1. Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice.
- Author
-
McCarthy SF, Finch MS, MacPherson REK, and Hazell TJ
- Subjects
- Animals, Male, Mice, Hypothalamus metabolism, Hypothalamus drug effects, Ghrelin metabolism, Physical Conditioning, Animal physiology, Lactic Acid metabolism, Lactic Acid blood, Mice, Inbred C57BL, Signal Transduction drug effects, Signal Transduction physiology, Appetite drug effects, Appetite physiology
- Abstract
Lactate has been implicated in exercise-induced appetite suppression though little work has explored the mechanisms underpinning its role. Recent work suggests lactate accumulation via exercise and intracerebroventricular injection can alter central appetite regulating pathways, though a supraphysiological dose of lactate was administered centrally and there was no assessment of peripheral appetite markers. Therefore, we examined how physiologically relevant lactate accumulation via exercise or intraperitoneal injection altered central and peripheral appetite signaling pathways and whether the lactate dehydrogenase inhibitor oxamate could blunt any exercise effect. Forty 10-week-old C57BL/6 J male mice (n = 10/group) were assigned to either: 1) sedentary (SED + SAL; saline); 2) exercise (EX+SAL; saline); 3) exercise with oxamate (EX+OX; 750 mg‧kg
-1 body mass); or 4) lactate (SED + LAC; 1.0 g‧kg-1 body mass). Blood, stomach, and hypothalamus samples were collected ∼2 h post-exercise/injection. Though oxamate blunted exercise-induced lactate accumulation compared to the EX+SAL condition (P = 0.044, d = 0.73), there were no differences in circulating acylated ghrelin or stomach ghrelin O-acyltransferase content between groups (P > 0.213, ηp 2 <0.125). There were also no differences in hypothalamic content for neuropeptide Y, proopiomelanocortin, agouti-related peptide, and alpha melanocyte-stimulating hormone (P > 0.150, ηp 2 <0.170). Exercise did increase phosphorylated-total signal transducer and activator of transcription 3 (pSTAT3) compared to EX+OX (p = 0.065, d = 1.23) but there were no differences in other markers of lactate signaling: phosphorylated-total adenosine monophosphate activated protein kinase, and protein kinase b (P > 0.121, ηp 2 <0.160). Our results suggest that lactate accumulation due to exercise or peripheral injection does not alter central or peripheral appetite signaling when measured 2 h post-exercise/injection, though pSTAT3 was blunted with oxamate., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF