110 results on '"Fisch, K"'
Search Results
2. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden M, Wang D, Mason M, Szalai B, Bulusu K, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang I, Ghazoui Z, Ahsen M, Vogel R, Neto E, Norman T, Tang E, Garnett M, Di Veroli G, Fawell S, Stolovitzky G, Guinney J, Dry J, Saez-Rodriguez J, Abante J, Abecassis B, Aben N, Aghamirzaie D, Aittokallio T, Akhtari F, Al-lazikani B, Alam T, Allam A, Allen C, de Almeida M, Altarawy D, Alves V, Amadoz A, Anchang B, Antolin A, Ash J, Aznar V, Ba-alawi W, Bagheri M, Bajic V, Ball G, Ballester P, Baptista D, Bare C, Bateson M, Bender A, Bertrand D, Wijayawardena B, Boroevich K, Bosdriesz E, Bougouffa S, Bounova G, Brouwer T, Bryant B, Calaza M, Calderone A, Calza S, Capuzzi S, Carbonell-Caballero J, Carlin D, Carter H, Castagnoli L, Celebi R, Cesareni G, Chang H, Chen G, Chen H, Cheng L, Chernomoretz A, Chicco D, Cho K, Cho S, Choi D, Choi J, Choi K, Choi M, De Cock M, Coker E, Cortes-Ciriano I, Cserzo M, Cubuk C, Curtis C, Van Daele D, Dang C, Dijkstra T, Dopazo J, Draghici S, Drosou A, Dumontier M, Ehrhart F, Eid F, ElHefnawi M, Elmarakeby H, van Engelen B, Engin H, de Esch I, Evelo C, Falcao A, Farag S, Fernandez-Lozano C, Fisch K, Flobak A, Fornari C, Foroushani A, Fotso D, Fourches D, Friend S, Frigessi A, Gao F, Gao X, Gerold J, Gestraud P, Ghosh S, Gillberg J, Godoy-Lorite A, Godynyuk L, Godzik A, Goldenberg A, Gomez-Cabrero D, Gonen M, de Graaf C, Gray H, Grechkin M, Guimera R, Guney E, Haibe-Kains B, Han Y, Hase T, He D, He L, Heath L, Hellton K, Helmer-Citterich M, Hidalgo M, Hidru D, Hill S, Hochreiter S, Hong S, Hovig E, Hsueh Y, Hu Z, Huang J, Huang R, Hunyady L, Hwang J, Hwang T, Hwang W, Hwang Y, Isayev O, Walk O, Jack J, Jahandideh S, Ji J, Jo Y, Kamola P, Kanev G, Karacosta L, Karimi M, Kaski S, Kazanov M, Khamis A, Khan S, Kiani N, Kim A, Kim J, Kim K, Kim S, Kim Y, Kirk P, Kitano H, Klambauer G, Knowles D, Ko M, Kohn-Luque A, Kooistra A, Kuenemann M, Kuiper M, Kurz C, Kwon M, van Laarhoven T, Laegreid A, Lederer S, Lee H, Lee J, Lee Y, Leppaho E, Lewis R, Li J, Li L, Liley J, Lim W, Lin C, Liu Y, Lopez Y, Low J, Lysenko A, Machado D, Madhukar N, De Maeyer D, Malpartida A, Mamitsuka H, Marabita F, Marchal K, Marttinen P, Mason D, Mazaheri A, Mehmood A, Mehreen A, Michaut M, Miller R, Mitsopoulos C, Modos D, Van Moerbeke M, Moo K, Motsinger-Reif A, Movva R, Muraru S, Muratov E, Mushthofa M, Nagarajan N, Nakken S, Nath A, Neuvial P, Newton R, Ning Z, De Niz C, Oliva B, Olsen C, Palmeri A, Panesar B, Papadopoulos S, Park J, Park S, Pawitan Y, Peluso D, Pendyala S, Peng J, Perfetto L, Pirro S, Plevritis S, Politi R, Poon H, Porta E, Prellner I, Preuer K, Pujana M, Ramnarine R, Reid J, Reyal F, Richardson S, Ricketts C, Rieswijk L, Rocha M, Rodriguez-Gonzalvez C, Roell K, Rotroff D, de Ruiter J, Rukawa P, Sadacca B, Safikhani Z, Safitri F, Sales-Pardo M, Sauer S, Schlichting M, Seoane J, Serra J, Shang M, Sharma A, Sharma H, Shen Y, Shiga M, Shin M, Shkedy Z, Shopsowitz K, Sinai S, Skola D, Smirnov P, Soerensen I, Soerensen P, Song J, Song S, Soufan O, Spitzmueller A, Steipe B, Suphavilai C, Tamayo S, Tamborero D, Tang J, Tanoli Z, Tarres-Deulofeu M, Tegner J, Thommesen L, Tonekaboni S, Tran H, De Troyer E, Truong A, Tsunoda T, Turu G, Tzeng G, Verbeke L, Videla S, Vis D, Voronkov A, Votis K, Wang A, Wang H, Wang P, Wang S, Wang W, Wang X, Wennerberg K, Wernisch L, Wessels L, van Westen G, Westerman B, White S, Willighagen E, Wurdinger T, Xie L, Xie S, Xu H, Yadav B, Yau C, Yeerna H, Yin J, Yu M, Yun S, Zakharov A, Zamichos A, Zanin M, Zeng L, Zenil H, Zhang F, Zhang P, Zhang W, Zhao H, Zhao L, Zheng W, Zoufir A, Zucknick M, AstraZeneca-Sanger Drug Combinatio, Ege Üniversitesi, Gönen, Mehmet (ORCID 0000-0002-2483-075X & YÖK ID 237468), Menden, Michael P., Wang, Dennis, Mason, Mike J., Szalai, Bence, Bulusu, Krishna C., Guan, Yuanfang, Yu, Thomas, Kang, Jaewoo, Jeon, Minji, Wolfinger, Russ, Nguyen, Tin, Zaslavskiy, Mikhail, Jang, In Sock, Ghazoui, Zara, Ahsen, Mehmet Eren, Vogel, Robert, Neto, Elias Chaibub, Norman, Thea, Tang, Eric K. Y., Garnett, Mathew J., Di Veroli, Giovanni Y., Fawell, Stephen, Stolovitzky, Gustavo, Guinney, Justin, Dry, Jonathan R., Saez-Rodriguez, Julio, Abante, Jordi, Abecassis, Barbara Schmitz, Aben, Nanne, Aghamirzaie, Delasa, Aittokallio, Tero, Akhtari, Farida S., Al-lazikani, Bissan, Alam, Tanvir, Allam, Amin, Allen, Chad, de Almeida, Mariana Pelicano, Altarawy, Doaa, Alves, Vinicius, Amadoz, Alicia, Anchang, Benedict, Antolin, Albert A., Ash, Jeremy R., Romeo Aznar, Victoria, Ba-alawi, Wail, Bagheri, Moeen, Bajic, Vladimir, Ball, Gordon, Ballester, Pedro J., Baptista, Delora, Bare, Christopher, Bateson, Mathilde, Bender, Andreas, Bertrand, Denis, Wijayawardena, Bhagya, Boroevich, Keith A., Bosdriesz, Evert, Bougouffa, Salim, Bounova, Gergana, Brouwer, Thomas, Bryant, Barbara, Calaza, Manuel, Calderone, Alberto, Calza, Stefano, Capuzzi, Stephen, Carbonell-Caballero, Jose, Carlin, Daniel, Carter, Hannah, Castagnoli, Luisa, Celebi, Remzi, Cesareni, Gianni, Chang, Hyeokyoon, Chen, Guocai, Chen, Haoran, Chen, Huiyuan, Cheng, Lijun, Chernomoretz, Ariel, Chicco, Davide, Cho, Kwang-Hyun, Cho, Sunghwan, Choi, Daeseon, Choi, Jaejoon, Choi, Kwanghun, Choi, Minsoo, De Cock, Martine, Coker, Elizabeth, Cortes-Ciriano, Isidro, Cserzo, Miklos, Cubuk, Cankut, Curtis, Christina, Van Daele, Dries, Dang, Cuong C., Dijkstra, Tjeerd, Dopazo, Joaquin, Draghici, Sorin, Drosou, Anastasios, Dumontier, Michel, Ehrhart, Friederike, Eid, Fatma-Elzahraa, ElHefnawi, Mahmoud, Elmarakeby, Haitham, van Engelen, Bo, Engin, Hatice Billur, de Esch, Iwan, Evelo, Chris, Falcao, Andre O., Farag, Sherif, Fernandez-Lozano, Carlos, Fisch, Kathleen, Flobak, Asmund, Fornari, Chiara, Foroushani, Amir B. K., Fotso, Donatien Chedom, Fourches, Denis, Friend, Stephen, Frigessi, Arnoldo, Gao, Feng, Gao, Xiaoting, Gerold, Jeffrey M., Gestraud, Pierre, Ghosh, Samik, Gillberg, Jussi, Godoy-Lorite, Antonia, Godynyuk, Lizzy, Godzik, Adam, Goldenberg, Anna, Gomez-Cabrero, David, de Graaf, Chris, Gray, Harry, Grechkin, Maxim, Guimera, Roger, Guney, Emre, Haibe-Kains, Benjamin, Han, Younghyun, Hase, Takeshi, He, Di, He, Liye, Heath, Lenwood S., Hellton, Kristoffer H., Helmer-Citterich, Manuela, Hidalgo, Marta R., Hidru, Daniel, Hill, Steven M., Hochreiter, Sepp, Hong, Seungpyo, Hovig, Eivind, Hsueh, Ya-Chih, Hu, Zhiyuan, Huang, Justin K., Huang, R. Stephanie, Hunyady, Laszlo, Hwang, Jinseub, Hwang, Tae Hyun, Hwang, Woochang, Hwang, Yongdeuk, Isayev, Olexandr, Walk, Oliver Bear Don't, Jack, John, Jahandideh, Samad, Ji, Jiadong, Jo, Yousang, Kamola, Piotr J., Kanev, Georgi K., Karacosta, Loukia, Karimi, Mostafa, Kaski, Samuel, Kazanov, Marat, Khamis, Abdullah M., Khan, Suleiman Ali, Kiani, Narsis A., Kim, Allen, Kim, Jinhan, Kim, Juntae, Kim, Kiseong, Kim, Kyung, Kim, Sunkyu, Kim, Yongsoo, Kim, Yunseong, Kirk, Paul D. W., Kitano, Hiroaki, Klambauer, Gunter, Knowles, David, Ko, Melissa, Kohn-Luque, Alvaro, Kooistra, Albert J., Kuenemann, Melaine A., Kuiper, Martin, Kurz, Christoph, Kwon, Mijin, van Laarhoven, Twan, Laegreid, Astrid, Lederer, Simone, Lee, Heewon, Lee, Jeon, Lee, Yun Woo, Leppaho, Eemeli, Lewis, Richard, Li, Jing, Li, Lang, Liley, James, Lim, Weng Khong, Lin, Chieh, Liu, Yiyi, Lopez, Yosvany, Low, Joshua, Lysenko, Artem, Machado, Daniel, Madhukar, Neel, De Maeyer, Dries, Malpartida, Ana Belen, Mamitsuka, Hiroshi, Marabita, Francesco, Marchal, Kathleen, Marttinen, Pekka, Mason, Daniel, Mazaheri, Alireza, Mehmood, Arfa, Mehreen, Ali, Michaut, Magali, Miller, Ryan A., Mitsopoulos, Costas, Modos, Dezso, Van Moerbeke, Marijke, Moo, Keagan, Motsinger-Reif, Alison, Movva, Rajiv, Muraru, Sebastian, Muratov, Eugene, Mushthofa, Mushthofa, Nagarajan, Niranjan, Nakken, Sigve, Nath, Aritro, Neuvial, Pierre, Newton, Richard, Ning, Zheng, De Niz, Carlos, Oliva, Baldo, Olsen, Catharina, Palmeri, Antonio, Panesar, Bhawan, Papadopoulos, Stavros, Park, Jaesub, Park, Seonyeong, Park, Sungjoon, Pawitan, Yudi, Peluso, Daniele, Pendyala, Sriram, Peng, Jian, Perfetto, Livia, Pirro, Stefano, Plevritis, Sylvia, Politi, Regina, Poon, Hoifung, Porta, Eduard, Prellner, Isak, Preuer, Kristina, Angel Pujana, Miguel, Ramnarine, Ricardo, Reid, John E., Reyal, Fabien, Richardson, Sylvia, Ricketts, Camir, Rieswijk, Linda, Rocha, Miguel, Rodriguez-Gonzalvez, Carmen, Roell, Kyle, Rotroff, Daniel, de Ruiter, Julian R., Rukawa, Ploy, Sadacca, Benjamin, Safikhani, Zhaleh, Safitri, Fita, Sales-Pardo, Marta, Sauer, Sebastian, Schlichting, Moritz, Seoane, Jose A., Serra, Jordi, Shang, Ming-Mei, Sharma, Alok, Sharma, Hari, Shen, Yang, Shiga, Motoki, Shin, Moonshik, Shkedy, Ziv, Shopsowitz, Kevin, Sinai, Sam, Skola, Dylan, Smirnov, Petr, Soerensen, Izel Fourie, Soerensen, Peter, Song, Je-Hoon, Song, Sang Ok, Soufan, Othman, Spitzmueller, Andreas, Steipe, Boris, Suphavilai, Chayaporn, Tamayo, Sergio Pulido, Tamborero, David, Tang, Jing, Tanoli, Zia-ur-Rehman, Tarres-Deulofeu, Marc, Tegner, Jesper, Thommesen, Liv, Tonekaboni, Seyed Ali Madani, Tran, Hong, De Troyer, Ewoud, Truong, Amy, Tsunoda, Tatsuhiko, Turu, Gabor, Tzeng, Guang-Yo, Verbeke, Lieven, Videla, Santiago, Vis, Daniel, Voronkov, Andrey, Votis, Konstantinos, Wang, Ashley, Wang, Hong-Qiang Horace, Wang, Po-Wei, Wang, Sheng, Wang, Wei, Wang, Xiaochen, Wang, Xin, Wennerberg, Krister, Wernisch, Lorenz, Wessels, Lodewyk, van Westen, Gerard J. P., Westerman, Bart A., White, Simon Richard, Willighagen, Egon, Wurdinger, Tom, Xie, Lei, Xie, Shuilian, Xu, Hua, Yadav, Bhagwan, Yau, Christopher, Yeerna, Huwate, Yin, Jia Wei, Yu, Michael, Yu, MinHwan, Yun, So Jeong, Zakharov, Alexey, Zamichos, Alexandros, Zanin, Massimiliano, Zeng, Li, Zenil, Hector, Zhang, Frederick, Zhang, Pengyue, Zhang, Wei, Zhao, Hongyu, Zhao, Lan, Zheng, Wenjin, Zoufir, Azedine, Zucknick, Manuela, College of Engineering, Department of Industrial Engineering, Institute of Data Science, RS: FSE DACS IDS, Bioinformatica, RS: NUTRIM - R1 - Obesity, diabetes and cardiovascular health, RS: FHML MaCSBio, Promovendi NTM, Tero Aittokallio / Principal Investigator, Bioinformatics, Institute for Molecular Medicine Finland, Hu, Z, Fotso, DC, Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden, Michael P. [0000-0003-0267-5792], Mason, Mike J. [0000-0002-5652-7739], Yu, Thomas [0000-0002-5841-0198], Kang, Jaewoo [0000-0001-6798-9106], Nguyen, Tin [0000-0001-8001-9470], Ahsen, Mehmet Eren [0000-0002-4907-0427], Stolovitzky, Gustavo [0000-0002-9618-2819], Guinney, Justin [0000-0003-1477-1888], Saez-Rodriguez, Julio [0000-0002-8552-8976], Apollo - University of Cambridge Repository, Menden, Michael P [0000-0003-0267-5792], Mason, Mike J [0000-0002-5652-7739], Pathology, CCA - Cancer biology and immunology, Medical oncology laboratory, Neurosurgery, Chemistry and Pharmaceutical Sciences, AIMMS, Medicinal chemistry, Universidade do Minho, Department of Computer Science, Professorship Marttinen P., Aalto-yliopisto, and Aalto University
- Subjects
Drug Resistance ,02 engineering and technology ,13 ,PATHWAY ,Antineoplastic Combined Chemotherapy Protocols ,Molecular Targeted Therapy ,Càncer ,lcsh:Science ,media_common ,Cancer ,Tumor ,Settore BIO/18 ,Settore BIO/11 ,Drug combinations ,High-throughput screening ,Drug Synergism ,purl.org/becyt/ford/1.2 [https] ,Genomics ,Machine Learning ,predictions ,3. Good health ,ddc ,Technologie de l'environnement, contrôle de la pollution ,Benchmarking ,5.1 Pharmaceuticals ,Cancer treatment ,Farmacogenètica ,Science & Technology - Other Topics ,Development of treatments and therapeutic interventions ,0210 nano-technology ,Human ,Drug ,media_common.quotation_subject ,Science ,49/23 ,ADAM17 Protein ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,RESOURCE ,Machine learning ,Genetics ,Chimie ,Humans ,BREAST-CANCER ,CELL ,49/98 ,Science & Technology ,Antineoplastic Combined Chemotherapy Protocol ,45 ,MUTATIONS ,Computational Biology ,Androgen receptor ,Breast-cancer ,Gene ,Cell ,Inhibition ,Resistance ,Pathway ,Mutations ,Landscape ,Resource ,631/114/1305 ,medicine.disease ,Drug synergy ,49 ,030104 developmental biology ,Pharmacogenetics ,Mutation ,Ciências Médicas::Biotecnologia Médica ,lcsh:Q ,631/154/1435/2163 ,Biomarkers ,RESISTANCE ,0301 basic medicine ,ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA ,Statistical methods ,Computer science ,General Physics and Astronomy ,Datasets as Topic ,Drug resistance ,purl.org/becyt/ford/1 [https] ,Phosphatidylinositol 3-Kinases ,Biotecnologia Médica [Ciências Médicas] ,Neoplasms ,Science and technology ,Phosphoinositide-3 Kinase Inhibitors ,Multidisciplinary ,Biomarkers, Tumor ,Cell Line, Tumor ,Drug Antagonism ,Drug Resistance, Neoplasm ,Treatment Outcome ,Pharmacogenetic ,article ,ANDROGEN RECEPTOR ,49/39 ,631/114/2415 ,021001 nanoscience & nanotechnology ,692/4028/67 ,Multidisciplinary Sciences ,317 Pharmacy ,Patient Safety ,Systems biology ,3122 Cancers ,INHIBITION ,Computational biology ,Cell Line ,medicine ,LANDSCAPE ,Physique ,Human Genome ,Data Science ,General Chemistry ,AstraZeneca-Sanger Drug Combination DREAM Consortium ,Astronomie ,GENE ,Good Health and Well Being ,Pharmacogenomics ,Genomic ,Neoplasm ,631/553 ,Phosphatidylinositol 3-Kinase - Abstract
PubMed: 31209238, The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells. © 2019, The Author(s)., National Institute for Health Research, NIHR Wellcome Trust, WT: 102696, 206194 Magyar Tudományos Akadémia, MTA Bayer 668858 PrECISE AstraZeneca, We thank the Genomics of Drug Sensitivity in Cancer and COSMIC teams at the Wellcome Trust Sanger Institute for help with the preparation of the molecular data, Denes Turei for help with Omnipath, and Katjusa Koler for help with matching drug names across combination screens. We thank AstraZeneca for funding and provision of data to the DREAM Consortium to run the challenge, and funding from the European Union Horizon 2020 research (under grant agreement No 668858 PrECISE to J.S.R.), the Joint Research Center for Computational Biomedicine (which is partially funded by Bayer AG) to J.S.R., National Institute for Health Research (NIHR) Sheffield Biomedical Research Center, Premium Postdoctoral Fellowship Program of the Hungarian Academy of Sciences. M.G lab is supported by Wellcome Trust (102696 and 206194)., Competing interests: K.C.B., Z.G., G.Y.D., E.K.Y.T., S.F., and J.R.D. are AstraZeneca employees. K.C.B., Z.G., E.K.Y.T., S.F., and J.R.D. are AstraZeneca shareholders. Y.G. receives personal compensation from Eli Lilly and Company, is a shareholder of Cleerly, Inc., and Ann Arbor Algorithms, Inc. M.G. receives research funding from AstraZeneca and has performed consultancy for Sanofi. The remaining authors declare no competing interests.
- Published
- 2019
- Full Text
- View/download PDF
3. Homing zirkulierender HCC-Zellen in die Leber — ein Chemokinrezeptor vermittelter Prozess?
- Author
-
Gaßmann, P., Schlüter, K., Fisch, K. M., Müller-Homey, A., Homey, B., Haier, J., Bruch, H. P., editor, Büchler, M. W., editor, Buhr, H. J., editor, Hohenberger, W., editor, Klar, E., editor, Kremer, B., editor, Post, S., editor, Schilling, M., editor, Schumpelick, V., editor, Siewert, J. R., editor, Thiede, A., editor, Becker, H., editor, Bittner, R., editor, Függer, R., editor, Köckerling, F., editor, Saeger, H. D., editor, Zornig, C., editor, Hölscher, A., editor, Izbicki, J. R., editor, Junginger, T., editor, Senninger, N., editor, Allgayer, H., editor, Broll, R., editor, Bruns, C. J., editor, Fries, H., editor, Kalthoff, H., editor, Schackert, H. K., editor, Ertel, W., editor, Faist, E., editor, Holzheimer, R. G., editor, Holzmann, B., editor, Schade, U. F., editor, Vollmar, B., editor, Brückner, U. B., editor, Heidecke, C. D., editor, Menger, M. D., editor, Neugebauer, E., editor, Spiegel, H. U., editor, Biemer, E., editor, Germann, G., editor, Haas, N., editor, Machens, H. G., editor, Stark, G. B., editor, Steinau, H. U., editor, Haverich, A., editor, Heberer, M., editor, Rogiers, X., editor, Jauch, K. W., editor, Roth, H., editor, von Schweinitz, D., editor, Waag, K. L., editor, Altendorf-Hofmann, A., editor, Celik, I., editor, Lehnert, T., editor, Lorenz, W., editor, Ohmann, C., editor, Bechstein, W. O., editor, Broelsch, C., editor, Hopt, U., editor, Klempnauer, J., editor, Neuhaus, P., editor, Fändrich, F., editor, Markus, B., editor, Minor, T., editor, Wonigeit, K., editor, Dralle, H., editor, Goretzki, P. E., editor, Rothmund, M., editor, Bühren, V., editor, Josten, C., editor, Muhr, G., editor, Nast-Kolb, D., editor, Stürmer, K. M., editor, Trentz, O., editor, Brunkwall, J., editor, Sandmann, W., editor, Schmitz-Rixen, T., editor, Storck, M., editor, Branscheid, D., editor, Dienemann, H., editor, Hirner, A., editor, Passlick, B., editor, Toomes, H., editor, Beyersdorf, F., editor, Hetzer, R., editor, Schäfers, H. J., editor, Zerkowski, H. R., editor, Becker, H. D., editor, Saeger, H. -D., editor, Jauch, K. -W., editor, and Bauer, H., editor
- Published
- 2006
- Full Text
- View/download PDF
4. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., Saez-Rodriguez J., Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., and Saez-Rodriguez J.
- Abstract
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Published
- 2019
5. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger
- Author
-
Fisch, K. M., Gillaspy, A. F., Gipson, M., Henrikson, J. C., Hoover, A. R., Jackson, L., Najar, F. Z., Wägele, H., and Cichewicz, R. H.
- Published
- 2009
- Full Text
- View/download PDF
6. Inhibition früher Schritte der Metastasierung durch Blockade von FAK (Focal Adhesion Kinase) in vivo
- Author
-
Fisch, K. M., von Sengbusch, A., Schlüter, K., Haier, J., Rothmund, M., editor, Jauch, K.-W., editor, and Bauer, H., editor
- Published
- 2005
- Full Text
- View/download PDF
7. Long-read RNA-Seq of human papillomavirus-associated head and neck cancer reveals novel alternatively spliced viral RNA isoforms
- Author
-
Pang, J., primary, Nguyen, N., additional, Finegersh, A., additional, Ren, S., additional, Birmingham, A., additional, Xu, G., additional, Fisch, K., additional, Bafna, V., additional, and Califano, J.A., additional
- Published
- 2020
- Full Text
- View/download PDF
8. Splicing, Mutation, and Methylation Alterations Drive Gene Expression in HPV-OPC more than Copy Number Variation: A Network Propagation Analysis
- Author
-
Qualliotine, J.R., primary, Rosenthal, B., additional, Xu, G., additional, Mark, A., additional, Nasamram, C.A., additional, Gutkind, J.S., additional, Fisch, K., additional, and Califano, J.A., additional
- Published
- 2020
- Full Text
- View/download PDF
9. Inhibition früher Schritte der Metastasierung durch Blockade von FAK (Focal Adhesion Kinase) in vivo
- Author
-
Fisch, K. M., primary, von Sengbusch, A., additional, Schlüter, K., additional, and Haier, J., additional
- Published
- 2005
- Full Text
- View/download PDF
10. Focal Adhesion Kinase (FAK) Regulation of Programmed Death-1 (PD-1)/Programmed Death Ligand-1 (PD-L1) checkpoint signaling in a mouse model of epithelial ovarian cancer
- Author
-
Taylor, K., primary, Chen, X., additional, Tancioni, I., additional, Kleinschmidt, E., additional, Barrie, A., additional, Diaz-Osterman, C., additional, Fu, G., additional, Mark, A., additional, Xu, G., additional, Fisch, K., additional, Xiao, C., additional, and Schlaepfer, D., additional
- Published
- 2019
- Full Text
- View/download PDF
11. On entropy and information in gene interaction networks
- Author
-
Wallace, Z S, primary, Rosenthal, S B, additional, Fisch, K M, additional, Ideker, T, additional, and Sasik, R, additional
- Published
- 2018
- Full Text
- View/download PDF
12. 0025 Hepatocyte HIF-1 Mediates Gene Expression Changes Affecting Hepatic Fibrosis In Murine NAFLD
- Author
-
Mesarwi, O A, primary, Shin, M, additional, Bevans-Fonti, S, additional, Moya, E, additional, Polotsky, V Y, additional, Xu, G, additional, Fisch, K, additional, and Malhotra, A, additional
- Published
- 2018
- Full Text
- View/download PDF
13. Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples.
- Author
-
Miller, LH, Cowell, AN, Loy, DE, Sundararaman, SA, Valdivia, H, Fisch, K, Lescano, AG, Baldeviano, GC, Durand, S, Gerbasi, V, Sutherland, CJ, Nolder, D, Vinetz, JM, Hahn, BH, Winzeler, EA, Miller, LH, Cowell, AN, Loy, DE, Sundararaman, SA, Valdivia, H, Fisch, K, Lescano, AG, Baldeviano, GC, Durand, S, Gerbasi, V, Sutherland, CJ, Nolder, D, Vinetz, JM, Hahn, BH, and Winzeler, EA
- Abstract
UNLABELLED: Whole-genome sequencing (WGS) of microbial pathogens from clinical samples is a highly sensitive tool used to gain a deeper understanding of the biology, epidemiology, and drug resistance mechanisms of many infections. However, WGS of organisms which exhibit low densities in their hosts is challenging due to high levels of host genomic DNA (gDNA), which leads to very low coverage of the microbial genome. WGS of Plasmodium vivax, the most widely distributed form of malaria, is especially difficult because of low parasite densities and the lack of an ex vivo culture system. Current techniques used to enrich P. vivax DNA from clinical samples require significant resources or are not consistently effective. Here, we demonstrate that selective whole-genome amplification (SWGA) can enrich P. vivax gDNA from unprocessed human blood samples and dried blood spots for high-quality WGS, allowing genetic characterization of isolates that would otherwise have been prohibitively expensive or impossible to sequence. We achieved an average genome coverage of 24×, with up to 95% of the P. vivax core genome covered by ≥5 reads. The single-nucleotide polymorphism (SNP) characteristics and drug resistance mutations seen were consistent with those of other P. vivax sequences from a similar region in Peru, demonstrating that SWGA produces high-quality sequences for downstream analysis. SWGA is a robust tool that will enable efficient, cost-effective WGS of P. vivax isolates from clinical samples that can be applied to other neglected microbial pathogens. IMPORTANCE: Malaria is a disease caused by Plasmodium parasites that caused 214 million symptomatic cases and 438,000 deaths in 2015. Plasmodium vivax is the most widely distributed species, causing the majority of malaria infections outside sub-Saharan Africa. Whole-genome sequencing (WGS) of Plasmodium parasites from clinical samples has revealed important insights into the epidemiology and mechanisms of drug resistance of
- Published
- 2017
14. Studies of the Thermal Breakdown of Polybenzimidazoles
- Author
-
Ehlers, G. F. L., Fisch, K. R., and Wiedemann, H. G., editor
- Published
- 1972
- Full Text
- View/download PDF
15. On entropy and information in gene interaction networks.
- Author
-
Wallace, Z S, Rosenthal, S B, Fisch, K M, Ideker, T, and Sasik, R
- Subjects
GENE expression ,BIOINFORMATICS ,GENOMES ,SINGLE nucleotide polymorphisms ,ALZHEIMER'S disease - Abstract
Motivation Modern biological experiments often produce candidate lists of genes presumably related to the studied phenotype. One can ask if the gene list as a whole makes sense in the context of existing knowledge: Are the genes in the list reasonably related to each other or do they look like a random assembly? There are also situations when one wants to know if two or more gene sets are closely related. Gene enrichment tests based on counting the number of genes two sets have in common are adequate if we presume that two genes are related only when they are in fact identical. If by related we mean well connected in the interaction network space, we need a new measure of relatedness for gene sets. Results We derive entropy, interaction information and mutual information for gene sets on interaction networks, starting from a simple phenomenological model of a living cell. Formally, the model describes a set of interacting linear harmonic oscillators in thermal equilibrium. Because the energy function is a quadratic form of the degrees of freedom, entropy and all other derived information quantities can be calculated exactly. We apply these concepts to estimate the probability that genes from several independent genome-wide association studies are not mutually informative; to estimate the probability that two disjoint canonical metabolic pathways are not mutually informative; and to infer relationships among human diseases based on their gene signatures. We show that the present approach is able to predict observationally validated relationships not detectable by gene enrichment methods. The converse is also true; the two methods are therefore complementary. Availability and implementation The functions defined in this paper are available in an R package, gsia, available for download at https://github.com/ucsd-ccbb/gsia. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
16. Exploring the biomedical potential of uncultivated bacterial symbionts by metagenomic techniques
- Author
-
Piel, J., Hrvatin, S., Gurgui, C., Fisch, K., Butzke, D., Fieseler, L., Hentschel, Ute, Wen, G., Platzer, M., Piel, J., Hrvatin, S., Gurgui, C., Fisch, K., Butzke, D., Fieseler, L., Hentschel, Ute, Wen, G., and Platzer, M.
- Published
- 2007
- Full Text
- View/download PDF
17. Abstract S4-3: The EndoPredict score identifies late distant metastases in ER+/HER2− breast cancer patients
- Author
-
Dubsky, P, primary, Brase, JC, additional, Fisch, K, additional, Jakesz, R, additional, Singer, CF, additional, Greil, R, additional, Dietze, O, additional, Weber, KE, additional, Petry, C, additional, Kronenwett, R, additional, Rudas, M, additional, Knauer, M, additional, Gnant, M, additional, and Filipits, M, additional
- Published
- 2012
- Full Text
- View/download PDF
18. Abstract P2-10-11: Prognostic performance of the EndoPredict score in node-positive chemotherapy-treated ER+/HER2− breast cancer patients: results from the GEICAM/9906 trial.
- Author
-
Martin, M, primary, Brase, JC, additional, Ruiz-Borrego, M, additional, Krappmann, K, additional, Munarriz, B, additional, Fisch, K, additional, Ruiz, A, additional, Weber, KE, additional, Crespo, C, additional, Petry, C, additional, Rodriguez, CA, additional, Kronenwett, R, additional, Calvo, L, additional, Alba, E, additional, Carrasco, E, additional, Casas, M, additional, Caballero, R, additional, and Rodriguez-Lescure, A, additional
- Published
- 2012
- Full Text
- View/download PDF
19. Responses of marine macroalgae to hydrogen-peroxide stress
- Author
-
Dummermuth, Angelika, Karsten, Ulf, Fisch, K. M., König-Langlo, Gert, Wiencke, Christian, Dummermuth, Angelika, Karsten, Ulf, Fisch, K. M., König-Langlo, Gert, and Wiencke, Christian
- Published
- 2003
20. ChemInform Abstract: Synthesis of (C5H5)Fe(CO)(SiHPh2)2H, a Catalytically Active Intermediate in the Hydrosilylation of Acetophenone by Diphenylsilane.
- Author
-
BRUNNER, H., primary and FISCH, K., additional
- Published
- 2010
- Full Text
- View/download PDF
21. ChemInform Abstract: Asymmetric Catalyses. Part 82. Enantioselective Hydrogenation of 4- Oxoisophorone.
- Author
-
BRUNNER, H., primary and FISCH, K., additional
- Published
- 2010
- Full Text
- View/download PDF
22. Antioxidative properties of marine macroalgae against hydrogen peroxide stress
- Author
-
Dummermuth, Angelika, Aguilera, J., Fisch, K. M., Karsten, Ulf, Dummermuth, Angelika, Aguilera, J., Fisch, K. M., and Karsten, Ulf
- Published
- 2002
23. Exploring the biomedical potential of uncultivated bacterial symbionts by metagenomic techniques
- Author
-
Piel, J., primary, Hrvatin, S., additional, Gurgui, C., additional, Fisch, K., additional, Butzke, D., additional, Fieseler, L., additional, Hentschel, U., additional, Wen, G., additional, and Platzer, M., additional
- Published
- 2007
- Full Text
- View/download PDF
24. The Effect of Aging on the Glass Transition Temperature of some Polymers
- Author
-
Ehlers, G. F., primary and Fisch, K. R., primary
- Published
- 1977
- Full Text
- View/download PDF
25. POLYMERIZATION KINETICS BY MEANS OF DIFFERENTIAL THERMAL ANALYSIS. PART II. DERIVATION OF RATE AND ENTHALPY EQUATIONS
- Author
-
Gibbs, W. E., primary, Fisch, K. R., primary, Gehatia, M., primary, and Goldfarb, I. J., primary
- Published
- 1964
- Full Text
- View/download PDF
26. POLYMERIZATION KINETICS BY MEANS OF DIFFERENTIAL THERMAL ANALYSIS. PART 1. APPARATUS
- Author
-
Gibbs, W. E., primary and Fisch, K. R., primary
- Published
- 1963
- Full Text
- View/download PDF
27. The EndoPredict score provides prognostic information on late distant metastases in ER+/HER2- breast cancer patients.
- Author
-
Dubsky, P, Brase, J C, Jakesz, R, Rudas, M, Singer, C F, Greil, R, Dietze, O, Luisser, I, Klug, E, Sedivy, R, Bachner, M, Mayr, D, Schmidt, M, Gehrmann, M C, Petry, C, Weber, K E, Fisch, K, Kronenwett, R, Gnant, M, and Filipits, M
- Abstract
Background: ER+/HER2- breast cancers have a proclivity for late recurrence. A personalised estimate of relapse risk after 5 years of endocrine treatment can improve patient selection for extended hormonal therapy.Methods: A total of 1702 postmenopausal ER+/HER2- breast cancer patients from two adjuvant phase III trials (ABCSG6, ABCSG8) treated with 5 years of endocrine therapy participated in this study. The multigene test EndoPredict (EP) and the EPclin score (which combines EP with tumour size and nodal status) were predefined in independent training cohorts. All patients were retrospectively assigned to risk categories based on gene expression and on clinical parameters. The primary end point was distant metastasis (DM). Kaplan-Meier method and Cox regression analysis were used in an early (0-5 years) and late time interval (>5 years post diagnosis).Results: EP is a significant, independent, prognostic parameter in the early and late time interval. The expression levels of proliferative and ER signalling genes contribute differentially to the underlying biology of early and late DM. The EPclin stratified 64% of patients at risk after 5 years into a low-risk subgroup with an absolute 1.8% of late DM at 10 years of follow-up.Conclusion: The EP test provides additional prognostic information for the identification of early and late DM beyond what can be achieved by combining the commonly used clinical parameters. The EPclin reliably identified a subgroup of patients who have an excellent long-term prognosis after 5 years of endocrine therapy. The side effects of extended therapy should be weighed against this projected outcome. [ABSTRACT FROM AUTHOR]- Published
- 2013
- Full Text
- View/download PDF
28. ChemInform Abstract: Optically Active Transition‐Metal Complexes. Part 101. Catalytic Hydrosilylation or Hydrogenation at One Coordination Site of (Cp′Fe(CO) (X)) Fragments.
- Author
-
BRUNNER, H., primary and FISCH, K., additional
- Published
- 1991
- Full Text
- View/download PDF
29. ChemInform Abstract: Optically Active Transition-Metal Complexes. Part 96. Thermal and Electrocatalytic Epimerization at Iron as the Chiral Center.
- Author
-
BRUNNER, H., primary, FISCH, K., additional, JONES, P. G., additional, and SALBECK, J., additional
- Published
- 1990
- Full Text
- View/download PDF
30. Antioxidative Meroterpenoids from the Brown Alga Cystoseira crinita
- Author
-
Fisch, K. M., Bohm, V., Wright, A. D., and Konig, G. M.
- Abstract
Six new tetraprenyltoluquinol derivatives (
1 −6 ), two new triprenyltoluquinol derivatives (7 and8 ), and two new tetraprenyltoluquinone derivatives (9 and10 ) were isolated from the brown alga Cystoseira crinita Duby together with four known tetraprenyltoluquinol derivatives (11 −14 ). All structures were elucidated by employing spectroscopic techniques (NMR, MS, UV, and IR). Each compound was evaluated for its antioxidative properties in the TBARS and DPPH assay, and compounds1 ,2 ,6 , and10 −14 were additionally assessed in the TEAC and PCL assay. Hydroquinones were found to have powerful antioxidant activity.- Published
- 2003
31. New Antioxidant Hydroquinone Derivatives from the Algicolous Marine Fungus Acremonium sp.
- Author
-
Abdel-Lateff, A., Konig, G. M., Fisch, K. M., Holler, U., Jones, P. G., and Wright, A. D.
- Abstract
A marine fungal isolate, identified as Acremonium sp., was mass cultivated and found to produce two novel hydroquinone derivatives, 7-isopropenylbicyclo[4.2.0]octa-1,3,5-triene-2,5-diol (
1 ) and 7-isopropenylbicyclo[4.2.0]octa-1,3,5-triene-2,5-diol-5-β-d -glucopyranoside (2 ). Compound1 and its glucoside2 possess a most unusual ring system. The new natural products (3R*,4S*)-3,4-dihydroxy-7-methyl-3,4-dihydro-1(2H)naphthalenone (3 ) and (3S*,4S*)-3,4-dihydroxy-7-methyl-3,4-dihydro-1(2H)-naphthalenone (4 ) were obtained as a 1:0.8 mixture. 2-(1-Methylethylidene)pentanedioic acid (5 ) was isolated for the first time as a natural product and its structure proven by X-ray analysis. In addition to these compounds an inseparable mixture of three new isomeric compounds, pentanedioic acid 2-(1-methylethylidene)-5-methyl ester (6 ), pentanedioic acid 2-(1-methylethylidene)-1-methyl ester (7 ), and pentanedioic acid 2-(1-methylethenyl)-5-methyl ester (8 ), was also obtained. Isolated together with the new compounds were three known hydroquinone derivatives,9 ,10 , and11 . The structures of all compounds were determined by interpretation of their spectroscopic data (1D and 2D NMR, MS, UV, and IR). Each isolate was tested for its antioxidant properties, and compounds1 and9 −11 were found to have significant activity.- Published
- 2002
- Full Text
- View/download PDF
32. The Effect of Aging on the Glass Transition Temperature of some Polymers
- Author
-
AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Ehlers, G. F., Fisch, K. R., AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Ehlers, G. F., and Fisch, K. R.
- Abstract
Three polyphenylene oxides and two polyphenylquinoxalines were subjected to aging in nitrogen and in air, at temperatures below and above their glass transition temperatures, and the change of Tg was determined by DSC. Tg increases of up to 70 deg C were observed. Formation of a second Tg, and widening of the Tg interval in one instance can be connected to the formation of new polymer species during the initial decomposition, and to the formation of crosslinked systems. The effect of aging in air was, as expected, more rigorous than aging in nitrogen.
- Published
- 1977
33. Le développement du tir en dehors du service depuis 1874
- Author
-
Fisch, K.
- Published
- 1915
- Full Text
- View/download PDF
34. PHYSICAL CHEMISTRY OF HIGH POLYMERS
- Author
-
AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Gibbs, W. E., Fisch, K. R., Gehatia, M. T., Griffith, R. K., Helminiak, T. E., AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Gibbs, W. E., Fisch, K. R., Gehatia, M. T., Griffith, R. K., and Helminiak, T. E.
- Abstract
The previously reported theoretical consideration of stationary-state conditions in an isothermal polymerization has been extended to cases where the reaction temperature rises linearily throughout polymerization. A solution has been obtained for a criteria for the existence of stationary-state conditions. This work indicates that the stationary-state situation prevails in the differential thermal analysis studies on styrene polymerization within the limits of conditions presently used. Differential thermal analysis studies of the thermodynamics and kinetics of styrene polymerization in solution has yielded thermograms which are reasonably consistent and reproducible over the entire temperature span of the reaction. Rate data appear reasonable for temperatures up to 100 C, but above 100 C the rate slows appreciably. A rather detailed examination of the entire system has not yet yielded a solution to the problem.
- Published
- 1965
35. POLYMERIZATION KINETICS BY MEANS OF DIFFERENTIAL THERMAL ANALYSIS. PART II. DERIVATION OF RATE AND ENTHALPY EQUATIONS
- Author
-
AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Gibbs, W. E., Fisch, K. R., Gehatia, M., Goldfarb, I. J., AIR FORCE MATERIALS LAB WRIGHT-PATTERSON AFB OH, Gibbs, W. E., Fisch, K. R., Gehatia, M., and Goldfarb, I. J.
- Abstract
Rate equations and enthalpic parameters were derived for use in differential thermal analysis (DTA) of polymerization reactions. General free radical polymerization kinetics are discussed and the existence of a 'stationary state' under DTA conditions was demonstrated, by comparison of a theoretical computer curve, based on stationary state assumption, with actual experimental conditions. These curves appear to be almost superimposable.
- Published
- 1964
36. POLYMERIZATION KINETICS BY MEANS OF DIFFERENTIAL THERMAL ANALYSIS. PART 1. APPARATUS
- Author
-
AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFB OH NONMETALLIC MATERIALS LAB, Gibbs, W. E., Fisch, K. R., AERONAUTICAL SYSTEMS DIV WRIGHT-PATTERSON AFB OH NONMETALLIC MATERIALS LAB, Gibbs, W. E., and Fisch, K. R.
- Abstract
A differential thermal analysis (DTA) apparatus has been designed to determine kinetic and thermo dynamic data from polymerization reactions. The apparatus was calibrated and the decomposition rate of azobisisobutyronitrile was determined. The data obtained are in good agreement with those reported in the literature.
- Published
- 1963
37. Thermal degradation of polymers with phenylene units in the chain. II. Sulfur-containing polyarylenes
- Author
-
Ehlers, G. F. L., primary, Fisch, K. R., additional, and Powell, W. R., additional
- Published
- 1969
- Full Text
- View/download PDF
38. Thermal degradation of polymers with phenylene units in the chain. I. Polyphenylenes and poly(phenylene oxides)
- Author
-
Ehlers, G. F. L., primary, Fisch, K. R., additional, and Powell, W. R., additional
- Published
- 1969
- Full Text
- View/download PDF
39. Automatic Recording Apparatus for Thermal Stability Determinations.
- Author
-
Fisch, K. R., primary and Verderame, F. D., additional
- Published
- 1961
- Full Text
- View/download PDF
40. Thermal degradation of polymers with phenylene units in the chain. IV. Aromatic polyamides and polyimides
- Author
-
Ehlers, G. F. L., primary, Fisch, K. R., additional, and Powell, W. R., additional
- Published
- 1970
- Full Text
- View/download PDF
41. The thermal breakdown mechanism of polybenzoxazoles and polybenzothiazoles
- Author
-
Ehlers, G. F. L., primary, Fisch, K. R., additional, and Powell, W. R., additional
- Published
- 1973
- Full Text
- View/download PDF
42. ChemInform Abstract: Asymmetric Catalyses. Part 82. Enantioselective Hydrogenation of 4- Oxoisophorone.
- Author
-
BRUNNER, H. and FISCH, K.
- Published
- 1994
- Full Text
- View/download PDF
43. ChemInform Abstract: Synthesis of (C5H5)Fe(CO)(SiHPh2)2H, a Catalytically Active Intermediate in the Hydrosilylation of Acetophenone by Diphenylsilane.
- Author
-
BRUNNER, H. and FISCH, K.
- Published
- 1991
- Full Text
- View/download PDF
44. Asymmetrische Katalysen. LXXXII. Enantioselektive Hydrierung von 4-Oxoisophoron
- Author
-
Brunner, H. and Fisch, K.
- Published
- 1993
- Full Text
- View/download PDF
45. The EndoPredict score identifies late distant metastases in ER+/HER2-- breast cancer patients.
- Author
-
Dubsky, P., Brase, J. C., Fisch, K., Jakesz, R., Singer, C. F., Greil, R., Dietze, O., Weber, K. E., Petry, C., Kronenwett, R., Rudas, M., Knauer, M., Gnant, M., and Filipits, M.
- Subjects
- *
HER2 gene , *BREAST cancer , *ADJUVANT treatment of cancer , *METASTASIS , *GENE expression - Abstract
Background: ER+/HER2-- negative (ER+) breast cancers have a proclivity for late recurrence. A first step to an improved adjuvant treatment of late metastasis is to identify women at risk and understand the underlying biology. Several prognostic multigene tests have been developed for ER+ breast cancer patients. Some of these tests have been validated to predict early recurrence events. However , few gene expression assays have been shown to predict late metastases. Here, we assess whether the prognostic EndoPredict (EP) score, which incorporates both the expression levels of proliferative - and ESR1-related genes, can be used to identify late relapse events in ER+ breast cancer patients. Methods: Patients included in this study participated in the ABCSG-6 (tamoxifen-only arm) or ABCSG-8 phase III adjuvant trial and received either tamoxifen for 5 years or tamoxifen for 2 years followed by anastrozole for 3 years. All 1702 ER+/HER2- breast cancer patients were retrospectively assigned into risk categories based on the EP and on common clinical parameters. The primary endpoint was distant metastasis. Ongoing collection of follow-up events allowed estimation of metastasis rates using the Kaplan-Meier method in an early and late time cohort: 0-5 years/early recurrence and 5-10 years/late recurrence. Results: 49% of all patients were classified as low-risk according to the EP score. Kaplan Meier analysis demonstrated that the EP low-risk group had a significantly improved clinical outcome in the first (0-5 years; p < 0.0001) and second time interval (5-10 years; p = 0.002). Nodal metastasis was also significantly associated with the clinical outcome in both time intervals, with node-positive tumors showing a considerably higher rate of late recurrence events. In contrast, Ki67 levels and grading were not significantly associated with late metastasis. Multivariate analysis showed that EP was an independent prognostic parameter after adjustment for age, grade, lymph node status, tumor size and Ki67 in both the first and second time interval. The EPclin -- a combination of the EP and the clinical risk factors nodal status and tumor size -- showed the best performance in predicting late relapse events. Exploratory analyses of proliferative - versus ESR-1 related genes as contributors to early and late distant metastases show differential effects. Conclusions: The EndoPredict test identified a subgroup of patients that have a low likelihood of developing late metastases. The eight genes contained in the test provide complimentary prognostic information to clinico-pathologic parameters. Both the expression of proliferative - and ESR1-related genes contributes to the underlying biology of late distant metastases. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
46. Prognostic performance of the EndoPredict score in node-positive chemotherapy-treated ER+/HER2- breast cancer patients: results from the GEICAM/9906 trial.
- Author
-
Martin, M., Brase, J. C., Ruiz-Borrego, M., Krappmann, K., Munarriz, B., Fisch, K., Ruiz, A., Weber, K. E., Crespo, C., Petry, C., Rodriguez, C. A., Kronenwett, R., Calvo, L., Alba, E., Carrasco, E., Casas, M., Caballero, R., and Rodriguez-Lescure, A.
- Subjects
- *
BREAST cancer research , *CANCER chemotherapy , *CANCER patients , *PACLITAXEL , *BIOMARKERS - Abstract
Background: The EndoPredict (EP) score is an RNA-based multigene test to predict the likelihood of distant recurrence in ER-positive (ER+), HER2-negative (HER2-) breast cancer (BC) patients treated with adjuvant endocrine therapy. Results from two large randomized phase III trials involving endocrine therapy only (n > 1700) demonstrated a prognostic power of the EP score beyond what can be achieved by combining the commonly used clinicopathological parameters (Filipits M, 2011). The performance of the EP in chemotherapytreated patients has not been evaluated yet. Here, we analyzed the EndoPredict score in node -positive ER+/HER2-BC patients from the GEICAM-9906 trial, treated with adjuvant chemotherapy followed by hormonal therapy. Methods: Patients included in this study participated in the GEICAM/9906 trial and were either treated with fluorouracil, epirubicin, and cyclophosphamide (FEC) or with FEC followed by weekly paclitaxel (FEC-P) (Martin M, 2008). ESR1 and ERBB2 gene expression were assessed by qRT-PCR in 800 formalin-fixed paraffin embedded (FFPE) tumor samples out of 1246 patients included in the GEICAM/9906 trial. The EndoPredict score (including eight prognostic genes) was successfully determined in 555 out of the 566 ER+/HER2-patients. Patients were assigned into two categories (high/low), according to the predefined EP cut-off value (Filipits M, 2011). The primary endpoint for the analysis was distant metastasis. Metastasis rates were estimated using the Kaplan-Meier method. Multivariate analysis was performed using Cox regression. Interaction between treatment effects and EP was tested as well. Results: Twenty-five percent of patients (n = 141) were classified as EP-low-risk. Kaplan Meier analysis demonstrated that the metastasis-free survival (MFS) was 92% in the EP-low risk vs. 69% in the EP-high-risk group (absolute difference of 23%, HR 4.4 (2.3-8.4) p < 0.0001). Multivariate analysis showed that EP is an independent prognostic parameter after adjustment for age, grade, lymph node status and tumor size. EP was found to be prognostic in pre- (p = 0.0002, HR = 5.5 (2.2-13.6)) and postmenopausal (p = 0.0129, HR = 3.3 (1.3-8.2)) BC patients. There were not statistically significant differences in MFS between treatment arms (FEC vs. FEC-P) neither in the high nor in the low-risk groups. Interaction test between chemotherapy arm and EP score was not significant. Conclusions: The results of this study shows that the EndoPredict score is an independent prognostic parameter in node-positive, ER+/HER2- BC patients treated with adjuvant chemotherapy followed by hormonal therapy. EndoPredict was not found to be predictive of weekly paclitaxel efficacy. Novel predictive biomarkers are needed to identify the small subset of patients with ER+/HER2- tumors that actually benefit from weekly paclitaxel-containing regimens. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
47. Si-Linked Glycomimetics through a Stereoselective Silicon Transfer and Anion Addition.
- Author
-
Shelar SV, Davis T, Ryan N, Fisch K, and Walczak MA
- Abstract
We report a synthesis of silicon-linked glycomimetics, demonstrating unique structural properties and metabolic stability due to the inertness of the C-Si bond. Our method focuses on the stereoselective transfer of silicon and anion addition, revealing that chirality at the silicon atom can be controlled through kinetic resolution. This approach allows for the selective generation of 1,2- cis and 1,2- trans isomers via the manipulation of C2-protected silicon ethers and nucleophilic opening of glycal epoxides. We achieved high selectivity at the anomeric carbon and expanded the scope to include various saccharides and substituted silanes. Our findings indicate that silicon transfer occurs intramolecularly and is influenced by the nature of the counterion and reaction conditions. Additionally, chiral silanes produced through our method hold promise for medicinal chemistry applications, addressing significant gaps in the synthesis and utility of glycomimetics. This work opens new avenues for the development of bioactive silicon-based molecules.
- Published
- 2024
- Full Text
- View/download PDF
48. Single-cell transcriptomics reveal differences between chorionic and basal plate cytotrophoblasts and trophoblast stem cells.
- Author
-
Morey R, Soncin F, Kallol S, Sah N, Manalo Z, Bui T, Slamecka J, Cheung VC, Pizzo D, Requena DF, Chang CW, Farah O, Kittle R, Meads M, Horii M, Fisch K, and Parast MM
- Abstract
Cytotrophoblast (CTB) of the early gestation human placenta are bipotent progenitor epithelial cells, which can differentiate into invasive extravillous trophoblast (EVT) and multinucleated syncytiotrophoblast (STB). Trophoblast stem cells (TSC), derived from early first trimester placentae, have also been shown to be bipotential. In this study, we set out to probe the transcriptional diversity of first trimester CTB and compare TSC to various subgroups of CTB. We performed single-cell RNA sequencing on six normal placentae, four from early (6-8 weeks) and two from late (12-14 weeks) first trimester, of which two of the early first trimester cases were separated into basal (maternal) and chorionic (fetal) fractions prior to sequencing. We also sequenced three TSC lines, derived from 6-8 week placentae, to evaluate similarities and differences between primary CTB and TSC. CTB clusters displayed notable distinctions based on gestational age, with early first trimester placentae showing enrichment for specific CTB subtypes, further influenced by origin from the basal or chorionic plate. Differential expression analysis of CTB from basal versus chorionic plate highlighted pathways associated with proliferation, unfolded protein response, and oxidative phosphorylation. We identified trophoblast states representing initial progenitor CTB, precursor STB, precursor and mature EVT, and multiple CTB subtypes. CTB progenitors were enriched in early first trimester placentae, with basal plate cells biased toward EVT, and chorionic plate cells toward STB, precursors. Clustering and trajectory inference analysis indicated that TSC were most like EVT precursor cells, with only a small percentage of TSC on the pre-STB differentiation trajectory. This was confirmed by flow cytometric analysis of 6 different TSC lines, which showed uniform expression of proximal column markers ITGA2 and ITGA5. Additionally, we found that ITGA5
+ CTB could be plated in 2D, forming only EVT upon spontaneous differentiation, but failed to form self-renewing organoids; conversely, ITGA5-CTB could not be plated in 2D, but readily formed organoids. Our findings suggest that distinct CTB states exist in different regions of the placenta as early as six weeks gestation and that current TSC lines most closely resemble ITGA5+ CTB, biased toward the EVT lineage., Competing Interests: Declaration of interests Authors declare that they have no competing interests.- Published
- 2024
- Full Text
- View/download PDF
49. Combined effects of organic and mineral UV-filters on the lugworm Arenicola marina.
- Author
-
Bruhns T, Sánchez-Girón Barba C, König L, Timm S, Fisch K, and Sokolova IM
- Subjects
- Animals, Zinc Oxide toxicity, Minerals, Antioxidants metabolism, Water Pollutants, Chemical toxicity, Ultraviolet Rays, Polychaeta drug effects, Polychaeta physiology, Polychaeta metabolism, Oxidative Stress drug effects, Sunscreening Agents toxicity
- Abstract
Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
50. Sp3 is essential for normal lung morphogenesis and cell cycle progression during mouse embryonic development.
- Author
-
McCoy AM, Lakhdari O, Shome S, Caoili K, Hernandez GE, Aghaeepour N, Butcher LD, Fisch K, and Prince LS
- Subjects
- Animals, Mice, Cell Division, Lung, Promoter Regions, Genetic, Sp1 Transcription Factor genetics, Sp1 Transcription Factor metabolism, Embryonic Development, Transcription Factors metabolism
- Abstract
Members of the Sp family of transcription factors regulate gene expression via binding GC boxes within promoter regions. Unlike Sp1, which stimulates transcription, the closely related Sp3 can either repress or activate gene expression and is required for perinatal survival in mice. Here, we use RNA-seq and cellular phenotyping to show how Sp3 regulates murine fetal cell differentiation and proliferation. Homozygous Sp3-/- mice were smaller than wild-type and Sp+/- littermates, died soon after birth and had abnormal lung morphogenesis. RNA-seq of Sp3-/- fetal lung mesenchymal cells identified alterations in extracellular matrix production, developmental signaling pathways and myofibroblast/lipofibroblast differentiation. The lungs of Sp3-/- mice contained multiple structural defects, with abnormal endothelial cell morphology, lack of elastic fiber formation, and accumulation of lipid droplets within mesenchymal lipofibroblasts. Sp3-/- cells and mice also displayed cell cycle arrest, with accumulation in G0/G1 and reduced expression of numerous cell cycle regulators including Ccne1. These data detail the global impact of Sp3 on in vivo mouse gene expression and development., Competing Interests: Competing interests The authors declare no competing or financial interests., (© 2023. Published by The Company of Biologists Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.