1. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
- Author
-
DeepSeek-AI, Liu, Aixin, Feng, Bei, Wang, Bin, Wang, Bingxuan, Liu, Bo, Zhao, Chenggang, Dengr, Chengqi, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Xu, Hanwei, Yang, Hao, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Chen, Jin, Yuan, Jingyang, Qiu, Junjie, Song, Junxiao, Dong, Kai, Gao, Kaige, Guan, Kang, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Pan, Ruizhe, Xu, Runxin, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Zheng, Size, Wang, T., Pei, Tian, Yuan, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Liu, Xin, Xie, Xin, Yu, Xingkai, Song, Xinnan, Zhou, Xinyi, Yang, Xinyu, Lu, Xuan, Su, Xuecheng, Wu, Y., Li, Y. K., Wei, Y. X., Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Zheng, Yi, Zhang, Yichao, Xiong, Yiliang, Zhao, Yilong, He, Ying, Tang, Ying, Piao, Yishi, Dong, Yixin, Tan, Yixuan, Liu, Yiyuan, Wang, Yongji, Guo, Yongqiang, Zhu, Yuchen, Wang, Yuduan, Zou, Yuheng, Zha, Yukun, Ma, Yunxian, Yan, Yuting, You, Yuxiang, Liu, Yuxuan, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Hao, Zhewen, Shao, Zhihong, Wen, Zhiniu, Xu, Zhipeng, Zhang, Zhongyu, Li, Zhuoshu, Wang, Zihan, Gu, Zihui, Li, Zilin, and Xie, Ziwei
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
- Published
- 2024