1. Unravelling drug-drug interactions in pigs: Induction of hepatic cytochrome P450 1A (CYP1A) metabolism after the in-feed medication with the anthelmintic fenbendazole.
- Author
-
Ichinose P, Miró MV, Larsen K, Lifschitz A, and Virkel G
- Subjects
- Humans, Animals, Swine, Fenbendazole pharmacology, Fenbendazole metabolism, Cytochrome P-450 Enzyme System metabolism, Microsomes, Liver metabolism, Drug Interactions, Cytochrome P-450 CYP1A1 metabolism, Cytochrome P-450 CYP1A1 pharmacology, Anthelmintics pharmacology
- Abstract
The anthelmintic fenbendazole (FBZ) undergoes hepatic S‑oxygenation by monooxygenases belonging to the cytochrome P450 (CYP) and flavin-monooxygenase (FMO) families. The in-feed medication with FBZ induced CYP1A-dependent metabolism in pig liver. This fact may alter the metabolism of the anthelmintic itself, and of CYP1A substrates like aflatoxin B1 (AFB1). This work evaluated the effect of the in-feed administration of FBZ on CYP1A-dependent metabolism, on its own pattern of hepatic S‑oxygenation, and on the metabolism of AFB1. Landrace piglets remained untreated (n = 5) or received a pre-mix of FBZ (n = 6) in feed for 9 days. Pigs were slaughtered for preparation of liver microsomes used for: CYP content determination; monitoring the CYP1A-dependent enzyme activities, 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD); measurement of FBZ (50 μM) S‑oxygenation, and AFB1 (16 nM) disappearance from the incubation medium. In microsomes of FBZ-treated animals, EROD and MROD increased 19-fold (p = 0.002) and 14-fold (p = 0.003), respectively. An enhanced (3-fold, p = 0.004) participation of the CYP pathway in FBZ S‑oxygenation was observed in the liver of piglets treated with the anthelmintic (210 ± 69 pmol/min.nmol CYP) compared to untreated animals (68 ± 34 pmol/min.nmol CYP). AFB1 metabolism was 93% higher (p = 0.009) in the liver of FBZ-treated compared to untreated pigs. Positive and significant (p < 0.05) correlations were observed between CYP1A-dependent enzyme activities and FBZ or AFB1 metabolism. The sustained administration of FBZ caused an auto-induction of the CYP1A-dependent S‑oxygenation of this anthelmintic. The CYP1A induction triggered by the anthelmintic could amplify the production of AFB1 metabolites in pig liver, including the hepatotoxic AFB1-derived epoxide.+., Competing Interests: Declaration of Competing Interest All authors have none conflict(s) of interest to declare., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF