1. Ageing influences the toxicity of two innovative nanofertilizers to the soil invertebrates Enchytraeus crypticus and Folsomia candida.
- Author
-
Malheiro C, Prodana M, Cardoso DN, Morgado RG, and Loureiro S
- Subjects
- Animals, Nanostructures toxicity, Reproduction drug effects, Hydroxides toxicity, Hydroxides chemistry, Ecosystem, Invertebrates drug effects, Fertilizers toxicity, Soil Pollutants toxicity, Soil chemistry, Oligochaeta drug effects
- Abstract
The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO
3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF