47 results on '"Finucci, Brittany"'
Search Results
2. Using joint species distribution modelling to predict distributions of seafloor taxa and identify vulnerable marine ecosystems in New Zealand waters
- Author
-
Stephenson, Fabrice, Bowden, David A., Rowden, Ashley A., Anderson, Owen F., Clark, Malcolm R., Bennion, Matthew, Finucci, Brittany, Pinkerton, Matt H., Goode, Savannah, Chin, Caroline, Davey, Niki, Hart, Alan, and Stewart, Rob
- Published
- 2024
- Full Text
- View/download PDF
3. Harriotta avia sp. nov. – a new rhinochimaerid (Chimaeriformes: Rhinochimaeridae) described from the Southwest Pacific
- Author
-
Finucci, Brittany, Didier, Dominique, Ebert, David A., Green, Madeline E., and Kemper, Jenny M.
- Published
- 2024
- Full Text
- View/download PDF
4. Diving into the vertical dimension of elasmobranch movement ecology.
- Author
-
Andrzejaczek, Samantha, Lucas, Tim, Goodman, Maurice, Hussey, Nigel, Armstrong, Amelia, Carlisle, Aaron, Coffey, Daniel, Gleiss, Adrian, Huveneers, Charlie, Jacoby, David, Meekan, Mark, Mourier, Johann, Peel, Lauren, Abrantes, Kátya, Afonso, André, Ajemian, Matthew, Anderson, Brooke, Anderson, Scot, Araujo, Gonzalo, Armstrong, Asia, Bach, Pascal, Barnett, Adam, Bennett, Mike, Bezerra, Natalia, Bonfil, Ramon, Boustany, Andre, Bowlby, Heather, Branco, Ilka, Braun, Camrin, Brooks, Edward, Brown, Judith, Burke, Patrick, Butcher, Paul, Castleton, Michael, Chapple, Taylor, Chateau, Olivier, Clarke, Maurice, Coelho, Rui, Cortes, Enric, Couturier, Lydie, Cowley, Paul, Croll, Donald, Cuevas, Juan, Curtis, Tobey, Dagorn, Laurent, Dale, Jonathan, Daly, Ryan, Dewar, Heidi, Doherty, Philip, Domingo, Andrés, Dove, Alistair, Drew, Michael, Dudgeon, Christine, Duffy, Clinton, Elliott, Riley, Ellis, Jim, Erdmann, Mark, Farrugia, Thomas, Ferreira, Luciana, Ferretti, Francesco, Filmalter, John, Finucci, Brittany, Fischer, Chris, Fitzpatrick, Richard, Forget, Fabien, Forsberg, Kerstin, Francis, Malcolm, Franks, Bryan, Gallagher, Austin, Galvan-Magana, Felipe, García, Mirta, Gaston, Troy, Gillanders, Bronwyn, Gollock, Matthew, Green, Jonathan, Green, Sofia, Griffiths, Christopher, Hammerschlag, Neil, Hasan, Abdi, Hawkes, Lucy, Hazin, Fabio, Heard, Matthew, Hearn, Alex, Hedges, Kevin, Henderson, Suzanne, Holdsworth, John, Holland, Kim, Howey, Lucy, Hueter, Robert, Humphries, Nicholas, Hutchinson, Melanie, Jaine, Fabrice, Jorgensen, Salvador, Kanive, Paul, Labaja, Jessica, Lana, Fernanda, Lassauce, Hugo, Lipscombe, Rebecca, Llewellyn, Fiona, and Macena, Bruno
- Abstract
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.
- Published
- 2022
5. Global habitat predictions to inform spatiotemporal fisheries management: Initial steps within the framework
- Author
-
Bowlby, Heather D., Druon, Jean-Noël, Lopez, Jon, Juan-Jordá, Maria José, Carreón-Zapiain, María Teresa, Vandeperre, Frederic, Leone, Agostino, Finucci, Brittany, Sabarros, Philippe S., Block, Barbara A., Arrizabalaga, Haritz, Afonso, Pedro, Musyl, Michael K., Coelho, Rui, Cortés, Enric, Cardoso, Luis Gustavo, Mourato, Bruno, Queiroz, Nuno, Fontes, Jorge, Abascal, Francisco J., Zanzi, Antonella, Hazin, Humberto Gomes, Bach, Pascal, Sims, David W., and Travassos, Paulo
- Published
- 2024
- Full Text
- View/download PDF
6. Half a century of rising extinction risk of coral reef sharks and rays
- Author
-
Sherman, C. Samantha, Simpfendorfer, Colin A., Pacoureau, Nathan, Matsushiba, Jay H., Yan, Helen F., Walls, Rachel H. L., Rigby, Cassandra L., VanderWright, Wade J., Jabado, Rima W., Pollom, Riley A., Carlson, John K., Charvet, Patricia, Bin Ali, Ahmad, Fahmi, Cheok, Jessica, Derrick, Danielle H., Herman, Katelyn B., Finucci, Brittany, Eddy, Tyler D., Palomares, Maria Lourdes D., Avalos-Castillo, Christopher G., Kinattumkara, Bineesh, Blanco-Parra, María-del-Pilar, Dharmadi, Espinoza, Mario, Fernando, Daniel, Haque, Alifa B., Mejía-Falla, Paola A., Navia, Andrés F., Pérez-Jiménez, Juan Carlos, Utzurrum, Jean, Yuneni, Ranny R., and Dulvy, Nicholas K.
- Published
- 2023
- Full Text
- View/download PDF
7. Sharkipedia: a curated open access database of shark and ray life history traits and abundance time-series
- Author
-
Mull, Christopher G., Pacoureau, Nathan, Pardo, Sebastián A., Ruiz, Luz Saldaña, García-Rodríguez, Emiliano, Finucci, Brittany, Haack, Max, Harry, Alastair, Judah, Aaron B., VanderWright, Wade, Yin, Jamie S., Kindsvater, Holly K., and Dulvy, Nicholas K.
- Published
- 2022
- Full Text
- View/download PDF
8. Evidence of environmental niche separation between threatened mobulid rays in Aotearoa New Zealand: Insights from species distribution modelling.
- Author
-
Ozaki, Rikako, Stephenson, Fabrice, Pinkerton, Matthew, Finucci, Brittany, Green, Lydia, Penna, Alice Della, and Sila‐Nowicka, Katarzyna
- Subjects
FISH declines ,SPECIES distribution ,REGRESSION trees ,RARE fishes ,PREY availability - Abstract
Aim: Mobulid rays are a group of threatened batoid fishes susceptible to population decline from targeted fisheries and accidental capture. Spatial distributions of mobulid rays remain poorly known. Prior studies found commonalities between favourable environments and prey among various mobulid species, yet most were conducted in tropical waters. To explore the habitat use and distribution of mobulid rays in a temperate environment we model the habitat suitability of two mobulid rays (Mobula mobular and Mobula birostris) in Aotearoa New Zealand using fisheries and citizen science occurrence data spanning almost two decades. Location: Northeastern coast of Aotearoa, New Zealand. Methods: Boosted Regression Tree models were used to predict the annual habitat suitability and favourable environmental conditions of the two species based on available sightings records in conjunction with high resolution (1 km2) environmental data. Results: The sympatric study species had contrasting habitat requirements. We found a separation in their spatial distribution defined by the 200 m isobath – the onshore extent for M. birostris and the offshore extent for M. mobular. While there were only subtle variations in relative habitat suitability for M. mobular over the study period, M. birostris exhibited greater interannual variability. Despite differing interannual patterns, spatial separation, as a function of environmental properties, persisted regardless of the year. Main Conclusions: Our results suggest that associations between mobulid species may differ from tropical regions due to regional adaptations to prey availability or local environmental conditions unique to colder and more productive temperate waters. Our findings highlight the importance of multi‐species surveys and the inclusion of temporal variability in support of separate species‐specific management plans to account for differing stressors impacting each species. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
9. Deepwater Chondrichthyans
- Author
-
Finucci, Brittany, primary, Cotton, Charles F., additional, Grubbs, Dean R., additional, Bineesh, K.K., additional, and Moura, Teresa, additional
- Published
- 2022
- Full Text
- View/download PDF
10. Global Conservation Status of Gulper Sharks (Genus Centrophorus)
- Author
-
Finucci, Brittany, primary, Rigby, Cassandra L., additional, and Daley, Ross K., additional
- Published
- 2022
- Full Text
- View/download PDF
11. Vulnerability of Eastern Tropical Pacific chondrichthyan fish to climate change.
- Author
-
Cerutti‐Pereyra, Florencia, Drenkard, Elizabeth J., Espinoza, Mario, Finucci, Brittany, Galván‐Magaña, Felipe, Hacohen‐Domené, Ana, Hearn, Alexander, Hoyos‐Padilla, Mauricio E., Ketchum, James T., Mejía‐Falla, Paola A., Moya‐Serrano, Ana V., Navia, Andres F., Pazmiño, Diana A., Ramírez‐Macías, Deni, Rummer, Jodie L., Salinas‐de‐León, Pelayo, Sosa‐Nishizaki, Oscar, Stock, Charles, and Chin, Andrew
- Subjects
ECOLOGICAL risk assessment ,CHONDRICHTHYES ,CARBON emissions ,SEA level ,CLIMATE change - Abstract
Copyright of Global Change Biology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2024
- Full Text
- View/download PDF
12. First observation of a skate egg case nursery in the Ross Sea.
- Author
-
Finucci, Brittany, Chin, Caroline, O'Neill, Helen L., White, William T., and Pinkerton, Matthew H.
- Subjects
- *
MARINE parks & reserves , *FISHERIES , *EGGS , *PLANT nurseries , *LARVAL dispersal - Abstract
Areas of importance to Southern Ocean skates are poorly defined. Here, we identify a deepwater skate egg case nursery in a discrete location at ~460 m depth off Cape Adare in the Southern Ocean. This is the first confirmed observation of a skate nursery area in the Ross Sea and only the second observation for the Southern Ocean. The morphology and size of the egg cases were consistent with the genus Bathyraja and most likely belong to the Bathyraja sp. (cf. eatonii). The nursery occurs within the "no take" General Protection Zone of the Ross Sea region marine protected area, where commercial fishing is prohibited. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
13. Fishing for oil and meat drives irreversible defaunation of deepwater sharks and rays.
- Author
-
Finucci, Brittany, Pacoureau, Nathan, Rigby, Cassandra L., Matsushiba, Jay H., Faure-Beaulieu, Nina, Sherman, C. Samantha, VanderWright, Wade J., Jabado, Rima W., Charvet, Patricia, Mejía-Falla, Paola A., Navia, Andrés F., Derrick, Danielle H., Kyne, Peter M., Pollom, Riley A., Walls, Rachel H. L., Herman, Katelyn B., Kinattumkara, Bineesh, Cotton, Charles F., Cuevas, Juan-Martín, and Daley, Ross K.
- Abstract
The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
14. Using joint species distribution modelling to predict distributions of seafloor taxa and identify vulnerable marine ecosystems in New Zealand waters
- Author
-
Stephenson, Fabrice, primary, Bowden, David A, additional, Rowden, Ashley A, additional, Anderson, Owen F, additional, Clark, Malcolm R, additional, Bennion, Matthew, additional, Finucci, Brittany, additional, Pinkerton, Matt H, additional, Goode, Savannah, additional, Chin, Caroline, additional, Davey, Niki, additional, Hart, Alan, additional, and Stewart, Rob, additional
- Published
- 2023
- Full Text
- View/download PDF
15. An atlas of seabed biodiversity for Aotearoa New Zealand
- Author
-
Stephenson, Fabrice, primary, Brough, Tom, additional, Lohrer, Drew, additional, Leduc, Daniel, additional, Geange, Shane, additional, Anderson, Owen, additional, Bowden, David, additional, Clark, Malcolm R., additional, Davey, Niki, additional, Pardo, Enrique, additional, Gordon, Dennis P., additional, Finucci, Brittany, additional, Kelly, Michelle, additional, Macpherson, Diana, additional, McCartain, Lisa, additional, Mills, Sadie, additional, Neill, Kate, additional, Nelson, Wendy, additional, Peart, Rachael, additional, Pinkerton, Matthew H., additional, Read, Geoffrey B., additional, Robertson, Jodie, additional, Rowden, Ashley, additional, Schnabel, Kareen, additional, Stewart, Andrew, additional, Struthers, Carl, additional, Tait, Leigh, additional, Tracey, Di, additional, Weston, Shaun, additional, and Lundquist, Carolyn, additional
- Published
- 2023
- Full Text
- View/download PDF
16. Using length-mass relationships to estimate life history: an application to deep-sea fishes
- Author
-
Finucci, Brittany, Dunn, Matthew R., and Arnold, Richard
- Subjects
Animal life cycles -- Analysis ,Body weights and measures -- Analysis ,Marine fishes -- Physiological aspects -- Natural history ,Body image ,Fisheries ,Fishes ,Earth sciences - Abstract
Length-mass relationships, while often overlooked, form the basis of many fisheries science applications. Fisheriesindependent research surveys compile large databases of biological data that could hold a wealth of information regarding species' life history, which, for many, are data deficient and infrequently sampled. A flexible model using permutations of a broken stick and variance shift was applied to length-mass relationships to evaluate changes in the mean or variability of mass-at-length using data from deep-sea fishes and focusing on particularly poorly known deep-sea chondrichthyans. Changes in body shape and (or) in the scale of variability around mean mass-at-length were estimated for most species (94% of data sets examined). Such changes seemed likely to be correlated with biological factors, such as the onset of reproduction; 70% of length estimates for a variance shift correlated with the expected length-at-maturity. The model presented here could be applied to any fish where length and mass data are available, providing a way to estimate, validate, and investigate biological factors in species where macroscopic evaluations are unavailable or difficult to estimate. Les relations longueur-poids, bien que souvent negligees, forment la base de nombreuses applications en sciences halieutiques. Les releves de recherche independants des peches compilent d'imposantes bases de donnees biologiques qui pourraient contenir un tresor d'information concernant les cycles biologiques d'especes dont, pour bon nombre, les donnees sont insuffisantes et l'echantillonnage n'est pas frequent. Un modele souple reposant sur des permutations d'un baton rompu et d'un changement de variance a ete applique a des relations longueur-poids pour evaluer les variations de la moyenne ou de la variabilite du poids en fonction de la longueur en utilisant des donnees sur des poissons de grands fonds et en mettant l'accent sur des chondrichthyens de grands fonds particulierement meconnus. Les variations de la forme du corps ou de l'ampleur de la variabilite autour de la moyenne du poids en fonction de la longueur ont ete estimees pour la plupart des especes (94% des ensembles de donnees examines). Il semble probable que de telles variations soient correlees a des facteurs biologiques, comme le debut de la reproduction; 70% des estimations de la longueur pour un changement de variance etaient correlees a la longueur a la maturite attendue. Le modele presente pourrait etre applique a n'importe quel poisson pour lequel des donnees de longueur et de poids sont disponibles, offrant ainsi un moyen d'estimer, de valider et d'etudier des facteurs biologiques chez des especes pour lesquelles des evaluations macroscopiques sont indisponibles ou difficiles a estimer. [Traduit par la Redaction], Introduction The relationship between length and mass, while often overlooked, is an important component of fisheries population models (Froese 2006). The relationship between length (L) and mass (W) is conventionally [...]
- Published
- 2019
- Full Text
- View/download PDF
17. Post‐release survival of shortfin mako ( Isurus oxyrinchus ) and silky ( Carcharhinus falciformis ) sharks released from pelagic tuna longlines in the Pacific Ocean
- Author
-
Francis, Malcolm P., Lyon, Warrick S., Clarke, Shelley C., Finucci, Brittany, Hutchinson, Melanie R., Campana, Steven E., Musyl, Michael K., Schaefer, Kurt M., Hoyle, Simon D., Peatman, Tom, Bernal, Diego, Bigelow, Keith, Carlson, John, Coelho, Rui, Heberer, Craig, Itano, David, Jones, Emma, Leroy, Bruno, Liu, Kwang‐ming, Murua, Hilario, Poisson, Francois, Rogers, Paul, Sanchez, Caroline, Semba, Yasuko, Sippel, Tim, Smith, Neville, Francis, Malcolm P., Lyon, Warrick S., Clarke, Shelley C., Finucci, Brittany, Hutchinson, Melanie R., Campana, Steven E., Musyl, Michael K., Schaefer, Kurt M., Hoyle, Simon D., Peatman, Tom, Bernal, Diego, Bigelow, Keith, Carlson, John, Coelho, Rui, Heberer, Craig, Itano, David, Jones, Emma, Leroy, Bruno, Liu, Kwang‐ming, Murua, Hilario, Poisson, Francois, Rogers, Paul, Sanchez, Caroline, Semba, Yasuko, Sippel, Tim, and Smith, Neville
- Abstract
Substantial global population declines in pelagic sharks have led to the introduction of management and conservation measures, including gear restrictions and no-retention policies, to curb declines and encourage stock recovery. As the rate of discarding sharks increases, there is a growing need to understand prognostic factors that influence their post-release survival (PRS) outcomes. PRS was measured with survival pop-up satellite archival tags attached to shortfin mako (Isurus oxyrinchus) and silky sharks (Carcharhinus falciformis) released or discarded from pelagic tuna longline fishing vessels operating in the Western and Central Pacific Fisheries Commission Convention Area. In total, 117 tags were deployed on 60 mako and 57 silky sharks captured as bycatch during commercial pelagic longline fishing trips in New Zealand (n = 35), Fiji (n = 58), New Caledonia (n = 10) and the Republic of the Marshall Islands (n = 14). Mako engaged in long-distance movements between New Zealand, Australia, Fiji and New Caledonia, while silky sharks tagged in the Marshall Islands showed evidence of seasonal movements eastward. PRS was determined for 110 sharks (57 mako, 53 silky sharks). Most tagged sharks of both species were uninjured (89%) at capture and most sharks (88%) survived post-release until tag loss or the programmed pop-up date (60 days). However, when considering a complete fishing interaction (haulback, handling, release), PRS estimates were markedly reduced to 48.6% and 52.3% for mako and silky sharks, respectively. For both species, survivorship was greater in large (>150 cm fork length) uninjured sharks and sharks released with low shark length to trailing branchline ratios. While these findings suggest that retention bans offer sharks an increased chance of survival, continued efforts should be made to improve handling and release practices, reduce trailing gear and minimize pelagic shark bycatch.
- Published
- 2023
- Full Text
- View/download PDF
18. Post‐release survival of shortfin mako (Isurus oxyrinchus) and silky (Carcharhinus falciformis) sharks released from pelagic tuna longlines in the Pacific Ocean
- Author
-
Francis, Malcolm P., primary, Lyon, Warrick S., additional, Clarke, Shelley C., additional, Finucci, Brittany, additional, Hutchinson, Melanie R., additional, Campana, Steven E., additional, Musyl, Michael K., additional, Schaefer, Kurt M., additional, Hoyle, Simon D., additional, Peatman, Tom, additional, Bernal, Diego, additional, Bigelow, Keith, additional, Carlson, John, additional, Coelho, Rui, additional, Heberer, Craig, additional, Itano, David, additional, Jones, Emma, additional, Leroy, Bruno, additional, Liu, Kwang‐Ming, additional, Murua, Hilario, additional, Poisson, François, additional, Rogers, Paul, additional, Sanchez, Caroline, additional, Semba, Yasuko, additional, Sippel, Tim, additional, and Smith, Neville, additional
- Published
- 2023
- Full Text
- View/download PDF
19. Supplementary material to "An atlas of seabed biodiversity for Aotearoa New Zealand"
- Author
-
Stephenson, Fabrice, primary, Brough, Tom, additional, Lohrer, Drew, additional, Leduc, Daniel, additional, Geange, Shane, additional, Anderson, Owen, additional, Bowden, David, additional, Clark, Malcolm R., additional, Davey, Niki, additional, Pardo, Enrique, additional, Gordon, Dennis P., additional, Finucci, Brittany, additional, Kelly, Michelle, additional, Macpherson, Diana, additional, McCartain, Lisa, additional, Mills, Sadie, additional, Neill, Kate, additional, Nelson, Wendy, additional, Peart, Rachael, additional, Pinkerton, Matthew H., additional, Read, Geoffrey B., additional, Robertson, Jodie, additional, Rowden, Ashley, additional, Schnabel, Kareen, additional, Stewart, Andrew, additional, Struthers, Carl, additional, Tait, Leigh, additional, Tracey, Di, additional, Weston, Shaun, additional, and Lundquist, Carolyn, additional
- Published
- 2023
- Full Text
- View/download PDF
20. Putting sharks on the map: A global standard for improving shark area-based conservation
- Author
-
Hyde, Ciaran A., primary, Notarbartolo di Sciara, Giuseppe, additional, Sorrentino, Lynn, additional, Boyd, Charlotte, additional, Finucci, Brittany, additional, Fowler, Sarah L., additional, Kyne, Peter M., additional, Leurs, Guido, additional, Simpfendorfer, Colin A., additional, Tetley, Michael J., additional, Womersley, Freya, additional, and Jabado, Rima W., additional
- Published
- 2022
- Full Text
- View/download PDF
21. Putting sharks on the map : A global standard for improving shark area-based conservation
- Author
-
Hyde, Ciaran A., Notarbartolo di Sciara, Giuseppe, Sorrentino, Lynn, Boyd, Charlotte, Finucci, Brittany, Fowler, Sarah L., Kyne, Peter M., Leurs, Guido, Simpfendorfer, Colin A., Tetley, Michael J., Womersley, Freya, Jabado, Rima W., Hyde, Ciaran A., Notarbartolo di Sciara, Giuseppe, Sorrentino, Lynn, Boyd, Charlotte, Finucci, Brittany, Fowler, Sarah L., Kyne, Peter M., Leurs, Guido, Simpfendorfer, Colin A., Tetley, Michael J., Womersley, Freya, and Jabado, Rima W.
- Abstract
Area-based conservation is essential to safeguard declining biodiversity. Several approaches have been developed for identifying networks of globally important areas based on the delineation of sites or seascapes of importance for various elements of biodiversity (e.g., birds, marine mammals). Sharks, rays, and chimaeras are facing a biodiversity crisis with an estimated 37% of species threatened with extinction driven by overfishing. Yet spatial planning tools often fail to consider the habitat needs critical for their survival. The Important Shark and Ray Area (ISRA) approach is proposed as a response to the dire global status of sharks, rays, and chimaeras. A set of four globally standardized scientific criteria, with seven sub-criteria, was developed based on input collated during four shark, biodiversity, and policy expert workshops conducted in 2022. The ISRA Criteria provide a framework to identify discrete, three-dimensional portions of habitat important for one or more shark, ray, or chimaera species, that have the potential to be delineated and managed for conservation. The ISRA Criteria can be applied to all environments where sharks occur (marine, estuarine, and freshwater) and consider the diversity of species, their complex behaviors and ecology, and biological needs. The identification of ISRAs will guide the development, design, and application of area-based conservation initiatives for sharks, rays, and chimaeras, and contribute to their recovery.
- Published
- 2022
22. Global-Scale Environmental Niche and Habitat of Blue Shark (Prionace glauca) by Size and Sex: A Pivotal Step to Improving Stock Management
- Author
-
Druon, Jean-noël, Campana, Steven, Vandeperre, Frederic, Hazin, Fábio H. V., Bowlby, Heather, Coelho, Rui, Queiroz, Nuno, Serena, Fabrizio, Abascal, Francisco, Damalas, Dimitrios, Musyl, Michael, Lopez, Jon, Block, Barbara, Afonso, Pedro, Dewar, Heidi, Sabarros, Philippe, Finucci, Brittany, Zanzi, Antonella, Bach, Pascal, Senina, Inna, Garibaldi, Fulvio, Sims, David W., Navarro, Joan, Cermeño, Pablo, Leone, Agostino, Diez, Guzmán, Zapiain, María Teresa Carreón, Deflorio, Michele, Romanov, Evgeny V., Jung, Armelle, Lapinski, Matthieu, Francis, Malcolm P., Hazin, Humberto, Travassos, Paulo, Druon, Jean-noël, Campana, Steven, Vandeperre, Frederic, Hazin, Fábio H. V., Bowlby, Heather, Coelho, Rui, Queiroz, Nuno, Serena, Fabrizio, Abascal, Francisco, Damalas, Dimitrios, Musyl, Michael, Lopez, Jon, Block, Barbara, Afonso, Pedro, Dewar, Heidi, Sabarros, Philippe, Finucci, Brittany, Zanzi, Antonella, Bach, Pascal, Senina, Inna, Garibaldi, Fulvio, Sims, David W., Navarro, Joan, Cermeño, Pablo, Leone, Agostino, Diez, Guzmán, Zapiain, María Teresa Carreón, Deflorio, Michele, Romanov, Evgeny V., Jung, Armelle, Lapinski, Matthieu, Francis, Malcolm P., Hazin, Humberto, and Travassos, Paulo
- Abstract
Blue shark (Prionace glauca) is amongst the most abundant shark species in international trade, however this highly migratory species has little effective management and the need for spatio-temporal strategies increases, possibly involving the most vulnerable stage or sex classes. We combined 265,595 blue shark observations (capture or satellite tag) with environmental data to present the first global-scale analysis of species’ habitat preferences for five size and sex classes (small juveniles, large juvenile males and females, adult males and females). We leveraged the understanding of blue shark biotic environmental associations to develop two indicators of foraging location: productivity fronts in mesotrophic areas and mesopelagic micronekton in oligotrophic environments. Temperature (at surface and mixed layer depth plus 100 m) and sea surface height anomaly were used to exclude unsuitable abiotic environments. To capture the horizontal and vertical extent of thermal habitat for the blue shark, we defined the temperature niche relative to both sea surface temperature (SST) and the temperature 100 m below the mixed layer depth (Tmld+100). We show that the lifetime foraging niche incorporates highly diverse biotic and abiotic conditions: the blue shark tends to shift from mesotrophic and temperate surface waters during juvenile stages to more oligotrophic and warm surface waters for adults. However, low productivity limits all classes of blue shark habitat in the tropical western North Atlantic, and both low productivity and warm temperatures limit habitat in most of the equatorial Indian Ocean (except for the adult males) and tropical eastern Pacific. Large females tend to have greater habitat overlap with small juveniles than large males, more defined by temperature than productivity preferences. In particular, large juvenile females tend to extend their range into higher latitudes than large males, likely due to greater tolerance to relatively cold waters. Larg
- Published
- 2022
- Full Text
- View/download PDF
23. Global-Scale Environmental Niche and Habitat of Blue Shark (Prionace glauca) by Size and Sex: A Pivotal Step to Improving Stock Management
- Author
-
Agencia Estatal de Investigación (España), Druon, Jean-Noël, Campana, Steven E., Vandeperre, Frederic, Hazin, Fábio H. V., Bowlby, Heather, Coelho, Rui, Queiroz, Nuno, Serena, Fabrizio, Abascal, Francisco J., Damalas, Dimitros, Musyl, Michael, López, Jon, Block, Barbara A., Afonso, Pedro, Dewar, Heidi, Sabarros, Philippe S., Finucci, Brittany, Zanzi, Antonella, Bach, Pascal, Senina, Inna, Garibaldi, Fulvio, Sims, David W., Navarro, Joan, Cermeño, Pablo, Leone, Agostino, Díez, Guzmán, Carreón Zapiain, María Teresa, Deflorio, Michele, Romanov, Evgeny V., Jung, Armelle, Lapinski, Matthieu, Francis, Malcolm P., Hazin, Humberto, Travassos, Paulo, Agencia Estatal de Investigación (España), Druon, Jean-Noël, Campana, Steven E., Vandeperre, Frederic, Hazin, Fábio H. V., Bowlby, Heather, Coelho, Rui, Queiroz, Nuno, Serena, Fabrizio, Abascal, Francisco J., Damalas, Dimitros, Musyl, Michael, López, Jon, Block, Barbara A., Afonso, Pedro, Dewar, Heidi, Sabarros, Philippe S., Finucci, Brittany, Zanzi, Antonella, Bach, Pascal, Senina, Inna, Garibaldi, Fulvio, Sims, David W., Navarro, Joan, Cermeño, Pablo, Leone, Agostino, Díez, Guzmán, Carreón Zapiain, María Teresa, Deflorio, Michele, Romanov, Evgeny V., Jung, Armelle, Lapinski, Matthieu, Francis, Malcolm P., Hazin, Humberto, and Travassos, Paulo
- Abstract
Blue shark (Prionace glauca) is amongst the most abundant shark species in international trade, however this highly migratory species has little effective management and the need for spatio-temporal strategies increases, possibly involving the most vulnerable stage or sex classes. We combined 265,595 blue shark observations (capture or satellite tag) with environmental data to present the first global-scale analysis of species’ habitat preferences for five size and sex classes (small juveniles, large juvenile males and females, adult males and females). We leveraged the understanding of blue shark biotic environmental associations to develop two indicators of foraging location: productivity fronts in mesotrophic areas and mesopelagic micronekton in oligotrophic environments. Temperature (at surface and mixed layer depth plus 100 m) and sea surface height anomaly were used to exclude unsuitable abiotic environments. To capture the horizontal and vertical extent of thermal habitat for the blue shark, we defined the temperature niche relative to both sea surface temperature (SST) and the temperature 100 m below the mixed layer depth (Tmld+100). We show that the lifetime foraging niche incorporates highly diverse biotic and abiotic conditions: the blue shark tends to shift from mesotrophic and temperate surface waters during juvenile stages to more oligotrophic and warm surface waters for adults. However, low productivity limits all classes of blue shark habitat in the tropical western North Atlantic, and both low productivity and warm temperatures limit habitat in most of the equatorial Indian Ocean (except for the adult males) and tropical eastern Pacific. Large females tend to have greater habitat overlap with small juveniles than large males, more defined by temperature than productivity preferences. In particular, large juvenile females tend to extend their range into higher latitudes than large males, likely due to greater tolerance to relatively cold waters. Larg
- Published
- 2022
24. Global-Scale Environmental Niche and Habitat of Blue Shark (Prionace glauca) by Size and Sex: A Pivotal Step to Improving Stock Management
- Author
-
Druon, Jean-Noël, primary, Campana, Steven, additional, Vandeperre, Frederic, additional, Hazin, Fábio H. V., additional, Bowlby, Heather, additional, Coelho, Rui, additional, Queiroz, Nuno, additional, Serena, Fabrizio, additional, Abascal, Francisco, additional, Damalas, Dimitrios, additional, Musyl, Michael, additional, Lopez, Jon, additional, Block, Barbara, additional, Afonso, Pedro, additional, Dewar, Heidi, additional, Sabarros, Philippe S., additional, Finucci, Brittany, additional, Zanzi, Antonella, additional, Bach, Pascal, additional, Senina, Inna, additional, Garibaldi, Fulvio, additional, Sims, David W., additional, Navarro, Joan, additional, Cermeño, Pablo, additional, Leone, Agostino, additional, Diez, Guzmán, additional, Zapiain, María Teresa Carreón, additional, Deflorio, Michele, additional, Romanov, Evgeny V., additional, Jung, Armelle, additional, Lapinski, Matthieu, additional, Francis, Malcolm P., additional, Hazin, Humberto, additional, and Travassos, Paulo, additional
- Published
- 2022
- Full Text
- View/download PDF
25. Leopard Seals (Hydrurga leptonyx) in New Zealand Waters Predating on Chondrichthyans
- Author
-
van der Linde, Krista, primary, Visser, Ingrid N., additional, Bout, Rick, additional, Lalas, Chris, additional, Shepherd, Lara, additional, Hocking, David, additional, Finucci, Brittany, additional, Fyfe, Jim, additional, and Pinkerton, Matthew, additional
- Published
- 2021
- Full Text
- View/download PDF
26. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis
- Author
-
Dulvy, Nicholas K., primary, Pacoureau, Nathan, additional, Rigby, Cassandra L., additional, Pollom, Riley A., additional, Jabado, Rima W., additional, Ebert, David A., additional, Finucci, Brittany, additional, Pollock, Caroline M., additional, Cheok, Jessica, additional, Derrick, Danielle H., additional, Herman, Katelyn B., additional, Sherman, C. Samantha, additional, VanderWright, Wade J., additional, Lawson, Julia M., additional, Walls, Rachel H.L., additional, Carlson, John K., additional, Charvet, Patricia, additional, Bineesh, Kinattumkara K., additional, Fernando, Daniel, additional, Ralph, Gina M., additional, Matsushiba, Jay H., additional, Hilton-Taylor, Craig, additional, Fordham, Sonja V., additional, and Simpfendorfer, Colin A., additional
- Published
- 2021
- Full Text
- View/download PDF
27. Testing a global standard for quantifying species recovery and assessing conservation impact
- Author
-
Grace, Molly K., primary, Akçakaya, H. Resit, additional, Bennett, Elizabeth L., additional, Brooks, Thomas M., additional, Heath, Anna, additional, Hedges, Simon, additional, Hilton‐Taylor, Craig, additional, Hoffmann, Michael, additional, Hochkirch, Axel, additional, Jenkins, Richard, additional, Keith, David A., additional, Long, Barney, additional, Mallon, David P., additional, Meijaard, Erik, additional, Milner‐Gulland, E.J., additional, Rodriguez, Jon Paul, additional, Stephenson, P.J., additional, Stuart, Simon N., additional, Young, Richard P., additional, Acebes, Pablo, additional, Alfaro‐Shigueto, Joanna, additional, Alvarez‐Clare, Silvia, additional, Andriantsimanarilafy, Raphali Rodlis, additional, Arbetman, Marina, additional, Azat, Claudio, additional, Bacchetta, Gianluigi, additional, Badola, Ruchi, additional, Barcelos, Luís M.D., additional, Barreiros, Joao Pedro, additional, Basak, Sayanti, additional, Berger, Danielle J., additional, Bhattacharyya, Sabuj, additional, Bino, Gilad, additional, Borges, Paulo A.V., additional, Boughton, Raoul K., additional, Brockmann, H. Jane, additional, Buckley, Hannah L., additional, Burfield, Ian J., additional, Burton, James, additional, Camacho‐Badani, Teresa, additional, Cano‐Alonso, Luis Santiago, additional, Carmichael, Ruth H., additional, Carrero, Christina, additional, Carroll, John P., additional, Catsadorakis, Giorgos, additional, Chapple, David G., additional, Chapron, Guillaume, additional, Chowdhury, Gawsia Wahidunnessa, additional, Claassens, Louw, additional, Cogoni, Donatella, additional, Constantine, Rochelle, additional, Craig, Christie Anne, additional, Cunningham, Andrew A., additional, Dahal, Nishma, additional, Daltry, Jennifer C., additional, Das, Goura Chandra, additional, Dasgupta, Niladri, additional, Davey, Alexandra, additional, Davies, Katharine, additional, Develey, Pedro, additional, Elangovan, Vanitha, additional, Fairclough, David, additional, Febbraro, Mirko Di, additional, Fenu, Giuseppe, additional, Fernandes, Fernando Moreira, additional, Fernandez, Eduardo Pinheiro, additional, Finucci, Brittany, additional, Földesi, Rita, additional, Foley, Catherine M., additional, Ford, Matthew, additional, Forstner, Michael R.J., additional, García, Néstor, additional, Garcia‐Sandoval, Ricardo, additional, Gardner, Penny C., additional, Garibay‐Orijel, Roberto, additional, Gatan‐Balbas, Marites, additional, Gauto, Irene, additional, Ghazi, Mirza Ghazanfar Ullah, additional, Godfrey, Stephanie S., additional, Gollock, Matthew, additional, González, Benito A., additional, Grant, Tandora D., additional, Gray, Thomas, additional, Gregory, Andrew J., additional, van Grunsven, Roy H.A., additional, Gryzenhout, Marieka, additional, Guernsey, Noelle C., additional, Gupta, Garima, additional, Hagen, Christina, additional, Hagen, Christian A., additional, Hall, Madison B., additional, Hallerman, Eric, additional, Hare, Kelly, additional, Hart, Tom, additional, Hartdegen, Ruston, additional, Harvey‐Brown, Yvette, additional, Hatfield, Richard, additional, Hawke, Tahneal, additional, Hermes, Claudia, additional, Hitchmough, Rod, additional, Hoffmann, Pablo Melo, additional, Howarth, Charlie, additional, Hudson, Michael A., additional, Hussain, Syed Ainul, additional, Huveneers, Charlie, additional, Jacques, Hélène, additional, Jorgensen, Dennis, additional, Katdare, Suyash, additional, Katsis, Lydia K.D., additional, Kaul, Rahul, additional, Kaunda‐Arara, Boaz, additional, Keith‐Diagne, Lucy, additional, Kraus, Daniel T., additional, de Lima, Thales Moreira, additional, Lindeman, Ken, additional, Linsky, Jean, additional, Louis, Edward, additional, Loy, Anna, additional, Lughadha, Eimear Nic, additional, Mangel, Jeffrey C., additional, Marinari, Paul E., additional, Martin, Gabriel M., additional, Martinelli, Gustavo, additional, McGowan, Philip J.K., additional, McInnes, Alistair, additional, Teles Barbosa Mendes, Eduardo, additional, Millard, Michael J., additional, Mirande, Claire, additional, Money, Daniel, additional, Monks, Joanne M., additional, Morales, Carolina Laura, additional, Mumu, Nazia Naoreen, additional, Negrao, Raquel, additional, Nguyen, Anh Ha, additional, Niloy, Md. Nazmul Hasan, additional, Norbury, Grant Leslie, additional, Nordmeyer, Cale, additional, Norris, Darren, additional, O'Brien, Mark, additional, Oda, Gabriela Akemi, additional, Orsenigo, Simone, additional, Outerbridge, Mark Evan, additional, Pasachnik, Stesha, additional, Pérez‐Jiménez, Juan Carlos, additional, Pike, Charlotte, additional, Pilkington, Fred, additional, Plumb, Glenn, additional, Portela, Rita de Cassia Quitete, additional, Prohaska, Ana, additional, Quintana, Manuel G., additional, Rakotondrasoa, Eddie Fanantenana, additional, Ranglack, Dustin H., additional, Rankou, Hassan, additional, Rawat, Ajay Prakash, additional, Reardon, James Thomas, additional, Rheingantz, Marcelo Lopes, additional, Richter, Stephen C., additional, Rivers, Malin C., additional, Rogers, Luke Rollie, additional, da Rosa, Patrícia, additional, Rose, Paul, additional, Royer, Emily, additional, Ryan, Catherine, additional, de Mitcheson, Yvonne J. Sadovy, additional, Salmon, Lily, additional, Salvador, Carlos Henrique, additional, Samways, Michael J., additional, Sanjuan, Tatiana, additional, Souza dos Santos, Amanda, additional, Sasaki, Hiroshi, additional, Schutz, Emmanuel, additional, Scott, Heather Ann, additional, Scott, Robert Michael, additional, Serena, Fabrizio, additional, Sharma, Surya P., additional, Shuey, John A., additional, Silva, Carlos Julio Polo, additional, Simaika, John P., additional, Smith, David R., additional, Spaet, Julia L.Y., additional, Sultana, Shanjida, additional, Talukdar, Bibhab Kumar, additional, Tatayah, Vikash, additional, Thomas, Philip, additional, Tringali, Angela, additional, Trinh‐Dinh, Hoang, additional, Tuboi, Chongpi, additional, Usmani, Aftab Alam, additional, Vasco‐Palacios, Aída M., additional, Vié, Jean‐Christophe, additional, Virens, Evelyn, additional, Walker, Alan, additional, Wallace, Bryan, additional, Waller, Lauren J., additional, Wang, Hongfeng, additional, Wearn, Oliver R., additional, van Weerd, Merlijn, additional, Weigmann, Simon, additional, Willcox, Daniel, additional, Woinarski, John, additional, Yong, Jean W.H., additional, and Young, Stuart, additional
- Published
- 2021
- Full Text
- View/download PDF
28. Overfishing and Habitat Loss Drives Range Contraction of Iconic Marine Fishes to Near Extinction
- Author
-
Yan, Helen F., Kyne, Peter M., Jabado, Rima W., Leeney, Ruth H., Davidson, Lindsay N.K., Derrick, Danielle H., Finucci, Brittany, Freckleton, Robert P., Fordham, Sonja V., and Dulvy, Nicholas K.
- Abstract
Extinctions on land are often inferred from sparse sightings over time, but this technique is ill-suited for wide-ranging species. We develop a space-for-time approach to track the spatial contraction and drivers of decline of sawfishes. These iconic and endangered shark-like rays were once found in warm, coastal waters of 90 nations and are now presumed extinct in more than half (n = 46). Using dynamic geography theory, we predict that sawfishes are gone from at least nine additional nations. Overfishing and habitat loss have reduced spatial occupancy, leading to local extinctions in 55 of the 90 nations, which equates to 58.7% of their historical distribution. Retention bans and habitat protections are urgently necessary to secure a future for sawfishes and similar species.
- Published
- 2021
29. Testing a global standard for quantifying species recovery and assessing conservation impact
- Author
-
Grace, Molly K., Akcakaya, H. Resit, Bennett, Elizabeth L., Brooks, Thomas M., Heath, Anna, Hedges, Simon, Hilton-Taylor, Craig, Hoffmann, Michael, Hochkirch, Axel, Jenkins, Richard, Keith, David A., Long, Barney, Mallon, David P., Meijaard, Erik, Milner-Gulland, E. J., Paul Rodriguez, Jon, Stephenson, P. J., Stuart, Simon N., Young, Richard P., Acebes, Pablo, Alfaro-Shigueto, Joanna, Alvarez-Clare, Silvia, Arbetman, Marina, Azat, Claudio, Bacchetta, Gianluigi, Badola, Ruchi, Barcelos, Luis M. D., Barreiros, Joao Pedro, Basak, Sayanti, Berger, Danielle J., Bhattacharyya, Sabuj, Bino, Gilad, Borges, Paulo A., Boughton, Raoul K., Brockmann, H. Jane, Buckley, Hannah L., Burfield, Ian J., Burton, James, Camacho-Badani, Teresa, Santiago Cano-Alonso, Luis, Carmichael, Ruth H., Carrero, Christina, P Carroll, John, Catsadorakis, Giorgos, Chapple, David G., Chapron, Guillaume, Chowdhury, Gawsia Wahidunnessa, Claassens, Louw, Cogoni, Donatella, Constantine, Rochelle, Craig, Christie Anne, Cunningham, Andrew A., Dahal, Nishma, Daltry, Jennifer C., Das, Goura Chandra, Dasgupta, Niladri, Davey, Alexandra, Davies, Katharine, Develey, Pedro, Elangovan, Vanitha, Fairclough, David, Di Febbraro, Mirko, Fenu, Giuseppe, Fernandes, Fernando Moreira, Fernandez, Eduardo Pinheiro, Finucci, Brittany, Foldesi, Rita, Foley, Catherine M., Ford, Matthew, Forstner, Michael R. J., Garcia-Sandoval, Ricardo, Gardner, Penny C., Garibay-Orijel, Roberto, Gatan-Balbas, Marites, Gauto, Irene, Ghazi, Mirza Ghazanfar Ullah, Godfrey, Stephanie S., Gollock, Matthew, Gonzalez, Benito A., Grant, Tandora D., Gray, Thomas, Gregory, Andrew J., van Grunsven, Roy H. A., Gryzenhout, Marieka, Guernsey, Noelle C., Gupta, Garima, Hagen, Christina, Hagen, Christian A., Hall, Madison B., Hallerman, Eric, Hare, Kelly, Hart, Tom, Hartdegen, Ruston, Harvey-Brown, Yvette, Hatfield, Richard, Hawke, Tahneal, Hermes, Claudia, Hitchmough, Rod, Hoffmann, Pablo Melo, Howarth, Charlie, Hudson, Michael A., Hussain, Syed Ainul, Huveneers, Charlie, Jacques, Helene, Jorgensen, Dennis, Katdare, Suyash, Katsis, Lydia K. D., Kaul, Rahul, Kaunda-Arara, Boaz, Keith-Diagne, Lucy, Kraus, Daniel T., de Lima, Thales Moreira, Lindeman, Ken, Linsky, Jean, Louis, Edward, Loy, Anna, Lughadha, Eimear Nic, Mangel, Jeffrey C., Marinari, Paul E., Martin, Gabriel M., Martinelli, Gustavo, McGowan, Philip J. K., McInnes, Alistair, Mendes, Eduardo Teles Barbosa, Millard, Michael J., Mirande, Claire, Money, Daniel, Monks, Joanne M., Laura Morales, Carolina, Mumu, Nazia Naoreen, Negrao, Raquel, Niloy, Md Nazmul Hasan, Nguyen, Anh Ha, Norbury, Grant Leslie, Nordmeyer, Cale, O'Brien, Mark, Oda, Gabriela Akemi, Orsenigo, Simone, Pasachnik, Stesha, Perez-Jimenez, Juan Carlos, Pike, Charlotte, Pilkington, Fred, Plumb, Glenn, Portela, Rita de Cassia Quitete, Prohaska, Ana, Quintana, Manuel G., Rakotondrasoa, Eddie Fanantenana, Rankou, Hassan, Rawat, Ajay Prakash, Reardon, James Thomas, Rheingantz, Marcelo Lopes, Richter, Stephen C., Rivers, Malin C., da Rosa, Patricia, Rose, Paul, Royer, Emily, Ryan, Catherine, de Mitcheson, Yvonne J. Sadovy, Salmon, Lily, Salvador, Carlos Henrique, Samways, Michael J., Sanjuan, Tatiana, Dos Santos, Amanda Souza, Sasaki, Hiroshi, Schutz, Emmanuel, Scott, Heather Ann, Scott, Robert Michael, Serena, Fabrizio, Sharma, Surya P., Shuey, John A., Silva, Carlos Julio Polo, Simaika, John P., Smith, David R., Spaet, Julia L. Y., Sultana, Shanjida, Talukdar, Bibhab Kumar, Tatayah, Vikash, Thomas, Philip, Tringali, Angela, Tuboi, Chongpi, Hoang, Trinh-Dinh, Usmani, Aftab Alam, Vasco-Palacios, Aida M., Vie, Jean-Christophe, Virens, Jo, Walker, Alan, Wallace, Bryan, Waller, Lauren J., Wang, Hongfeng, Wearn, Oliver R., van Weerd, Merlijn, Weigmann, Simon, Willcox, Daniel, Woinarski, John, Yong, Jean W.H., and Young, Stuart
- Subjects
Evolutionary Biology ,Ecology ,Biological Systematics - Abstract
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.
- Published
- 2021
30. Testing a global standard for quantifying species recovery and assessing conservation impact
- Author
-
Grace, Molly K, Akcakaya, H Resit, Bennett, Elizabeth L, Brooks, Thomas M, Heath, Anna, Hedges, Simon, Hilton-Taylor, Craig, Hoffmann, Michael, Hochkirch, Axel, Jenkins, Richard, Keith, David A, Long, Barney, Mallon, David P, Meijaard, Erik, Milner-Gulland, E.J., Rodriguez, Jon Paul, Stephenson, P J, Stuart, Simon N, Young, Richard P, Acebes, Pablo, Alfaro-Shigueto, Joanna, Alvarez-Clare, Silvia, Andriantsimanarilafy, Raphali Rodlis, Arbetman, Marina, Azat, Claudio, Bacchetta, Gianluigi, Badola, Ruchi, Barcelos, Luis M.D., Barreiros, Joao Pedro, Basak, Sayanti, Berger, Danielle J, Bhattacharyya, Sabuj, Bino, Gilad, Borges, Paulo A.V., Boughton, Raoul K, Brockmann, H Jane, Buckley, Hannah L, Burfield, Ian J, Burton, James, Camacho-Badani, Teresa, Cano-Alonso, Luis Santiago, Carmichael, Ruth H, Carrero, Christina, Carroll, John P, Catsadorakis, Giorgos, Chapple, David G, Chapron, Guillaume, Chowdhury, Gawsia Wahidunnessa, Claassens, Louw, Cogoni, Donatella, Constantine, Rochelle, Craig, Christie Anne, Cunningham, Andrew A, Dahal, Nishma, Daltry, Jennifer C, Das, Goura Chandra, Dasgupta, Niladri, Davey, Alexandra, Davies, Katharine, Develey, Pedro, Elangovan, Vanitha, Fairclough, David, Febbraro, Mirko Di, Fenu, Giuseppe, Fernandes, Fernando Moreira, Fernandez, Eduardo Pinheiro, Finucci, Brittany, Foldesi, Rita, Foley, Catherine M, Ford, Matthew, Forstner, Michael R.J., Garcia, Nestor, Garcia-Sandoval, Ricardo, Gardner, Penny C, Garibay-Orijel, Roberto, Gatan-Balbas, Marites, Gauto, Irene, Ullah Ghazi, Mirza Ghazanfar, Godfrey, Stephanie S, Gollock, Matthew, Gonzalez, Benito A, Grant, Tandora D, Gray, Thomas, Gregory, Andrew J, van Grunsven, Roy H.A., Gryzenhout, Marieka, Guernsey, Noelle C, Gupta, Garima, Hagen, Christina, Hagen, Christian A, Hall, Madison B, Hallerman, Eric, Hare, Kelly, Hart, Tom, Hartdegen, Ruston, Harvey-Brown, Yvette, Hatfield, Richard, Hawke, Tahneal, Hermes, Claudia, Hitchmough, Rod, Hoffmann, Pablo Melo, Howarth, Charlie, Hudson, Michael A, Hussain, Syed Ainul, Huveneers, Charlie, Jacques, Helene, Jorgensen, Dennis, Katdare, Suyash, Katsis, Lydia K.D., Kaul, Rahul, Kaundra-Arara, Boaz, Keith-Diagne, Lucy, Kraus, Daniel T, de Lima, Thales Moreira, Lindeman, Ken, Linsky, Jean, Louis, Edward, Jr., Loy, Anna, Lughadha, Eimear Nic, Mangel, Jeffrey C, Marinari, Paul E, Martin, Gabriel M, Martinelli, Gustavo, McGowan, Philip J.K., McInnes, Alistair, Mendes, Eduardo Teles Barbosa, Millard, Michael J, Mirande, Claire, Money, Daniel, Monks, Joanne M, Morales, Carolina Laura, Mumu, Nazia Noareen, Negrao, Raquel, Nguyen, Anh Ha, Niloy, Nazmul Hasan, Md., Norbury, Grant Leslie, Nordmeyer, Cale, Norris, Darren, O'Brien, Mark, Oda, Gabriela Akemi, Orsengio, Simone, Outerbridge, Mark Evan, Pasachnik, Stesha, Perez-Jimenez, Juan Carlos, Pike, Charlotte, Pilkington, Fred, Plumb, Glenn, Quitete Portela, Rita de Cassia, Prohaska, Ana, Quintana, Manuel G, Rakotondrasoa, Eddie Fanantenana, Ranglack, Dustin H, Rankou, Hassan, Rawat, Ajay Prakash, Reardon, James Thomas, Rheingantz, Marcelo Lopes, Richter, Stephen C, Rivers, Malin C, Rogers, Luke Rollie, Rosa, Patricia Da, Rose, Paul, Royer, Emily, Ryan, Catherine, Sadovy de Mitcheson, Yvonne J, Salmon, Lily, Salvador, Carlos Henrique, Samways, Michael J, Sanjuan, Tatiana, Souza dos Santos, Amanda, Sasaki, Hiroshi, Shutz, Emmanuel, Scott, Heather Ann, Scott, Robert Michael, Serena, Fabrizio, Sharma, Surya P, Shuey, John A, Silva, Carlos Julio Polo, Simaika, John P, Smith, David R, Spaet, Julia L.Y., Sultana, Shanjida, Talukdar, Bibhab Kumar, Tatayah, Vikash, Thomas, Philip, Tringali, Angela, Trinh-Dinh, Hoang, Tuboi, Chongpi, Usami, Aftab Alam, Vasco-Palacios, Aida M, Vie, Jean-Christophe, Virens, Jo, Walker, Alan, Wallace, Bryan, Waller, Lauren J, Wang, Hongfeng, Wearn, Oliver R, Weerd, Merlijin van, Weigmann, Simon, Willcox, Daniel, Woinarski, John, Yong, Jean W.H., Young, Stuart, Grace, Molly K, Akcakaya, H Resit, Bennett, Elizabeth L, Brooks, Thomas M, Heath, Anna, Hedges, Simon, Hilton-Taylor, Craig, Hoffmann, Michael, Hochkirch, Axel, Jenkins, Richard, Keith, David A, Long, Barney, Mallon, David P, Meijaard, Erik, Milner-Gulland, E.J., Rodriguez, Jon Paul, Stephenson, P J, Stuart, Simon N, Young, Richard P, Acebes, Pablo, Alfaro-Shigueto, Joanna, Alvarez-Clare, Silvia, Andriantsimanarilafy, Raphali Rodlis, Arbetman, Marina, Azat, Claudio, Bacchetta, Gianluigi, Badola, Ruchi, Barcelos, Luis M.D., Barreiros, Joao Pedro, Basak, Sayanti, Berger, Danielle J, Bhattacharyya, Sabuj, Bino, Gilad, Borges, Paulo A.V., Boughton, Raoul K, Brockmann, H Jane, Buckley, Hannah L, Burfield, Ian J, Burton, James, Camacho-Badani, Teresa, Cano-Alonso, Luis Santiago, Carmichael, Ruth H, Carrero, Christina, Carroll, John P, Catsadorakis, Giorgos, Chapple, David G, Chapron, Guillaume, Chowdhury, Gawsia Wahidunnessa, Claassens, Louw, Cogoni, Donatella, Constantine, Rochelle, Craig, Christie Anne, Cunningham, Andrew A, Dahal, Nishma, Daltry, Jennifer C, Das, Goura Chandra, Dasgupta, Niladri, Davey, Alexandra, Davies, Katharine, Develey, Pedro, Elangovan, Vanitha, Fairclough, David, Febbraro, Mirko Di, Fenu, Giuseppe, Fernandes, Fernando Moreira, Fernandez, Eduardo Pinheiro, Finucci, Brittany, Foldesi, Rita, Foley, Catherine M, Ford, Matthew, Forstner, Michael R.J., Garcia, Nestor, Garcia-Sandoval, Ricardo, Gardner, Penny C, Garibay-Orijel, Roberto, Gatan-Balbas, Marites, Gauto, Irene, Ullah Ghazi, Mirza Ghazanfar, Godfrey, Stephanie S, Gollock, Matthew, Gonzalez, Benito A, Grant, Tandora D, Gray, Thomas, Gregory, Andrew J, van Grunsven, Roy H.A., Gryzenhout, Marieka, Guernsey, Noelle C, Gupta, Garima, Hagen, Christina, Hagen, Christian A, Hall, Madison B, Hallerman, Eric, Hare, Kelly, Hart, Tom, Hartdegen, Ruston, Harvey-Brown, Yvette, Hatfield, Richard, Hawke, Tahneal, Hermes, Claudia, Hitchmough, Rod, Hoffmann, Pablo Melo, Howarth, Charlie, Hudson, Michael A, Hussain, Syed Ainul, Huveneers, Charlie, Jacques, Helene, Jorgensen, Dennis, Katdare, Suyash, Katsis, Lydia K.D., Kaul, Rahul, Kaundra-Arara, Boaz, Keith-Diagne, Lucy, Kraus, Daniel T, de Lima, Thales Moreira, Lindeman, Ken, Linsky, Jean, Louis, Edward, Jr., Loy, Anna, Lughadha, Eimear Nic, Mangel, Jeffrey C, Marinari, Paul E, Martin, Gabriel M, Martinelli, Gustavo, McGowan, Philip J.K., McInnes, Alistair, Mendes, Eduardo Teles Barbosa, Millard, Michael J, Mirande, Claire, Money, Daniel, Monks, Joanne M, Morales, Carolina Laura, Mumu, Nazia Noareen, Negrao, Raquel, Nguyen, Anh Ha, Niloy, Nazmul Hasan, Md., Norbury, Grant Leslie, Nordmeyer, Cale, Norris, Darren, O'Brien, Mark, Oda, Gabriela Akemi, Orsengio, Simone, Outerbridge, Mark Evan, Pasachnik, Stesha, Perez-Jimenez, Juan Carlos, Pike, Charlotte, Pilkington, Fred, Plumb, Glenn, Quitete Portela, Rita de Cassia, Prohaska, Ana, Quintana, Manuel G, Rakotondrasoa, Eddie Fanantenana, Ranglack, Dustin H, Rankou, Hassan, Rawat, Ajay Prakash, Reardon, James Thomas, Rheingantz, Marcelo Lopes, Richter, Stephen C, Rivers, Malin C, Rogers, Luke Rollie, Rosa, Patricia Da, Rose, Paul, Royer, Emily, Ryan, Catherine, Sadovy de Mitcheson, Yvonne J, Salmon, Lily, Salvador, Carlos Henrique, Samways, Michael J, Sanjuan, Tatiana, Souza dos Santos, Amanda, Sasaki, Hiroshi, Shutz, Emmanuel, Scott, Heather Ann, Scott, Robert Michael, Serena, Fabrizio, Sharma, Surya P, Shuey, John A, Silva, Carlos Julio Polo, Simaika, John P, Smith, David R, Spaet, Julia L.Y., Sultana, Shanjida, Talukdar, Bibhab Kumar, Tatayah, Vikash, Thomas, Philip, Tringali, Angela, Trinh-Dinh, Hoang, Tuboi, Chongpi, Usami, Aftab Alam, Vasco-Palacios, Aida M, Vie, Jean-Christophe, Virens, Jo, Walker, Alan, Wallace, Bryan, Waller, Lauren J, Wang, Hongfeng, Wearn, Oliver R, Weerd, Merlijin van, Weigmann, Simon, Willcox, Daniel, Woinarski, John, Yong, Jean W.H., and Young, Stuart
- Abstract
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has
- Published
- 2021
31. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis
- Author
-
Dulvy, Nicholas K., Pacoureau, Nathan, Rigby, Cassandra L., Pollom, Riley A., Jabado, Rima W., Ebert, David A., Finucci, Brittany, Pollock, Caroline M., Cheok, Jessica, Derrick, Danielle H., Herman, Katelyn B., Sherman, C. Samantha, VanderWright, Wade J., Lawson, Julia M., Walls, Rachel H. L., Carlson, John K., Charvet, Patricia, Bineesh, Kinattumkara K., Fernando, Daniel, Ralph, Gina M., Matsushiba, Jay H., Hilton-Taylor, Craig, Fordham, Sonja, V, Simpfendorfer, Colin A., Dulvy, Nicholas K., Pacoureau, Nathan, Rigby, Cassandra L., Pollom, Riley A., Jabado, Rima W., Ebert, David A., Finucci, Brittany, Pollock, Caroline M., Cheok, Jessica, Derrick, Danielle H., Herman, Katelyn B., Sherman, C. Samantha, VanderWright, Wade J., Lawson, Julia M., Walls, Rachel H. L., Carlson, John K., Charvet, Patricia, Bineesh, Kinattumkara K., Fernando, Daniel, Ralph, Gina M., Matsushiba, Jay H., Hilton-Taylor, Craig, Fordham, Sonja, V, and Simpfendorfer, Colin A.
- Abstract
The scale and drivers of marine biodiversity loss are being revealed by the International Union for Conservation of Nature (IUCN) Red List assessment process. We present the first global reassessment of 1,199 species in Class Chondrichthyes-sharks, rays, and chimeras. The first global assessment (in 2014) concluded that one-quarter (24%) of species were threatened. Now, 391 (32.6%) species are threatened with extinction. When this percentage of threat is applied to Data Deficient species, more than one-third (37.5%) of chondrichthyans are estimated to be threatened, with much of this change resulting from new information. Three species are Critically Endangered (Possibly Extinct), representing possibly the first globalmarine fish extinctions due to overfishing. Consequently, the chondrichthyan extinction rate is potentially 25 extinctions per million species years, comparable to that of terrestrial vertebrates. Overfishing is the universal threat affecting all 391 threatened species and is the sole threat for 67.3% of species and interacts with three other threats for the remaining third: loss and degradation of habitat (31.2% of threatened species), climate change (10.2%), and pollution (6.9%). Species are disproportionately threatened in tropical and subtropical coastal waters. Science-based limits on fishing, effective marine protected areas, and approaches that reduce or eliminate fishing mortality are urgently needed to minimize mortality of threatened species and ensure sustainable catch and trade of others. Immediate action is essential to prevent further extinctions and protect the potential for food security and ecosystem functions provided by this iconic lineage of predators.
- Published
- 2021
- Full Text
- View/download PDF
32. Drivers of Spatial Distributions of Basking Shark (Cetorhinus maximus) in the Southwest Pacific
- Author
-
Finucci, Brittany, primary, Duffy, Clinton A. J., additional, Brough, Tom, additional, Francis, Malcolm P., additional, Milardi, Marco, additional, Pinkerton, Matthew H., additional, Petersen, Grady, additional, and Stephenson, Fabrice, additional
- Published
- 2021
- Full Text
- View/download PDF
33. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction
- Author
-
Yan, Helen F., primary, Kyne, Peter M., additional, Jabado, Rima W., additional, Leeney, Ruth H., additional, Davidson, Lindsay N.K., additional, Derrick, Danielle H., additional, Finucci, Brittany, additional, Freckleton, Robert P., additional, Fordham, Sonja V., additional, and Dulvy, Nicholas K., additional
- Published
- 2021
- Full Text
- View/download PDF
34. Ghosts of the deep – Biodiversity, fisheries, and extinction risk of ghost sharks
- Author
-
Finucci, Brittany, primary, Cheok, Jessica, additional, Ebert, David A., additional, Herman, Katelyn, additional, Kyne, Peter M., additional, and Dulvy, Nicholas K., additional
- Published
- 2020
- Full Text
- View/download PDF
35. Review of life history parameters and preliminary age estimates of some New Zealand deep-sea fishes
- Author
-
McMillan, Peter J., primary, Hart, Alan C., additional, Horn, Peter L., additional, Tracey, Dianne M., additional, Ó Maolagáin, Caoimhghin, additional, Finucci, Brittany, additional, and Dunn, Matthew R., additional
- Published
- 2020
- Full Text
- View/download PDF
36. Dental morphology and microstructure of the Prickly DogfishOxynotus bruniensis(Squaliformes: Oxynotidae)
- Author
-
Moyer, Joshua K., primary, Finucci, Brittany, additional, Riccio, Mark L., additional, and Irschick, Duncan J., additional
- Published
- 2020
- Full Text
- View/download PDF
37. First record of albinism in the lanternshark family, Etmopteridae
- Author
-
Finucci, Brittany, primary
- Published
- 2020
- Full Text
- View/download PDF
38. Review of life history parameters and preliminary age estimates of some New Zealand deep-sea fishes.
- Author
-
McMillan, Peter J., Hart, Alan C., Horn, Peter L., Tracey, Dianne M., Ó Maolagáin, Caoimhghin, Finucci, Brittany, and Dunn, Matthew R.
- Subjects
DEEP-sea fishes ,OTOLITHS ,LIFE history theory ,OSTEICHTHYES ,BYCATCHES ,FISH age ,CARBON isotopes - Abstract
A literature review on longevity of New Zealand deep-sea fishes provided life history parameter estimates for 17 bony and five cartilaginous species. Preliminary age estimates for a further nine deep-sea bony fishes were made from otolith zone counts and included results from a pilot analysis of radiocarbon age estimates from the otoliths of three of the species. Radiocarbon age estimates corroborated the otolith zone count age estimates made for white rattail (Trachyrincus aphyodes) and smallhead cod (Lepidion microcephalus) but were substantially lower for the third species, smallscale brown slickhead (Alepocephalus antipodianus) which suggested that it was not exposed to elevated (near-surface) levels of
14 C in early life. Validation of otolith zone age estimates is difficult for deep-sea species but the radiocarbon analysis provided a practical method to corroborate age estimates for some bony fishes. Of the 31 fish in this study (known and new age estimates), five of the fishery target species and 10 of the bycatch were long-lived (50 years or more). The hypothesis that all New Zealand deep-sea species are long-lived was not supported, but the chance of a species being long-lived seem to be higher in deeper water. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
39. Chimaera ogilbyi Waite 1898
- Author
-
Finucci, Brittany, White, William T., Kemper, Jenny M., and Naylor, Gavin J. P.
- Subjects
Chimaeriformes ,Chimaera ,Chimaera ogilbyi ,Animalia ,Biodiversity ,Chordata ,Chondrichthyes ,Chimaeridae ,Taxonomy - Abstract
Chimaera ogilbyi Waite, 1898 Ogilby’s Chimaera Table 1; Figs 3 –7 Chimaera ogilbyi Waite, 1898: 56, pl. 11 (off Sydney, New South Wales, Australia; syntypes AMS I.3732, 3734, 3736, 3737) Hydrolagus (Psychichthys) waitei Fowler, 1907: 419, Fig. 1 (Victoria, Australia; holotype ANSP 33119, dry, poor condition) Chimaera waitei — Garman, 1911: 91 (Victoria, Australia) Phasmichthys lemures Whitley, 1939: 261, pl. 22 (Fig. 2) (Great Australian Bight, off Eucla, Western Australia; holotype AMS E.3591, paratype AMS E.3592) Hydrolagus ogilbyi — Bigelow & Schroeder, 1953: 534, 537 (southern Australia, Tasmania) Hydrolagus lemures — Bigelow & Schroeder, 1953: 534 Hydrolagus cf lemures — White et al., 2006: 310, fig. (Indonesia) Lectotype. AMS I.3736, female 500 mm BDL, off Port Hacking, New South Wales, Australia, 34°04.8’ S, 151°12’ E, 22–38 fathoms (40–70 m) depth, 10 Mar 1898. Paralectotypes. (2 specimens) AMS I.3732, female, AMS I.3734, female (tail damaged, similar size to lectotype), off Botany Bay, New South Wales, Australia, 34°01.8’ S, 151°15’ E, 50–52 fathoms (91–95 m) depth, 11 Mar 1898. Other specimens: New South Wales (20 specimens): CSIRO CA 114, female 647 mm TL, 258 mm BDL, east northeast of Sydney, 33°33’ S, 151°57’ E, 265–305 m depth, 2 Feb 1977; CSIRO CA 3226, adolescent male 722 mm TL, 324 mm BDL, CSIRO CA 3227, female 709 mm TL, 345 mm BDL, northeast of Port Stephens, 32°23’ S, 152°59’ E, 278 m depth, 30 Jan 1982; CSIRO H 2692-01, female 807 mm TL, 490 mm BDL, east of Yamba, 29°24’ S, 153°46’ E, 153–175 m depth, 22 May 1991; CSIRO H 2967-01, adult male 618 mm TL, 385 mm BDL, east of Coffs Harbour, 30°21’ S, 153°24’ E, 139–154 m depth, 11 Mar 1992; CSIRO H 3586-01, female 722 mm TL, 348 mm BDL, east of Wollongong, 34°25’ S, 151°11’ E, 141–145 m depth, 31 Aug 1993; CSIRO H 4472-03, female 896 mm TL, 402 mm BDL, CSIRO H 4472-04, female 839 mm TL, 365 mm BDL, northeast of Batemans Bay, 35°40’ S, 150°41’ E, 541–585 m depth, 4 Dec 1996; CSIRO H 4682-05 (tissue accession GN10981; Genbank accession DQ108122), male 675 mm TL, 318 mm BDL, east of Broken Bay, 33°35’ S, 151°58’ E, 324–329 m depth, 10 Sep 1997; CSIRO H 4760-01, juvenile male 631 mm TL, 273 mm BDL, east of Eden, 37°12’ S, 150°22’ E, 373–401 m depth, 29 Oct 1996; CSIRO H 4704-03, adolescent male 658 mm TL, 325 mm BDL, east of Sydney, 33°40’ S, 151°53’ E, 326–331 m depth, 24 Sep 1996; CSIRO H 7029-02 (Genbank accession KY260632), adult male 906 mm TL, 429 mm BDL, east of Wooli, 29°58.72’ S, 153°38.98’ E, 500 m depth, 5 Sep 2009; CSIRO H 7041-09, female 682 mm TL, 324 mm BDL, east of Port Stephens, 32°32’ S, 152°54’ E, 510 m depth, 9 Sep 2009; CSIRO H 7043-07 (tissue accession GN13677; Genbank accession KY260650), adult male 717 mm TL, 432 mm BDL, east of Ballina, 28°59.87’ S, 153°53.20’ E, 440 m depth, 3 Sep 2009; CSIRO H 7048-02 (tissue accession GN13678; Genbank accession KY260637), adult male 822 mm TL, 433 mm BDL, east of Tweed Heads, 28°17.64’ S, 153°53.54’ E, 455 m depth, 2 Sep 2009; CSIRO H 7053-09 (Genbank accession KY260631), female 691 mm TL, 374 mm BDL, CSIRO H 7053-10 (Genbank accession KY260633), adult male 736 mm TL, 408 mm BDL, east of Terrigal, 33°21’ S, 152°11’ E, 560 m depth, 14 Sep 2009; CSIRO H 7063-01 (tissue accession GN10984; Genbank accession KY260628), female 908 mm TL, 439 mm BDL, east of Jervis Bay, 35°12’ S, 150°59’ E, 385– 520 m depth, 21 Sep 2009; CSIRO H 8058-01 (Genbank accession KY260627), adult male 897 mm TL, 432 mm BDL, east of Sydney, 34°03.16’ S, 151°36.86’ E, 450 m depth, 16 Sep 2009; CSIRO H 8058-02 (Genbank accession KY260630), adult male 884 mm TL, 450 mm BDL, Taupo Seamount, 33°05’ S, 156°16’ E, 525 m depth, 11 Sep 2009; not retained (Genbank accession DQ108121), east of Ulladulla, 33°25’ S, 151°11’ E, 141 m depth, 3 Nov 1994; not retained (Genbank accession DQ108123), east of Broken Bay, 33°32’ S, 152°00’ E, 329 m depth, 26 Sep 1996. Northern Territory (2 specimens): CSIRO CA 1262, juvenile male 351 mm TL, 165 mm BDL, CSIRO CA 1263, female 374 mm TL, 162 mm BDL, CSIRO CA 1264, female 166 mm TL, 83 mm BDL, north of Bathurst Island, Arafura Sea, 10°02’ S, 130°03’ E, 216 m depth, 8 Jul 1980. South Australia (1 specimen): CSIRO H 2867-06, female 977 mm TL, 541 mm BDL, Great Australian Bight, 33°25’ S, 129°54’ E, 490–514 m depth, 13 Mar 1992. Queensland (14 specimens): CSIRO H 648-05, female 296 mm TL, 108 mm BDL, east of Townsville, 18°59.7’ S, 149°28.7’ E, 452–453 m depth, 26 Nov 1985; CSIRO H 713-4, adolescent male 716 mm TL, 314 mm BDL, south of Saumarez Reef, 22°34.5’ S, 153°37.4’ E, 314–319 m depth, 16 Nov 1985; CSIRO H 1167-03 (2 embryos), 155 and 235 mm TL, 67.5 and 83 mm BDL, west of Lihou Reef and Cays, Queensland Plateau, 17°02.1’ S, 151°03.7’ E, 696 m depth, 6 Dec 1985; CSIRO H 2278-1, female 728 mm TL, 308 mm BDL, east of Flinders Reefs, 17°32.8’ S, 149°31.9’ E, 500–504 m depth, 3 Dec 1985; CSIRO H 2279-1, female 496 mm TL, 234 mm BDL, east of Hinchinbrook Island, Queensland Trough, 17°59.1’ S, 147°09.6’ E, 400–402 m depth, 29 Nov 1985; CSIRO H 2280-1, juvenile male, 442 mm TL, 180 mm BDL, Townsville Trough, 18°59.7’ S, 149°28.7’ E, 452– 453 m depth, 26 Nov 1985; CSIRO H 2281-1, juvenile male 511 mm TL, 221 mm BDL, Saumarez Reef, 22°35.3’ S, 153°46.7’ E, 345–350 m depth, 17 Nov 1985; CSIRO H 2282-1, female 619 mm TL, 258 mm BDL, Marian Plateau, 19°29.2’ S, 150°16.5’ E, 324–328 m depth, 15 Nov 1985; CSIRO H 2283-1, female 530 mm TL, 194 mm BDL, Saumarez Reef, 22°40’ S, 154°05.5’ E, 416–419 m depth, 17 Nov 1985; CSIRO H 7569-01 (tissue accession GN15671), female 571 mm TL, 301 mm BDL, CSIRO H 7569-02 (tissue accession GN15672), juvenile male 659 mm TL, 307.5 mm BDL, Swain Reefs, 23°46.40’ S, 152°30.96’ E, 227–234 m depth, 2 Jun 2011; CSIRO H 7720- 0 1, 774 mm TL, 434 mm BDL, Swains Reef, 22°38.82’ S, 152°49.32’ E, 135 m depth, 8 Oct 2010; not retained (Genbank accession KY260640, KY260642, KY260647, KY260251, KY260253), Swains Reef, 23°39.34’ S, 152°24.22’ E, 234 m depth, 2 Jun 2011. Tasmania (17 specimens): CSIRO T 442, female 753 mm TL, 333 mm BDL, off Tranmers Point, 42°38’ S, 148°36’ E, 480 m depth, 12 Oct 1994; CSIRO T 1377-02, adult male 1002 mm TL, 496 mm BDL, west of Strahan, 42°19’ S, 144°46’ E, 548 m depth, 19 Jan 1979; CSIRO H 789-02, embryo 122 mm TL, west of Mawson Bay, 41°02.3’ S, 143°49.6’ E, 820–872 m depth, 15 May 1986; CSIRO H 1908-1, juvenile male 512 mm TL, 206 mm BDL, CSIRO H 1908-2, female 565 mm TL, 292 mm BDL, CSIRO H 1908-3, juvenile male 602 mm TL, 255 mm BDL, CSIRO H 1908-5, female 541 mm TL, 205 mm BDL, CSIRO H 1908-6, female 462 mm TL, 181 mm BDL, CSIRO H 1908-7, juvenile male 488 mm TL, 203.5 mm BDL, CSIRO H 1908-8, female 528 mm TL, 194 mm BDL, CSIRO H 1908-9, female 455 mm TL, 179 mm BDL, CSIRO H 1908-10, juvenile male 468 mm TL, 172 mm BDL, west of King Island, 40°53.9’ S, 143°44.5’ E, 496–524 m depth, 31 Aug 1994; CSIRO H 3500-08, female 929 mm TL, 480 mm BDL, CSIRO H 3500-09, female 1005 mm TL, 457 mm BDL, east of Maria Island, Darcy’s Patch, 42°42’ S, 148°25.7’ E, 510–520 m depth, 24 Jul 1993; CSIRO H 5942-01 (tissue accession GN10983), female 1037 mm TL, 602 mm BDL, CSIRO H 5943-01 (tissue accession GN10964), adult male 854 mm TL, 436 mm BDL, south of Tasman Peninsula, 43°35’ S, 147°55’ E, 460 m depth, 1 Sep 2002; CSIRO H 7061-08 (Genbank accession KY260655), adult male 904 mm TL, 436 mm BDL, CSIRO H 7061-09 (Genbank accession KY260639), female 810 mm TL, 388 mm BDL, east of Cape Barren Island, 40°14’ S, 148°54’ E, 580 m depth, 4 Oct 2009. Victoria (6 specimens): CSIRO H 3522-07, female 622 mm TL, 232 mm BDL, south of Cape Everard, 38°11.9’ S, 149°16.5’ E, 230–240 m depth, 6 Aug 1993; CSIRO H 3546-02, adult male 758 mm TL, 412 mm BDL, south of Cape Everard, 38°12.4’ S, 149°16.6’ E, 240–250 m depth, 7 Aug 1993; CSIRO H 3690-08, female 464 mm TL, 173 mm BDL, south of Cape Everard, 38°11.8’ S, 149°17.9’ E, 258–296 m depth, 24 Feb 1994; CSIRO H 5322-02 (tissue accession GN10982; Genbank accession DQ108108), female 604 mm TL, 243.5 mm BDL, southsoutheast of Cape Everard, Victoria, Australia, 38°09.98’ S, 149°38.33’ E, 225–295 m depth, 23 Apr 2000; CSIRO H 7060-05 (Genbank accession KY260624), female 928 mm TL, 479 mm BDL, south of Gabo Island, 37°48.30’ S, 150°11.64’ E, 510–515 m depth, 1 Oct 2009; CSIRO H 7065-03 (Genbank accession KY260644), female 955 mm TL, 481 mm BDL, south of Gabo Island, 37°48’ S, 150°10’ E, 550 m depth, 30 Sep 2009. Western Australia (44 specimens): AMS E.3591 (holotype of Phasmichthys lemures), female 458 mm TL, 212 mm BDL, AMS E.3590 (paratype of Phasmichthys lemures), female 446 mm TL, 172 mm BDL, southwest of Eucla, Great Australian Bight, 126°45.5’ E, 190–320 fathoms (348–585 m) depth, 4 Apr 1913; CSIRO CA 407, juvenile male 412 mm TL, 176 mm BDL, south of Mermaid Reef, 10 Jun 1978; CSIRO CA 3500, adult male 712 mm TL, 448 mm BDL, Great Australian Bight, 33°23.2’ S, 127°34.3’ E, 296–300 m depth, 2 Dec 1981; CSIRO CA 367, adolescent male 583 mm TL, 282 mm BDL, north-northwest of Port Hedland, 18°24’ S, 118°03’ E, 258– 270 m depth, 20 May 1978; CSIRO H 822-20, juvenile male 269 mm BDL, southwest of Shark Bay, 27°03’ S, 112°40’ E, 402 m depth, 27 Oct 1986; CSIRO H 1652-5, female 397 mm TL, 186 mm BDL, northwest of Port Hedland, 18°25’ S, 117°48’ E, 375 m depth, 21 Aug 1988; CSIRO H 2007-3, female 586 mm TL, 281 mm BDL, southwest of Rowley Shoals, 17°50’ S, 118°33’ E, 420 m depth, 12 Feb 1989; CSIRO H 2031-1 (3 specimens; 2 males, 1 female), 204–297 mm TL, 98–123 mm BDL, northeast of Mermaid Reef, 16°54’ S, 120°25’ E, 396 m depth, 12 Apr 1989; CSIRO H 2366-1, juvenile male 531 mm TL, 284.5 mm BDL, west of Geraldton, 28°48’ S, 113°37’ E, 457 m depth, 27 Dec 1989; CSIRO H 2555-14 (tissue accession GN10961; Genbank accession EU398877), female 614 mm TL, 302 mm BDL, west of Alison Point, 23°25.4’ S, 113°03.9’ E, 297–311 m depth, 26 Jan 1991; CSIRO H 2567-11, juvenile male 503 mm TL, 271 mm BDL, west of Dorre Island, 25°07.5’ S, 112°09.3’ E, 312 m depth, 28 Jan 1991; CSIRO H 2575-22, female 380 mm TL, CSIRO H 2575-23, female 637 mm TL, 300 mm BDL, CSIRO H 2575-24 (tissue accession GN10986; Genbank accession EU398882), male 604 mm TL, 342 mm BDL, CSIRO H 2575-25 (tissue accession GN10987; Genbank accession EU398881), female 821 mm TL, 430 mm BDL, west of Freycinet Estuary, 26°40.4’ S, 112°32.7’ E, 456–478 m depth, 30 Jan 1991; CSIRO H 2587-12, female 521 mm TL, 202 mm BDL, CSIRO H 2587-14, female 474 mm TL, 252 mm BDL, CSIRO H 2587-15, female 422 mm TL, 194 mm BDL, southwest of Shark Bay, 27°08.8’ S, 112°44.8’ E, 370–438 m depth, 2 Feb 1991; CSIRO H 2590-08, adult male 613 mm TL, 328 mm BDL, CSIRO H 2590-09, adult male 658 mm TL, 337 mm BDL, CSIRO H 2590-10, adult male 664 mm TL, 392 mm BDL, CSIRO H 2590-13 (tissue accession GN10962; Genbank accession EU398878), female 581 mm TL, 298 mm BDL, CSIRO H 2590-14 (tissue accession GN10988; Genbank accession EU398880), male 644 mm TL, 375 mm BDL, CSIRO H 2590-15, adult male 581 mm TL, 342 mm BDL, west of Leander Point, 29°15.8’ S, 113°56.8’ E, 320–325 m depth, 6 Feb 1991; CSIRO H 2591-03, female 277 mm TL, 121 mm BDL, CSIRO H 2591-12, female 481 mm TL, 211 mm BDL, west of Leander Point, 29°20.5’ S, 113°58.3’ E, 490–505 m depth, 6 Feb 1991; CSIRO H 2898-01, female 527 mm TL, 251 mm BDL, southwest of Rowley Shoals, 18°03.8’ S, 118°16.3’ E, 357–361 m depth, 26 Sep 1991; CSIRO H 3071-04, adult male 721 mm TL, 360 mm BDL, southwest of Geraldton, 29°14.2’ S, 113°52.2’ E, 556 m depth, 28 Jan 1989; CSIRO H 3222-04, adult male 631 mm TL, 325 mm BDL, north of Dampier Archipelago, 19°12.1’ S, 116°25.2’ E, 190–203 m depth, 11 Oct 1990; CSIRO H 4031-03 (tissue accession GN10963; Genbank accession DQ108124), female 671 mm TL, 380 mm BDL, CSIRO H 4031-84, adult male 607 mm TL, 340 mm BDL, CSIRO H 4031-85, adult male 656 mm TL, 356 mm BDL, north of Cape Lambert, 18°58.2’ S, 117°12.1’ E, 248–253 m depth, 30 Aug 1995; CSIRO H 4664-32, female 428 mm TL, 195 mm BDL, Rowley Shoals area, 17°38.9’ S, 119°00.3’ E, 310 m depth, 31 Aug 1997; CSIRO H 5188-10, female 527 mm TL, 267 mm BDL, CSIRO H 5188-11, female 487 mm TL, 194 mm BDL, CSIRO H 5188-12, female 409 mm TL, 193 mm BDL, north of Dampier Archipelago, 19°11.14’ S, 116°16.05’ E, 256 m depth, 27 Oct 1998; CSIRO H 5194-01, female 432 mm TL, 260 mm BDL, CSIRO H 5194-02, female 454 mm TL, 214 mm BDL, southeast of Rowley Shoals, 17°40.57’ S, 119°40.57’ E, 235 m depth, 9 Nov 1998; CSIRO H 5196-01, juvenile male 526 mm TL, 256 mm BDL, north of Dampier Archipelago, 19°12.30’ S, 116°20.70’ E, 220 m depth, 17 Oct 1998; CSIRO H 7242-01, female 144 mm TL, 72 mm BDL, west of Perth, 31°36.53’ S, 114°58.86’ E, 329–370 m depth, 19 Nov 2005; NMV 29673-004 (tissue accession GN10960; Genbank accession KY260648), northwest of Cape Leveque, 14°53.28’ S, 121°36.12’ E, 285 m depth, 27 Jun 2007. Papua New Guinea (2 specimens): NTUM 10332 (tissue accession GN17213), juvenile male 362 mm TL, 129 mm BDL, NTUM 10333 (tissue accession GN17214), female 287 mm TL, 109 mm BDL, west of Kairiru Island, East Sepik Province, Papua New Guinea, 3°20’S, 143°28’E, 378–495 m depth, 19 Dec 2012. Indonesia (16 specimens): CSIRO H 5691-02, female 800 mm TL, 521 mm BDL, Kedonganan fish market, Bali, Indonesia, 6 Jul 2001; CSIRO H 5860-15 (tissue accession GN11228; Genbank accession KY260654), adult male 599 mm TL, 419 mm BDL, CSIRO H 5860-16 (tissue accession GN11229; Genbank accession KY260643), adult male 658 mm TL, 406 mm BDL, Cilacap fishing port, Central Java, Indonesia, 22 Mar 2002; CSIRO H 5889- 32, adult male 705 mm TL, 514 mm BDL, CSIRO H 5889-33, female 850 mm TL, 481 mm BDL, CSIRO H 5889- 34, adult male 794 mm TL, 434 mm BDL, Kedonganan fish market, Bali, Indonesia, Jul 2002; MZB 15111, female 663 mm TL, MZB 15112 (tissue accession GN11230; Genbank accession KY260626), female 630 mm TL, Cilacap fishing port, Central Java, Indonesia, 22 Mar 2002; CSIRO H 6410-04 (tissue accession GN10965; Genbank accession KY260634), adult male 736 mm TL, 346 mm BDL, west of Shark Bay, Western Australia, 25°31.5’ S, 112°11.2’ E, 256–326 m depth, 22 Apr 2006; CSIRO H 6570-01 (tissue accession GN10966; Genbank accession KY260638), female 668 mm TL, 312 mm BDL, northwest of Cape Leveque, Western Australia, 14°59.42’ S, 121°39.15’ E, 187–206 m depth, 26 Jun 2007; CSIRO H 6571-12 (tissue accession GN10967; Genbank accession KY260629), adult male 639 mm TL, 318 mm BDL, CSIRO H 6571-13 (tissue accession GN10968; Genbank accession KY260641), adult male 610 mm TL, 327 mm BDL, northwest of Cape Leveque, Western Australia, 15°00.86’ S, 121°38.13’ E, 205–211 m depth, 26 Jun 2007; CSIRO H 6574-19 (tissue accession GN10969; Genbank accession KY260635), female 824 mm TL, 481 mm BDL, northwest of Cape Leveque, Western Australia, 14°50.81’ S, 121°26.44’ E, 382–401 m depth, 26 Jun 2007; CSIRO H 6579-13 (tissue accession GN10970; Genbank accession KY260649), adult male 645 mm TL, 353 mm BDL, northwest of Cape Leveque, Western Australia, 14°53.49’ S, 121°33.91’ E, 285–302 m depth, 27 Jun 2007; CSIRO H 6581-26 (tissue accession GN10971; Genbank accession KY260625), female 517 mm TL, 339 mm BDL, northwest of Cape Leveque, Western Australia, 14°58.69’ S, 121°40.18’ E, 191–202 m depth, 28 Jun 2007; CSIRO H 7774-02, female 907 mm TL, 483 mm BDL, Tanjung Luar fish market, Lombok, Indonesia, 14 Jul 2005; not retained (Genbank accessions DQ108124, DQ108125, DQ108117 and DQ108118), north of Cape Lambert, Western Australia, 18°57’ S, 117°14’ E, 248 m depth, 30 Aug 1995. Diagnosis. Chimaera ogilbyi is distinguished from its congeners by the following combination of characters: no anal fin; lateral line with tight sinuous undulations; moderately long, narrow snout; relatively thick, nondeciduous skin; uniformly silvery greyish dorsally and laterally, paler ventrally; first dorsal fin mostly uniformly dark; second dorsal fin even height for whole length; preopercular and oral lateral line canals usually not sharing a common branch; dorsal spine long, usually longer than first dorsal fin; claspers slender, trifurcate, divided for more than half their length, not bulbous distally. Description. Trunk very short and slightly compressed; deep groove on interdorsal space which partly receives depressed first dorsal fin; a low membrane connects soft elements of first and second dorsal fins; precaudal tail tapering evenly from pelvic fins to caudal base; anal insertion usually connected to ventral origin of caudal fin by a very low membrane. Skin smooth, leathery, relatively thick; usually intact, not deciduous. Dermal denticles absent. Snout moderately long, preorbital snout 6.8 in lectotype (4.9–7.2 in other specimens) in body length; tip broadly pointed in lateral view, narrowly pointed in dorsoventral view. Postorbital head compressed. Eyes moderately large, horizontally oval, parallel to body axis (not directed anterodorsally); horizontal length 3.6 (3.4– 4.7) in head length, vertical height 0.7 (0.5–0.7) times horizontal length; almost lateral on head (very slightly dorsolateral), without subocular ledges. Gill openings large, broadly separated, with prominent posterior flap which stands outwards from base of head and forms a short tube with rear end of gill cover. Gular flap between gill openings low. Nostrils, lips and mouth slightly expanded below ventral contour of snout. Nostrils with incurrent apertures close together on underside of snout located close to mouth, separated by a narrow septum; a deep blind dermal pocket between incurrent apertures; anterior nasal flaps extending posteriorly from incurrent apertures lateral to tooth plates of upper jaw and delimiting ventromedial surfaces of nasa, Published as part of Finucci, Brittany, White, William T., Kemper, Jenny M. & Naylor, Gavin J. P., 2018, Redescription of Chimaera ogilbyi (Chimaeriformes; Chimaeridae) from the Indo-Australian region, pp. 191-210 in Zootaxa 4375 (2) on pages 198-206, DOI: 10.11646/zootaxa.4375.2.2, http://zenodo.org/record/1158359, {"references":["Waite, E. R. (1898) New South Wales fisheries. Trawling operations off the coast of New South Wales, between the Manning River and Jervis Bay, carried on by H. M. C. S. \" Thetis \". Scientific report on the fishes. Official report, Sydney, 62 pp.","Fowler, H. W. (1907) A collection of fishes from Victoria Australia. Proceedings of the Academy of Natural Sciences of Philadelphia, 59 (3), 419 - 444. Available from: http: // www. jstor. org / stable / 4063196? seq = 1 page _ scan _ tab _ contents (accessed 11 December 2017)","Garman, S. (1911) The Chismopnea (chimaeroids). Memoirs of the Museum of Comparative Zoology, 40 (3), 81 - 101.","Whitley, G. P. (1939) Taxonomic notes on sharks and rays. Australian Zoologist, 9 (3), 227 - 262.","Bigelow, H. R. & Schroeder, D. M. (1953) Fishes of the Western North Atlantic. Part Two. Sawfishes, guitarfishes, skates and rays. Chimaeroids. Memoirs of the Sears Foundation for Marine Research, U. S. A., 588 pp.","White, W. T., Last, P. R., Stevens, J. D., Yearsley, G. K., Fahmi & Dharmadi (2006). Economically Important Sharks and Rays of Indonesia. ACIAR Publishing, Canberra, 329 pp."]}
- Published
- 2018
- Full Text
- View/download PDF
40. Elephantfish
- Author
-
Rizzari, Justin R., primary and Finucci, Brittany, additional
- Published
- 2019
- Full Text
- View/download PDF
41. The extinction risk of New Zealand chondrichthyans
- Author
-
Finucci, Brittany, primary, Duffy, Clinton A.J., additional, Francis, Malcolm P., additional, Gibson, Claudine, additional, and Kyne, Peter M., additional
- Published
- 2019
- Full Text
- View/download PDF
42. Aggregations and associations in deep-sea chondrichthyans
- Author
-
Finucci, Brittany, primary, Dunn, Matt R, additional, and Jones, Emma G, additional
- Published
- 2019
- Full Text
- View/download PDF
43. Ghosts of the deep – Biodiversity, fisheries, and extinction risk of ghost sharks.
- Author
-
Finucci, Brittany, Cheok, Jessica, Ebert, David A., Herman, Katelyn, Kyne, Peter M., and Dulvy, Nicholas K.
- Subjects
- *
ENDANGERED species , *CHONDRICHTHYES , *SHARKS , *FISHERIES , *SPECIES diversity - Abstract
Ghost sharks (subclass Holocephali) remain a largely data‐poor group of cartilaginous fishes. The general paucity of attention may partially be related to identification and unresolved taxonomic issues, occurrence in the deep oceans, and their low value and interest in fisheries (which some notable exceptions). Here, we synthesize and assess the extinction risk of all known extant ghost sharks (52 species) by applying the IUCN Red List of Threatened Species Categories and Criteria. Ghost sharks have a low proportion of threatened (8%) and Near Threatened (8%) species, with most species (69%) assessed as Least Concern. The group still exhibits some data deficiency (15%), and biological information is lacking for most species. Endemism is high, with 37% of species known from only one location or one country. Species richness was highest in the Northeast Atlantic, off the northwest coast of Africa (Morocco to Mauritania), the East China Sea, New Zealand and off the northwest coast of South America (Ecuador and Peru). Ghost sharks are predominately taken as by‐catch, but some targeted fishing and/or retention for the liver oil trade occurs. Species‐specific reporting, monitoring and management are required to assess population trends, and further investigation is needed on trade and use, particularly for higher risk species including the sicklefin chimaeras (genus Neoharriotta) and the American Elephantfish (Callorhynchus callorhynchus, Callorhinidae). [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
44. Dental morphology and microstructure of the Prickly Dogfish Oxynotus bruniensis (Squaliformes: Oxynotidae).
- Author
-
Moyer, Joshua K., Finucci, Brittany, Riccio, Mark L., and Irschick, Duncan J.
- Subjects
- *
MICROSTRUCTURE , *MORPHOLOGY , *CHONDRICHTHYES , *TEETH - Abstract
This study describes and illustrates the jaws, teeth, and tooth microstructure of the Prickly Dogfish Oxynotus bruniensis. Detailed accounts of the dental morphology of O. bruniensis are rare and have not addressed the tissue arrangement or microstructure of the teeth. These features are documented and discussed in the contexts of interspecific comparisons with other elasmobranchs and the dietary specialization of O. bruniensis. The overall tooth morphology of O. bruniensis is similar to those of other closely related members in the order Squaliformes, as is the tissue arrangement, or histotype. Oxynotus bruniensis exhibits a simplified enameloid microstructure, which we compare with previously documented enameloid microstructures of other elasmobranchs. Though subtle interspecific differences in dental characters are documented, neither overall tooth morphology nor histotype and microstructure are unique to O. bruniensis. We conclude that in the case of O. bruniensis, dietary specialization is facilitated by behavioral rather than morphological specialization. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
45. Redescription of Chimaera ogilbyi (Chimaeriformes; Chimaeridae) from the Indo-Australian region
- Author
-
FINUCCI, BRITTANY, primary, WHITE, WILLIAM T., additional, KEMPER, JENNY M., additional, and NAYLOR, GAVIN J.P., additional
- Published
- 2018
- Full Text
- View/download PDF
46. Aggregations and associations in deep-sea chondrichthyans.
- Author
-
Finucci, Brittany, Dunn, Matt R, Jones, Emma G, and Bartolino, Handling editor: Valerio
- Subjects
- *
CHONDRICHTHYES , *FISH behavior , *FISH mortality , *SOCIAL structure , *TRAWLING , *PHYSIOLOGY - Abstract
Group living has been recorded across a diverse range of chondrichthyans, but due to a variety of factors, any inferences of social associations in deep-sea cartilaginous fishes have yet to be described. Using a companion preference analysis, aggregating behaviour and associations in deep-sea chondrichthyans (four holocephalans, ten elasmobranchs) were evaluated across class and group size from long-term archived fisheries independent research trawl survey datasets. Results indicated that not all selected species engaged in aggregative behaviour, but those that did suggested patterns of sex- and size-specific associations, which varied with catch density. Adult females were caught most frequently in low densities, and were highly associated with other adult females. Adult males were consistently associated with each other. The nature of associations has important implications for selective mortality by spatial or temporally stratified, or aggregation-targeting, fisheries. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
47. Diving into the vertical dimension of elasmobranch movement ecology
- Author
-
Samantha Andrzejaczek, Tim C.D. Lucas, Maurice C. Goodman, Nigel E. Hussey, Amelia J. Armstrong, Aaron Carlisle, Daniel M. Coffey, Adrian C. Gleiss, Charlie Huveneers, David M. P. Jacoby, Mark G. Meekan, Johann Mourier, Lauren R. Peel, Kátya Abrantes, André S. Afonso, Matthew J. Ajemian, Brooke N. Anderson, Scot D. Anderson, Gonzalo Araujo, Asia O. Armstrong, Pascal Bach, Adam Barnett, Mike B. Bennett, Natalia A. Bezerra, Ramon Bonfil, Andre M. Boustany, Heather D. Bowlby, Ilka Branco, Camrin D. Braun, Edward J. Brooks, Judith Brown, Patrick J. Burke, Paul Butcher, Michael Castleton, Taylor K. Chapple, Olivier Chateau, Maurice Clarke, Rui Coelho, Enric Cortes, Lydie I. E. Couturier, Paul D. Cowley, Donald A. Croll, Juan M. Cuevas, Tobey H. Curtis, Laurent Dagorn, Jonathan J. Dale, Ryan Daly, Heidi Dewar, Philip D. Doherty, Andrés Domingo, Alistair D. M. Dove, Michael Drew, Christine L. Dudgeon, Clinton A. J. Duffy, Riley G. Elliott, Jim R. Ellis, Mark V. Erdmann, Thomas J. Farrugia, Luciana C. Ferreira, Francesco Ferretti, John D. Filmalter, Brittany Finucci, Chris Fischer, Richard Fitzpatrick, Fabien Forget, Kerstin Forsberg, Malcolm P. Francis, Bryan R. Franks, Austin J. Gallagher, Felipe Galvan-Magana, Mirta L. García, Troy F. Gaston, Bronwyn M. Gillanders, Matthew J. Gollock, Jonathan R. Green, Sofia Green, Christopher A. Griffiths, Neil Hammerschlag, Abdi Hasan, Lucy A. Hawkes, Fabio Hazin, Matthew Heard, Alex Hearn, Kevin J. Hedges, Suzanne M. Henderson, John Holdsworth, Kim N. Holland, Lucy A. Howey, Robert E. Hueter, Nicholas E. Humphries, Melanie Hutchinson, Fabrice R. A. Jaine, Salvador J. Jorgensen, Paul E. Kanive, Jessica Labaja, Fernanda O. Lana, Hugo Lassauce, Rebecca S. Lipscombe, Fiona Llewellyn, Bruno C. L. Macena, Ronald Mambrasar, Jaime D. McAllister, Sophy R. McCully Phillips, Frazer McGregor, Matthew N. McMillan, Lianne M. McNaughton, Sibele A. Mendonça, Carl G. Meyer, Megan Meyers, John A. Mohan, John C. Montgomery, Gonzalo Mucientes, Michael K. Musyl, Nicole Nasby-Lucas, Lisa J. Natanson, John B. O’Sullivan, Paulo Oliveira, Yannis P. Papastamtiou, Toby A. Patterson, Simon J. Pierce, Nuno Queiroz, Craig A. Radford, Andy J. Richardson, Anthony J. Richardson, David Righton, Christoph A. Rohner, Mark A. Royer, Ryan A. Saunders, Matthias Schaber, Robert J. Schallert, Michael C. Scholl, Andrew C. Seitz, Jayson M. Semmens, Edy Setyawan, Brendan D. Shea, Rafid A. Shidqi, George L. Shillinger, Oliver N. Shipley, Mahmood S. Shivji, Abraham B. Sianipar, Joana F. Silva, David W. Sims, Gregory B. Skomal, Lara L. Sousa, Emily J. Southall, Julia L. Y. Spaet, Kilian M. Stehfest, Guy Stevens, Joshua D. Stewart, James A. Sulikowski, Ismail Syakurachman, Simon R. Thorrold, Michele Thums, David Tickler, Mariana T. Tolloti, Kathy A. Townsend, Paulo Travassos, John P. Tyminski, Jeremy J. Vaudo, Drausio Veras, Laurent Wantiez, Sam B. Weber, R.J. David Wells, Kevin C. Weng, Bradley M. Wetherbee, Jane E. Williamson, Matthew J. Witt, Serena Wright, Kelly Zilliacus, Barbara A. Block, David J. Curnick, Andrzejaczek, Samantha [0000-0002-9929-7312], Lucas, Tim CD [0000-0003-4694-8107], Goodman, Maurice C [0000-0002-6874-2313], Hussey, Nigel E [0000-0002-9050-6077], Armstrong, Amelia J [0000-0001-8103-4314], Carlisle, Aaron [0000-0003-0796-6564], Coffey, Daniel M [0000-0001-5983-0146], Huveneers, Charlie [0000-0001-8937-1358], Jacoby, David MP [0000-0003-2729-3811], Meekan, Mark G [0000-0002-3067-9427], Mourier, Johann [0000-0001-9019-1717], Peel, Lauren R [0000-0001-6960-5663], Abrantes, Kátya [0000-0001-7430-8428], Afonso, André S [0000-0001-9129-278X], Ajemian, Matthew J [0000-0002-2725-4030], Anderson, Brooke N [0000-0003-4299-3496], Araujo, Gonzalo [0000-0002-4708-3638], Armstrong, Asia O [0000-0002-9307-0598], Barnett, Adam [0000-0001-7430-8428], Bennett, Mike B [0000-0001-8051-0040], Bezerra, Natalia A [0000-0002-4203-8408], Bonfil, Ramon [0000-0002-5753-464X], Boustany, Andre M [0000-0001-5501-7190], Bowlby, Heather D [0000-0002-2532-3725], Branco, Ilka [0000-0001-8136-2596], Braun, Camrin D [0000-0002-9317-9489], Brooks, Edward J [0000-0001-5206-7133], Burke, Patrick J [0000-0002-7217-0215], Butcher, Paul [0000-0001-7338-6037], Castleton, Michael [0000-0001-9639-6967], Chapple, Taylor K [0000-0002-0357-0223], Chateau, Olivier [0000-0003-1153-6284], Coelho, Rui [0000-0003-3813-5157], Cortes, Enric [0000-0001-6001-2482], Couturier, Lydie IE [0000-0002-3885-3397], Cuevas, Juan M [0000-0003-0086-5963], Curtis, Tobey H [0000-0003-0164-7335], Dale, Jonathan J [0000-0001-8565-3841], Daly, Ryan [0000-0002-4409-6951], Dewar, Heidi [0000-0002-8202-1387], Doherty, Philip D [0000-0001-7561-3731], Domingo, Andrés [0000-0002-1793-7663], Dove, Alistair DM [0000-0003-3239-4772], Drew, Michael [0000-0002-5109-7792], Dudgeon, Christine L [0000-0001-5059-7886], Duffy, Clinton AJ [0000-0002-3352-1609], Elliott, Riley G [0000-0003-0234-5953], Erdmann, Mark V [0000-0002-3644-8347], Farrugia, Thomas J [0000-0001-9052-8826], Ferreira, Luciana C [0000-0001-6755-2799], Ferretti, Francesco [0000-0001-9510-3552], Finucci, Brittany [0000-0003-1315-2946], Forget, Fabien [0000-0002-4845-4277], Forsberg, Kerstin [0000-0002-1233-9381], Franks, Bryan R [0000-0003-4016-9225], Gallagher, Austin J [0000-0003-1515-3440], García, Mirta L [0000-0003-0143-7397], Gaston, Troy F [0000-0003-0049-0831], Gillanders, Bronwyn M [0000-0002-7680-2240], Green, Jonathan R [0000-0001-7671-6716], Green, Sofia [0000-0002-2878-5984], Griffiths, Christopher A [0000-0001-7203-0426], Hammerschlag, Neil [0000-0001-9002-9082], Hawkes, Lucy A [0000-0002-6696-1862], Hearn, Alex [0000-0002-4986-098X], Hedges, Kevin J [0000-0002-2219-2360], Holland, Kim N [0000-0003-4663-7026], Howey, Lucy A [0000-0001-7381-4871], Humphries, Nicholas E [0000-0003-3741-1594], Hutchinson, Melanie [0000-0001-7042-0658], Jaine, Fabrice RA [0000-0002-9304-5034], Jorgensen, Salvador J [0000-0002-4331-1648], Kanive, Paul E [0000-0003-2430-6920], Labaja, Jessica [0000-0001-6916-7050], Lana, Fernanda O [0000-0001-7235-069X], Lassauce, Hugo [0000-0001-9636-6522], Lipscombe, Rebecca S [0000-0001-9602-643X], Llewellyn, Fiona [0000-0003-4309-8311], Macena, Bruno CL [0000-0001-5010-8560], McCully Phillips, Sophy R [0000-0003-3110-5916], McGregor, Frazer [0000-0002-7441-4404], McMillan, Matthew N [0000-0001-6348-184X], Mendonça, Sibele A [0000-0002-1981-5950], Mohan, John A [0000-0002-2758-163X], Mucientes, Gonzalo [0000-0001-6650-3020], Musyl, Michael K [0000-0003-4719-9259], Nasby-Lucas, Nicole [0000-0001-8355-9392], Natanson, Lisa J [0000-0002-2903-6037], O'Sullivan, John B [0000-0002-1689-2141], Oliveira, Paulo [0000-0001-7697-2111], Papastamtiou, Yannis P [0000-0002-6091-6841], Patterson, Toby A [0000-0002-7150-9205], Pierce, Simon J [0000-0002-9375-5175], Queiroz, Nuno [0000-0002-3860-7356], Radford, Craig A [0000-0001-7949-9497], Richardson, Andy J [0000-0003-2598-5080], Richardson, Anthony J [0000-0002-9289-7366], Righton, David [0000-0001-8643-3672], Rohner, Christoph A [0000-0001-8760-8972], Royer, Mark A [0000-0002-6938-7536], Schaber, Matthias [0000-0003-1032-4626], Schallert, Robert J [0000-0002-3584-2668], Scholl, Michael C [0000-0002-6014-1759], Semmens, Jayson M [0000-0003-1742-6692], Setyawan, Edy [0000-0001-6629-5997], Shea, Brendan D [0000-0001-7771-0586], Shillinger, George L [0000-0001-5168-4551], Shipley, Oliver N [0000-0001-5163-3471], Sianipar, Abraham B [0000-0003-4049-3893], Silva, Joana F [0000-0002-2897-1410], Sims, David W [0000-0002-0916-7363], Sousa, Lara L [0000-0002-4392-3572], Southall, Emily J [0000-0001-7246-278X], Spaet, Julia LY [0000-0001-8703-1472], Stevens, Guy [0000-0002-2056-9830], Sulikowski, James A [0000-0002-3646-5200], Thums, Michele [0000-0002-8669-8440], Tickler, David [0000-0001-7722-0771], Tolloti, Mariana T [0000-0001-6895-2479], Townsend, Kathy A [0000-0002-2581-2158], Travassos, Paulo [0000-0001-8667-5292], Tyminski, John P [0000-0001-8251-7385], Vaudo, Jeremy J [0000-0002-6826-3822], Veras, Drausio [0000-0001-5627-6848], Wantiez, Laurent [0000-0001-5024-2057], Weber, Sam B [0000-0003-1447-4082], Wells, RJ David [0000-0002-1306-0614], Weng, Kevin C [0000-0002-7069-7152], Wetherbee, Bradley M [0000-0002-3753-8950], Williamson, Jane E [0000-0003-3627-4508], Witt, Matthew J [0000-0002-9498-5378], Zilliacus, Kelly [0000-0001-9166-5611], Block, Barbara A [0000-0001-5181-3616], Curnick, David J [0000-0002-3093-1282], Apollo - University of Cambridge Repository, Zoological Society of London - ZSL (UNITED KINGDOM), Centre de recherches insulaires et observatoire de l'environnement (CRIOBE), Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), MARine Biodiversity Exploitation and Conservation (UMR MARBEC), and Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Multidisciplinary ,[SDV]Life Sciences [q-bio] ,Violacea Bonaparte ,3103 Ecology ,Pelagic stingray ,Scalloped hammerhead shark ,41 Environmental Sciences ,Western North Pacific ,Reproductive-biology ,Habitat Use ,Carcharhinus-falciformis ,Galeocerdo-cuvier ,Sexual segregation ,Sphyna-lewini ,31 Biological Sciences - Abstract
20 pages, 3 tables, 5 figures.-- Samantha Andrzejaczek ... et al.-- Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC), Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements, Data analysis was funded by the Bertarelli Foundation through the Marine Science program through grants to D.J.C., B.A.B., and S.A. D.J.C. is also funded through Research England, UK. S.A. and B.A.B. thank the Moore Foundation and the Packard Foundation. F.G.-M. thanks the Instituto Politecnico Nacional for fellowships (COFAA, EDI). S.B.W. thanks funding from the Darwin Initiative (DPLUS046). A.D.M.D. acknowledges funding from the Research and Conservation Budget at Georgia Aquarium, including philanthropic gifts from several anonymous donors. K.F. acknowledges funding from the Rolex Awards for Enterprise and the Whitley Fund for Nature
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.