, additional, Dengler, Jürgen, additional, Dolezal, Jiri, additional, Field, Richard, additional, Fischer, Felícia M., additional, Huygens, Dries, additional, Jandt, Ute, additional, Jansen, Florian, additional, Jentsch, Anke, additional, Karger, Dirk N., additional, Kattge, Jens, additional, Lenoir, Jonathan, additional, Lens, Frederic, additional, Loos, Jaqueline, additional, Niinemets, Ülo, additional, Overbeck, Gerhard E., additional, Ozinga, Wim A., additional, Penuelas, Josep, additional, Peyre, Gwendolyn, additional, Phillips, Oliver, additional, Reich, Peter B., additional, Römermann, Christine, additional, Sandel, Brody, additional, Schmidt, Marco, additional, Schrodt, Franziska, additional, Velez‐Martin, Eduardo, additional, Violle, Cyrille, additional, and Pillar, Valério, additional
- Published
- 2023
- Full Text
- View/download PDF
15. The role of invasive pine on changes of plant composition and functional traits in a coastal dune ecosystem
- Author
-
Fischer, Felícia M., Oliveira, Juliano M., Dresseno, André L.P., and Pillar, Valério D.
- Published
- 2014
- Full Text
- View/download PDF
16. Effects of defoliation frequencies on above- and belowground biodiversity and ecosystem processes in subtropical grasslands of southern Brazil
- Author
-
Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Ministério da Educação (Brasil), Claudia S. Jorge, Bruna, Fischer, Felícia M., Debastiani, Vanderlei J., Hoss, Daniela, Pillar, Valério D., Winck, Bruna, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brasil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Ministério da Educação (Brasil), Claudia S. Jorge, Bruna, Fischer, Felícia M., Debastiani, Vanderlei J., Hoss, Daniela, Pillar, Valério D., and Winck, Bruna
- Abstract
The links between vegetation and soil biota are responsible for a variety of ecosystem processes and services that can be affected by grazing. In this study, we aimed to evaluate the effects of grazing frequency in natural grasslands’ biodiversity (plant and collembola communities) and on ecosystem processes (decomposition and biomass accumulation). For so, we carried out a clipping experiment over a natural area of subtropical grassland in southern Brazil. The plots were submitted during three years to three different clipping frequencies (high, intermediate, and low) to simulate defoliation caused by grazing. We found the highest aboveground biomass accumulation and detritivore activity in the low defoliation frequency, which also promoted the dominance of tussocks. The synergies between higher vegetation height and biomass tend to provide microclimatic conditions that favors decomposition, which releases nutrients to plants, promoting their growth. The defoliation frequencies applied in this study were not sufficient to provide effects on plant community, since its co-evolutionary history with grazing. The Collembola community was not affected by defoliation. It seems to be more influenced by other factors associated with grazing.
- Published
- 2022
17. Pladias Database of the Czech flora and vegetation
- Author
-
Chytrý, Milan, primary, Danihelka, Jiří, additional, Kaplan, Zdeněk, additional, Wild, Jan, additional, Holubová, Dana, additional, Novotný, Petr, additional, Řezníčková, Marcela, additional, Rohn, Martin, additional, Dřevojan, Pavel, additional, Grulich, Vít, additional, Klimešová, Jitka, additional, Lepš, Jan, additional, Lososová, Zdeňka, additional, Pergl, Jan, additional, Sádlo, Jiří, additional, Šmarda, Petr, additional, Štěpánková, Petra, additional, Tichý, Lubomír, additional, Axmanová, Irena, additional, Bartušková, Alena, additional, Blažek, Petr, additional, Chrtek, Jindřich, additional, Fischer, Felícia M., additional, Guo, Wen-Yong, additional, Herben, Tomáš, additional, Janovský, Zdeněk, additional, Konečná, Marie, additional, Kühn, Ingolf, additional, Moravcová, Lenka, additional, Petřík, Petr, additional, Pierce, Simon, additional, Prach, Karel, additional, Prokešová, Helena, additional, Štech, Milan, additional, Těšitel, Jakub, additional, Těšitelová, Tamara, additional, Večeřa, Martin, additional, Zelený, David, additional, and Pyšek, Petr, additional
- Published
- 2021
- Full Text
- View/download PDF
18. Weather fluctuations drive short‐term dynamics and long‐term stability in plant communities: A 25‐year study in a Central European dry grassland
- Author
-
Fischer, Felícia M., primary, Chytrý, Kryštof, additional, Těšitel, Jakub, additional, Danihelka, Jiří, additional, and Chytrý, Milan, additional
- Published
- 2020
- Full Text
- View/download PDF
19. Long‐term effects of grazing intensity on strategies and spatial components of functional diversity in subtropical grassland.
- Author
-
Paruelo, José, Fischer, Felícia M., Pillar, Valério D., Bonnet, Olivier J. F., and Cezimbra, Ian M.
- Subjects
- *
GRASSLANDS , *GRAZING , *PLANT communities , *DEFOLIATION , *BUNCHGRASSES - Abstract
Question: How does grazing intensity affect plant community functional traits and the spatial components of functional diversity in subtropical grasslands? Location: Long‐term cattle grazing management experiment in subtropical Campos grassland, southern Brazil. Methods: Fourteen experimental units (paddocks) maintained under seven grazing intensity treatments for 26 years. In each paddock, we recorded plant species cover and species functional traits in nine systematically located plots of 1 m2. Nineteen functional traits were used in the ordination of species to identify main axes of trait variation. Functional diversity measured by Rao entropy was partitioned into alpha, beta and gamma components. We tested, by linear models, for the effects of grazing intensity on community‐weighted mean traits and functional diversity components, using as traits the species scores on the PCA axes. Results: The two main axes of trait variation suggest a separation in species by their functional strategies (acquisition–conservation and tolerance–avoidance trade‐offs). Acquisitive and tolerant species increased while conservative and avoidant species decreased with grazing intensity. Rao quadratic entropy, considering the three spatial components, decreased with grazing intensity, but this trend was more accentuated with beta‐diversity. Conclusions: The long‐term, strictly‐managed grazing experiment allowed us to reveal the effect of not only grazing disturbance per se, but also of different grazing intensities. Under high grazing intensity, frequent and severe defoliation allows only the persistence of species similarly adapted to regrowth. Under low grazing intensity, the lack of frequent defoliation enables the development of species with high investment in strong and long‐lived leaves. The partitioning of functional diversity revealed that the increase in functional diversity in areas with low grazing intensity is mostly due to an increase in heterogeneity among patches (beta‐component). The double stratum vegetation structure: tussocks, which escape grazing control, and short‐grazed patches often overgrazed, is maintained by grazer selectivity. We explore the relationship between grazing intensity and plant community functional aspects. Using functional strategy axes instead of single traits for assessing community weighted means and functional diversity, we studied paddocks of native grassland submitted to a long‐term experiment of grazing pressure in Southern Brazil. Functional diversity partition allowed us to observe that the most prominent effect of high grazing intensity was decreasing patch heterogeneity. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.