Standard bacteriological examinations, which involve culturing microorganisms at 37 °C, are commonly used in clinical practice for diagnosing infectious diseases. However, the growth temperature of microorganisms on the ocular surface (OS) during infectious keratitis (IK) may not coincide with the laboratory standard, which is due to the characteristic features of heat exchange in the eye., Purpose: This exploratory study examines the distribution and properties of OS microorganisms isolated under different temperature cultivation conditions in patients with IK and healthy volunteers without ophthalmic pathology., Material and Methods: Fifteen participants were divided into two groups. Group 1 ( n =10) consisted of patients with signs of unilateral infectious keratitis, while group 2 ( n =5) served as the control group. A novel microbiological method was employed to isolate pure cultures of microorganisms. This method involved cultivating microorganisms at two temperature regimes (37 °C and 24 °C) and subsequently identifying them using biochemical, immunological, and physicochemical techniques, including mass spectrometry. Scanning electron microscopy (SEM) with lanthanide staining used as the reference method. The temperature status of the ocular surface was assessed using non-contact infrared thermography., Results: The study demonstrated the presence of psychrotolerant microorganisms on the ocular surface, which exhibited growth at a relatively low temperature of 24 °C. These psychrotolerant microorganisms were found to be isolated from the ocular surface displaying signs of temperature dysregulation. Among such microorganisms are Acinetobacter lwoffii, Achromobacter xylosoxidans, Bacillus licheniformis, Enterococcus faecalis, Klebsiella oxytoca, Klebsiella pneumoniae, Micrococcus luteus, Pseudomonas luteola, Streptococcus spp., Conclusion: When identifying the causative agent of infectious keratitis, it is crucial to consider the divergence of growth temperature of ocular surface microorganisms. The presence of psychrotolerant microorganisms on the ocular surface, which can effectively grow at room temperature, should be taken into account, especially in cases of temperature dysregulation.