125 results on '"Felix Spanier"'
Search Results
2. First operation of the KATRIN experiment with tritium
- Author
-
Max Aker, Konrad Altenmüller, Marius Arenz, Woo-Jeong Baek, John Barrett, Armen Beglarian, Jan Behrens, Anatoly Berlev, Uwe Besserer, Klaus Blaum, Fabian Block, Steffen Bobien, Beate Bornschein, Lutz Bornschein, Heiko Bouquet, Tim Brunst, Thomas S. Caldwell, Suren Chilingaryan, Wonqook Choi, Karol Debowski, Marco Deffert, Martin Descher, Deseada Díaz Barrero, Peter J. Doe, Otokar Dragoun, Guido Drexlin, Stephan Dyba, Frank Edzards, Klaus Eitel, Enrico Ellinger, Ralph Engel, Sanshiro Enomoto, Dieter Eversheim, Mariia Fedkevych, Arne Felden, Joseph A. Formaggio, Florian M. Fränkle, Gregg B. Franklin, Heinz Frankrone, Fabian Friedel, Dominik Fuchs, Alexander Fulst, Kevin Gauda, Woosik Gil, Ferenc Glück, Steffen Grohmann, Robin Grössle, Rainer Gumbsheimer, Moritz Hackenjos, Volker Hannen, Julius Hartmann, Norman Haußmann, Martin Ha-Minh, Florian Heizmann, Johannes Heizmann, Klaus Helbing, Stephanie Hickford, David Hillesheimer, Dominic Hinz, Thomas Höhn, Bernhard Holzapfel, Siegfried Holzmann, Thibaut Houdy, Mark A. Howe, Anton Huber, Alexander Jansen, Christian Karl, Jonas Kellerer, Norbert Kernert, Luke Kippenbrock, Manuel Klein, Christoph Köhler, Leonard Köllenberger, Andreas Kopmann, Marc Korzeczek, Alojz Kovalík, Bennet Krasch, Holger Krause, Benedikt Kuffner, Norbert Kunka, Thierry Lasserre, Luisa La Cascio, Ondřej Lebeda, Manuel Lebert, Björn Lehnert, Johann Letnev, Fabian Leven, Thanh-Long Le, Steffen Lichter, Alexey Lokhov, Moritz Machatschek, Emma Malcherek, Martin Mark, Alexander Marsteller, Eric L. Martin, Fotios Megas, Christin Melzer, Alexander Menshikov, Susanne Mertens, Matthias Meier, Sebastian Mirz, Benjamin Monreal, Pablo I. Morales Guzmán, Klaus Müller, Uwe Naumann, Holger Neumann, Simon Niemes, Mathias Noe, Andreas Off, Hans-Werner Ortjohann, Alexander Osipowicz, Ernst Otten, Diana S. Parno, Anna Pollithy, Alan W. P. Poon, J. Manuel Lopez Poyato, Florian Priester, Philipp C.-O. Ranitzsch, Oliver Rest, Rolf Rinderspacher, R. G. Hamish Robertson, Caroline Rodenbeck, Petra Rohr, Marco Röllig, Carsten Röttele, Miloš Ryšavý, Rudolf Sack, Alejandro Saenz, Peter Schäfer, Lutz Schimpf, Klaus Schlösser, Magnus Schlösser, Lisa Schlüter, Michael Schrank, Bruno Schulz, Hendrik Seitz-Moskaliuk, Waldemar Seller, Valérian Sibille, Daniel Siegmann, Martin Slezák, Felix Spanier, Markus Steidl, Madlen Steven, Michael Sturm, Manfred Suesser, Menglei Sun, Denis Tcherniakhovski, Helmut H. Telle, Larisa A. Thorne, Thomas Thümmler, Nikita Titov, Igor Tkachev, Nikolaus Trost, Korbinian Urban, Kathrin Valerius, Drahoslav Vénos, Reiner Vianden, Ana P. Vizcaya Hernández, Marc Weber, Christian Weinheimer, Christiane Weiss, Stefan Welte, Jürgen Wendel, John F. Wilkerson, Joachim Wolf, Sascha Wüstling, Weiran Xu, Yung-Ruey Yen, Sergey Zadorozhny, and Genrich Zeller
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$ β -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$ 0.2eV ($$90\%$$ 90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2020
- Full Text
- View/download PDF
3. Particle-in-cell Simulations of Mildly Relativistic Outflows in Kilonova Emissions
- Author
-
Mohira Rassel, Patrick Kilian, Vito Aberham, Felix Spanier, Nicole Lloyd-Ronning, and Chris L. Fryer
- Subjects
Plasma astrophysics ,Shocks ,Stellar winds ,Astrophysics ,QB460-466 - Abstract
The electromagnetic emission from neutron star mergers is comprised of multiple components. Synchrotron emission from the disk-powered jet and thermal emission from the merger ejecta (powered by a variety of sources) are among the most studied sources. The low masses and high velocities of the merger ejecta quickly develop conditions where emission from collisionless shocks becomes critical and synchrotron emission from the merger ejecta constitutes a third component to the observed signal. The aim of this project is to examine shock development, magnetic field generation, and particle acceleration in the case of mildly relativistic shocks, which are expected when the tidal ejecta of neutron star mergers drive a shock into the external medium. Using LANL’s vector particle-in-cell (VPIC) code, we have run simulations of such mildly relativistic, collisionless, weakly magnetized plasmas and computed the resultant magnetic fields and particle energy spectra. We show the effects of varying plasma conditions, as well as explore the validity of using different proton-to-electron mass ratios in VPIC. Our results have implications for observing late-time electromagnetic counterparts to gravitational wave detections of neutron star mergers.
- Published
- 2023
- Full Text
- View/download PDF
4. Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy
- Author
-
Max Aker, Konrad Altenmüller, Armen Beglarian, Jan Behrens, Anatoly Berlev, Uwe Besserer, Benedikt Bieringer, Klaus Blaum, Fabian Block, Beate Bornschein, Lutz Bornschein, Matthias Böttcher, Tim Brunst, Thomas C. Caldwell, Suren Chilingaryan, Wonqook Choi, Deseada D. Díaz Barrero, Karol Debowski, Marco Deffert, Martin Descher, Peter J. Doe, Otokar Dragoun, Guido Drexlin, Stephan Dyba, Frank Edzards, Klaus Eitel, Enrico Ellinger, Ralph Engel, Sanshiro Enomoto, Mariia Fedkevych, Arne Felden, Joseph F. Formaggio, Florian Fränkle, Gregg B. Franklin, Fabian Friedel, Alexander Fulst, Kevin Gauda, Woosik Gil, Ferenc Glück, Robin Größle, Rainer Gumbsheimer, Volker Hannen, Norman Haußmann, Klaus Helbing, Stephanie Hickford, Roman Hiller, David Hillesheimer, Dominic Hinz, Thomas Höhn, Thibaut Houdy, Anton Huber, Alexander Jansen, Christian Karl, Jonas Kellerer, Luke Kippenbrock, Manuel Klein, Christoph Köhler, Leonard Köllenberger, Andreas Kopmann, Marc Korzeczek, Alojz Kovalík, Bennet Krasch, Holger Krause, Luisa La Cascio, Thierry Lasserre, Thanh-Long Le, Ondřej Lebeda, Bjoern Lehnert, Alexey Lokhov, Moritz Machatschek, Emma Malcherek, Alexander Marsteller, Eric L. Martin, Matthias Meier, Christin Melzer, Susanne Mertens, Klaus Müller, Simon Niemes, Patrick Oelpmann, Alexander Osipowicz, Diana S. Parno, Alan W.P. Poon, Jose M. Lopez Poyato, Florian Priester, Oliver Rest, Marco Röllig, Carsten Röttele, R.G. Hamish Robertson, Caroline Rodenbeck, Milos Ryšavỳ, Rudolf Sack, Alejandro Saenz, Peter Schäfer, Anna Schaller (née Pollithy), Lutz Schimpf, Klaus Schlösser, Magnus Schlösser, Lisa Schlüter, Michael Schrank, Bruno Schulz, Michal Sefčík, Hendrik Seitz-Moskaliuk, Valérian Sibille, Daniel Siegmann, Martin Slezák, Felix Spanier, Markus Steidl, Michael Sturm, Menglei Sun, Helmut H. Telle, Larisa A. Thorne, Thomas Thümmler, Nikita Titov, Igor Tkachev, Drahoš Vénos, Kathrin Valerius, Ana P. Vizcaya Hernández, Marc Weber, Christian Weinheimer, Christiane Weiss, Stefan Welte, Jürgen Wendel, John F. Wilkerson, Joachim Wolf, Sascha Wüstling, Weiran Xu, Yung-Ruey Yen, Sergey Zadoroghny, and Genrich Zeller
- Subjects
Raman spectroscopy ,tritium ,gas composition monitoring ,KATRIN ,Chemical technology ,TP1-1185 - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment’s windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium—one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10−3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of −3 and trueness of −3, being within and surpassing the actual requirements for KATRIN, respectively.
- Published
- 2020
- Full Text
- View/download PDF
5. Determination of pitch-angle diffusion coefficient from bi-Maxwellian velocity distribution functions
- Author
-
Maxime Dubart, Markus Battarbee, Urs Ganse, Adnane Osmane, Felix Spanier, Markku Alho, Giulia Cozzani, Maarja Bussov, Konstantinos Horaites, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Lucile Turc, Ivan Zaitsev, Hongyang Zhou, and Minna Palmroth
- Abstract
Pitch-angle diffusion is one of the main processes of isotropisation of ions in the Earth's magnetosheath. It results from the proton cyclotron and mirror instabilities, arising from temperature anisotropy in the magnetosheath, and is governed by the pitch-angle diffusion coefficient Dμμ. We have previously developed a sub-grid model to describe pitch-angle diffusion in global-hybrid Vlasov simulations when coarse spatial grid resolution leads to a lack of diffusion. In this study, we present an analytical solution for a pitch-angle diffusion coefficient derived from bi-Maxwellian velocity distribution functions in order to apply this solution to the sub-grid model. This will allow us to model accurately the isotropisation of the distribution functions and to reduce the temperature anisotropy of the plasma while saving computational resources.
- Published
- 2023
- Full Text
- View/download PDF
6. Fully Kinetic Simulations: Semi-Lagrangian Particle-in-Cell Codes
- Author
-
Patrick Kilian and Felix Spanier
- Published
- 2022
- Full Text
- View/download PDF
7. Subgrid modelling of pitch-angle diffusion for ion-scale waves in a global hybrid-Vlasov simulation
- Author
-
Maxime Dubart, Markus Battarbee, Urs Ganse, Felix Spanier, Jonas Suni, Andreas Johlander, Markku Alho, Maarja Bussov, Giulia Cozzani, Harriet George, Maxime Grandin, Talgat Manglayev, Kostis Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Lucile Turc, Ivan Zaitsev, Hongyang Zhou, and Minna Palmroth
- Abstract
Numerical simulations play a central role in modern sciences. The trade-off between the accuracy of the physical processes described and the cost of computational resources is often the main limiting factor in these simulations. In global hybrid-Vlasov simulations, such as Vlasiator, lowering the spatial resolution in order to save on resources can lead to key processes being unresolved. A previous study has shown how insufficient resolution of the proton cyclotron instabilities leads to a misrepresentation of ion dynamics. This leads to larger temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a numerical model to introduce pitch-angle diffusion in velocity space, at a spatial resolution where this process was previously not correctly resolved. We test two different methods to enable pitch-angle diffusion in the 3D cartesian velocity space of Vlasiator. We show that we are successfully able to isotropise loss-cone shaped velocity distribution functions, and that this method could be applied to large simulations in order to save computational resources and still correctly model the Earth's magnetosheath.
- Published
- 2022
- Full Text
- View/download PDF
8. Determining pitch-angle diffusion coefficients for electrons in whistler turbulence
- Author
-
Reinhard Schlickeiser, Felix Spanier, and Cedric Schreiner
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Plasma Physics (physics.plasm-ph) ,cosmic-ray transport ,turbulence ,plasma waves ,particle-in-cell simulations ,Physics::Space Physics ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,Physics - Plasma Physics - Abstract
Transport of energetic electrons in the heliosphere is governed by resonant interaction with plasma waves, for for electrons with sub-GeV kinetic energies specifically with dispersive modes in the whistler regime. We have performed Particle in Cell simulations of kinetic turbulence with test-particle electrons. The pitch-angle diffusions coefficients of these test-particles have been analyzed and compared to an analytical model for left- and right-handed polarized wavemodes., 24 pages, 11 figures; accepted by Physics as part of the special issue "A Themed Issue in Honor of Professor Reinhard Schlickeiser on the Occasion of His 70th Birthday"
- Published
- 2021
9. The design, construction, and commissioning of the KATRIN experiment
- Author
-
Stefan Welte, N. Titov, N. Trost, Suren Chilingaryan, S. Zadoroghny, J. Mostafa, B. Bieringer, L.I. Minter, B. L. Wall, M. Šefčík, M. Zacher, S. Bauer, C. Rodenbeck, A. P. Vizcaya Hernández, M. Fedkevych, M. Held, H. Bouquet, B. Krasch, P. C.-O. Ranitzsch, F. Block, T. Höhn, K. Vogt, A. Beglarian, C. Weinheimer, Thierry Lasserre, F. Eichelhardt, H. Bolz, Igor Tkachev, M. A. Howe, P. Plischke, C. Bettin, D.A. Peterson, P. Renschler, F. M. Fränkle, J. Grimm, Guido Drexlin, F. Edzards, A. Verbeek, B. Ostrick, K. Mehret, C. Köhler, B.A. VanDevender, M. Erhard, A. Felden, U. Naumann, R. Grössle, J. Kleinfeller, M. Hackenjos, M. Böttcher, Holger Neumann, Volker Hannen, L. La Cascio, B. Bender, K. Helbing, M. Meloni, H. Weingardt, P. Oelpmann, A. Osipowicz, R. Rinderspacher, Klaus Blaum, N.M. Boyd, A. Off, Joseph A. Formaggio, Michael Sturm, M. Deffert, A. Kumb, H. Frenzel, S. Horn, S. Dyba, V. Sibille, Andreas Kopmann, P. J. Doe, H. Bechtler, T. Houdy, D. Hinz, F. Heizmann, Lutz Bornschein, M. Prall, M. Klein, W. Gil, K. Gauda, G.A. Cox, A. Kovalík, K. Schlösser, A. I. Berlev, K.J. Wierman, M. Kaiser, S. Schneidewind, U. Besserer, R. Berendes, S. Fischer, A. Schaller, A. Jansen, S. Bobien, K. Altenmüller, Y.-R. Yen, O. Rest, E. L. Martin, K. Urban, A. Menshikov, R. G. H. Robertson, Reiner Vianden, A. Kosmider, M. Ryšavý, S. Groh, Ferenc Glück, Alan Poon, H.-W. Ortjohann, D. Hillesheimer, Alexey Lokhov, J. Reich, W. Seller, T. Brunst, G. P. Zeller, M. Slezák, J. A. Dunmore, S. Niemes, J. Bast, P. Rohr, S. Lichter, M. Korzeczek, M. Aker, M. Babutzka, Florian Priester, Marc Weber, K. Debowski, T. D. Van Wechel, Susanne Mertens, S. Görhardt, M. Descher, B. Hillen, D. Vénos, A. Marsteller, F. Friedel, A. Huber, S. Hickford, M. Machatschek, F. Harms, B. Lehnert, Felix Spanier, M. Mark, P. Schäfer, J. Hartmann, R. Sack, R. Gehring, H. Seitz-Moskaliuk, J.F. Amsbaugh, L. A. Thorne, J. Letnev, Marco Röllig, C. Röttele, E. Ellinger, B. Leiber, Alejandro Saenz, T. James, Beate Bornschein, Sascha Wüstling, M. Zboril, M. Kleesiek, W. Xu, T. S. Caldwell, Werner Rodejohann, Matthias Arenz, Ondřej Lebeda, L. Schlüter, M. Kraus, Joachim Wolf, N. Haußmann, Daniel Siegmann, J. Kellerer, A. Fulst, H. Krause, M. Sun, M. Steidl, O. Kazachenko, Benjamin Monreal, D. Díaz Barrero, E. Malcherek, J. Bohn, M. Leber, O. Dragoun, Denis Tcherniakhovski, T.J. Corona, J. Behrens, G. C. Harper, N. Kunka, M. Sagawe, Magnus Schlösser, Diana Parno, J. Wendel, Steffen Grohmann, S. Holzmann, L. Köllenberger, T.H. Burritt, D. Eversheim, Marcus Beck, Thomas Thümmler, L. Kuckert, R. Hiller, N. Wandkowsky, Z. Chaoui, K. Eitel, D. Hilk, M. Hötzel, Kathrin Valerius, C. Weiss, S. Rupp, M. Kleifges, C. Karl, M. Schrank, L. Schimpf, R. J. Lewis, J. F. Wilkerson, H. Schön, L. Kippenbrock, K. Schönung, R. Gumbsheimer, G. B. Franklin, C. Melzer, Helmut H. Telle, J. Schwarz, W. Q. Choi, J. M. Lopez Poyato, D. Häßler, B. Schulz, Ralph Engel, K. Müller, Sanshiro Enomoto, T. L. Le, K. Bokeloh, A. W. Myers, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, KATRIN, The KATRIN collaboration, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Speichertechnik - Abteilung Blaum ,Physics - Instrumentation and Detectors ,Project commissioning ,Computer science ,FOS: Physical sciences ,beam transport ,KATRIN ,01 natural sciences ,Technical design ,High Energy Physics - Experiment ,Nuclear physics ,mass: scale ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Mass scale ,ddc:530 ,neutrino: mass ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,Mathematical Physics ,detector: design ,activity report ,010308 nuclear & particles physics ,Physics ,Instrumentation and Detectors (physics.ins-det) ,stability ,sensitivity ,Mass measurement ,Beamline ,Neutrino - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [https://publikationen.bibliothek.kit.edu/270060419] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [arXiv:1909.06048]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns., Comment: Added missing acknowledgement, corrected performance statement in chapter 4.2.5, updated author list and references
- Published
- 2021
- Full Text
- View/download PDF
10. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN
- Author
-
K. Gauda, U. Besserer, R. Hiller, K. Eitel, Alejandro Saenz, Beate Bornschein, Sascha Wüstling, Sanshiro Enomoto, T. L. Le, C. Karl, W. Xu, S. Dyba, W. Q. Choi, T. Brunst, M. Schrank, L. La Cascio, L. Köllenberger, M. Slezák, Volker Hannen, S. Hickford, J. M. Lopez Poyato, Magnus Schlösser, L. Schimpf, T. Houdy, D. Hinz, N. Titov, A. Kovalík, A. Schaller, C. Weinheimer, Diana Parno, B. Schulz, L. Schlüter, T. Höhn, Y.-R. Yen, O. Rest, E. Ellinger, F. M. Fränkle, Ralph Engel, J. Wendel, J. F. Wilkerson, R. G. H. Robertson, K. Müller, P. Oelpmann, M. Steidl, B. Krasch, Alexey Lokhov, Thierry Lasserre, A. I. Berlev, L. Kippenbrock, R. Gumbsheimer, Thomas Thümmler, G. B. Franklin, D. Díaz Barrero, Guido Drexlin, P. J. Doe, M. Korzeczek, Susanne Mertens, Igor Tkachev, M. Aker, R. Grössle, K. Helbing, Kathrin Valerius, A. P. Vizcaya Hernández, A. Jansen, M. Ryšavý, Ferenc Glück, D. Hillesheimer, C. Weiss, C. Melzer, Lutz Bornschein, N. Haußmann, Daniel Siegmann, G. P. Zeller, M. Šefčík, R. Sack, E. Malcherek, E. L. Martin, Felix Spanier, K. Debowski, M. Mark, P. Schäfer, M. Descher, D. Vénos, B. Lehnert, N. Le Guennic, S. Zadoroghny, L. A. Thorne, K. Altenmüller, S. Niemes, Joachim Wolf, A. Marsteller, F. Friedel, K. Schlösser, M. Machatschek, C. Rodenbeck, M. Böttcher, O. Dragoun, J. Behrens, Florian Priester, Marc Weber, V. Sibille, Andreas Kopmann, J. Kellerer, A. Fulst, H. Krause, M. Sun, H. Seitz-Moskaliuk, Marco Röllig, C. Röttele, Stefan Welte, Suren Chilingaryan, Joseph A. Formaggio, Michael Sturm, A. Huber, H. H. Telle, B. Bieringer, A. Beglarian, A. Felden, N. Trost, Ondřej Lebeda, F. Edzards, Klaus Blaum, M. Deffert, M. Klein, W. Gil, M. Fedkevych, F. Block, A. Osipowicz, T. S. Caldwell, Alan Poon, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, KATRIN, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Semileptonic decay ,Sterile neutrino ,neutrino: mass difference ,General Physics and Astronomy ,FOS: Physical sciences ,anomaly ,Spectral distortion ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,KATRIN ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Combinatorics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:530 ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Mixing (physics) ,Physics ,nucleus: semileptonic decay ,gallium ,electron: particle identification ,tritium ,neutrino: sterile: mass ,State (functional analysis) ,ddc ,Elementary Particles and Fields ,spectral ,neutrino: oscillation ,nuclear reactor ,Neutrino ,Präzisionsexperimente - Abteilung Blaum ,neutrino: mixing ,experimental results - Abstract
We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in~2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino of mass $m_{4}$. The analysis is sensitive to a fourth mass state $m^2_{4} \lesssim$ 1000 eV$^2$ and to active-to-sterile neutrino mixing down to $|U_{e4}|^2 \gtrsim 2\cdot10^{-2}$. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results and improve the Troitsk bound for $m^2_{4}, Comment: 8 pages, 4 figures
- Published
- 2021
- Full Text
- View/download PDF
11. Simulating the injection of magnetized plasma without electromagnetic precursor wave
- Author
-
Felix Spanier, Felix Sharipov, and Patrick Kilian
- Subjects
Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,01 natural sciences ,Filter (large eddy simulation) ,0103 physical sciences ,Boundary value problem ,0101 mathematics ,010303 astronomy & astrophysics ,Physics ,Numerical Analysis ,Applied Mathematics ,Plasma ,Computational Physics (physics.comp-ph) ,Physics - Plasma Physics ,Cutoff frequency ,Computer Science Applications ,Computational physics ,Pulse (physics) ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,010101 applied mathematics ,Computational Mathematics ,Classical mechanics ,Modeling and Simulation ,Electromagnetic electron wave ,Particle-in-cell ,Physics - Computational Physics - Abstract
Injecting magnetized plasma with changes in magnetization or injection rate necessitate a time variable magnetic field at the boundary of the simulation box. Naive implementation will lead to electromagnetic precursor waves that can affect the simulation results. The problem is well-known and is described e.g. in Lemebege and Dawson 1987. Since then few papers have attempted to deal with this problem and no standard solution exists. In this research note we suggest that the ad-hoc pulse shape that was used in the paper by Lemebege and Dawson 1987 can be replaces by a standard digital low pass filter. The cut off frequency of this filter should coincide with the gyro frequency in the magnetized plasma, to make use of (Doppler-broadend) resonant absorption caused by gyrating electrons. We illustrate this idea with a code example and demonstrate the efficency of this method throug sample simulations with our electromagnetic particle-in-cell code., Accepted in Journal of Computational Physics as S0021-9991(17)30750-7
- Published
- 2018
- Full Text
- View/download PDF
12. Kinetic Simulation Study of Electron Holes Dynamics During Collisions of Ion-Acoustic Solitons
- Author
-
Felix Spanier, Felix Sharipov, and Seyyed Mehdi Hosseini Jenab
- Subjects
Physics ,Nuclear and High Energy Physics ,education.field_of_study ,Population ,Vlasov equation ,Context (language use) ,Electron ,Electron hole ,Condensed Matter Physics ,Kinetic energy ,01 natural sciences ,Molecular physics ,010305 fluids & plasmas ,Distribution function ,0103 physical sciences ,Soliton ,010306 general physics ,education - Abstract
Ion acoustic (IA) solitons are accompanied by vortex-shaped nonlinear structures (e.g., hollows, plateaus, or humps) in the electron distribution function, called electron holes, portraying trapped electrons. These structures appear as charged flexible clouds (shielded by the background plasma) in the phase space with their own inertia, depending on the number of trapped electrons. According to simulation studies, electron holes tend to merge in pairs until one accumulative hole remains in the simulation box. This tendency has been analytically and qualitatively explained in the frame of the energy conservation principle. However, electron holes accompanying IA solitons should not merge due to the stability of IA solitons against mutual collisions. In this report based on a fully kinetic simulation approach, detailed study of the collisions of IA solitons reveals the behavior of electron holes under these two conflicting predictions, i.e., stability against mutual collisions and merging tendency. Four main results are reported here. First, we find that among the three different types of collisions possible for electron holes, just two of them happen for electron holes accompanying IA solitons. We present different collisions, e.g., two large/small and large versus small holes, to cover all these three different types of collisions. Second, we show that although electron holes merge during collisions of IA solitons, the stability of IA solitons forces the merged hole to split and form new electron holes. Third, we reveal that holes share their trapped population during collisions. Postcollision holes incorporate some parts of the oppositely propagating before-collision holes. Finally, it is shown that the newly added population of trapped electrons goes through a spiral path inside the after-collision holes because of dissipative effects. This spiral is shown to exist in the early stage of the formation of the holes in the context of the IA soliton dynamics.
- Published
- 2017
- Full Text
- View/download PDF
13. Kinetic-Simulation Study of Propagation of Langmuir-Like Ionic Waves in Dusty Plasma
- Author
-
Felix Spanier and Seyyed Mehdi Hosseini Jenab
- Subjects
Physics ,Nuclear and High Energy Physics ,Dusty plasma ,010504 meteorology & atmospheric sciences ,Vlasov equation ,Plasma ,Condensed Matter Physics ,Plasma oscillation ,01 natural sciences ,Computational physics ,Ion ,Physics::Plasma Physics ,Dispersion relation ,0103 physical sciences ,Landau damping ,Dispersion (water waves) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
The propagation of ionic perturbations in a dusty plasma is considered through a three-species kinetic simulation approach, in which the temporal evolution of all three elements, i.e., electrons, ions, and dust particles are followed based on the Vlasov equation coupled with the Poisson equation. Two cases are focused upon: first, a fully electron-depleted dusty plasma, i.e., a plasma consisting of ions and dust particles. The second case includes dusty plasmas with large electron-to-ion temperature ratios. The main features of the ionic waves in these two settings, including the dispersion relation and the Landau damping rate, are studied. It is shown that the dispersion relation of the ionic waves perfectly matches the dispersion relation of Langmuir waves and hence is called Langmuir-like ionic waves and can be considered as Langmuir-like ionic waves. These waves can be theoretically predicted by the dispersion relation of the dust-ion-acoustic waves. The transition of ionic waves from dust-ion-acoustic to Langmuir-like waves is shown to be sharp/smooth in first/second case. The Landau damping rates based on simulation results are presented and compared with theoretical predictions wherever possible.
- Published
- 2017
- Full Text
- View/download PDF
14. First operation of the KATRIN experiment with tritium
- Author
-
Kathrin Valerius, B. Lehnert, Pablo I. Morales Guzmán, Felix Spanier, J. F. Wilkerson, A. Off, Fotios Megas, C. Weiss, B. Schulz, Manuel Lebert, R. Grössle, Ralph Engel, K. Müller, N. Kernert, L. Kippenbrock, R. Gumbsheimer, K. Helbing, A. Huber, Martin Ha-Minh, Weiran Xu, Siegfried Holzmann, G. B. Franklin, Johann Letnev, L. Köllenberger, Marius Arenz, F. M. Fränkle, M. Steidl, E. L. Martin, M. A. Howe, M. Schrank, P. J. Doe, A. Kovalík, S. Dyba, K. Debowski, F. Edzards, N. Trost, Deseada D. Díaz Barrero, Reiner Vianden, M. Descher, M. Hackenjos, L. Schimpf, Miloš Ryšavý, Norbert Kunka, Thomas Thümmler, D. Fuchs, Heinz Frankrone, A. Jansen, M. Aker, P. Schäfer, W. Q. Choi, Heiko Bouquet, K. Eitel, Fabian Leven, C. Rodenbeck, F. Heizmann, L. Schlüter, Y.-R. Yen, K. Urban, B. Krasch, Thierry Lasserre, O. Rest, L. A. Thorne, Ferenc Glück, D. Hillesheimer, T. Houdy, D. Hinz, Sebastian Mirz, M. Fedkevych, Klaus Blaum, M. Deffert, N. Titov, Rolf Rinderspacher, John E. Barrett, Guido Drexlin, M. Korzeczek, Anna Pollithy, Susanne Mertens, M. Klein, Holger Neumann, A. Osipowicz, Sanshiro Enomoto, R. Sack, Magnus Schlösser, C. Melzer, Alexey Lokhov, T. L. Le, Benedikt Kuffner, Bernhard Holzapfel, Petra Rohr, K. Gauda, A. Felden, N. Haußmann, U. Besserer, G. P. Zeller, V. Sibille, Andreas Kopmann, Drahoslav Vénos, P. C.-O. Ranitzsch, Christian Weinheimer, Daniel Siegmann, Diana Parno, C. Karl, J. Manuel Lopez Poyato, A. I. Berlev, Steffen Bobien, Luisa La Cascio, Ernst W. Otten, K. Schlösser, K. Altenmüller, Igor Tkachev, J. Wendel, Johannes Heizmann, Lutz Bornschein, Martin Mark, Uwe Naumann, Steffen Grohmann, Joseph A. Formaggio, Michael Sturm, S. V. Zadorozhny, Julius Hartmann, Florian Priester, Marc Weber, Volker Hannen, Manfred Suesser, H. Seitz-Moskaliuk, Marco Röllig, C. Röttele, T. Höhn, A. Beglarian, Ondřej Lebeda, Matthias Meier, Stefan Welte, Alejandro Saenz, Suren Chilingaryan, Beate Bornschein, Madlen Steven, Sascha Wüstling, H. H. Telle, S. Niemes, A. Marsteller, F. Friedel, Mathias Noe, M. Machatschek, Steffen Lichter, Thomas S. Caldwell, T. Brunst, M. Slezák, S. Hickford, Ana P. Vizcaya Hernández, E. Ellinger, D. Eversheim, E. Malcherek, Denis Tcherniakhovski, R. G. Hamish Robertson, Woo-Jeong Baek, J. Kellerer, A. Fulst, H. Krause, M. Sun, Benjamin Monreal, O. Dragoun, J. Behrens, Waldemar Seller, Joachim Wolf, C. Köhler, A. Menshikov, W. Gil, H.-W. Ortjohann, F. Block, A. W. P. Poon, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, KATRIN, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), UAM. Departamento de Química Física Aplicada, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,lcsh:Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Tritium ,KATRIN ,01 natural sciences ,antineutrino/e: mass ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,lcsh:QB460-466 ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Mass scale ,ddc:530 ,Electron Capture ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Engineering (miscellaneous) ,Nuclear Experiment ,Astroparticle physics ,Physics ,010308 nuclear & particles physics ,tritium ,Química ,Instrumentation and Detectors (physics.ins-det) ,sensitivity ,ddc ,lcsh:QC770-798 ,High Energy Physics::Experiment ,Neutrino ,Präzisionsexperimente - Abteilung Blaum ,Neutrino Mass ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Electron neutrino ,performance ,Astrophysics - Cosmology and Nongalactic Astrophysics ,experimental results - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2019
- Full Text
- View/download PDF
15. Scattering of electron holes in the context of ion-acoustic regime
- Author
-
Felix Spanier, S. M. Hosseini Jenab, and Gert Brodin
- Subjects
Physics ,Scattering ,FOS: Physical sciences ,Context (language use) ,Electron hole ,Condensed Matter Physics ,Kinetic energy ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Ion ,Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,0103 physical sciences ,Atomic physics ,010306 general physics - Abstract
Mutual collisions between ion-acoustic (IA) solitary waves are studied based on a fully kinetic simulation approach. Two cases, small and large relative velocity, are studied and the effect of trapped electron population on the collision process are focused upon. It is shown that, for the case of small relative velocity, the repelling force between the trapped populations of electrons results in scattering of electron holes. However, this phenomenon can not be witnessed if the relative velocity is considerably high, since the impact of trapped population stays very weak., Comment: 5 pages, 5 figures, accepted for publication in Physics of Plasmas
- Published
- 2019
- Full Text
- View/download PDF
16. VHE γ-ray discovery and multi-wavelength study of the blazar 1ES 2322-409
- Author
-
M. Zacharias, Marek Jamrozy, Jim Hinton, A. Schulz, R. Tuffs, R. Simoni, Dmitry Khangulyan, D. A. Sanchez, Helene Sol, H. Ndiyavala, S. Bernhard, J. Devin, M. Böttcher, F. Ait Benkhali, S. Eschbach, C. Stegmann, Nu. Komin, M. Holler, B. van Soelen, Gerd Puehlhofer, F. Jankowsky, J. Veh, D. J. van der Walt, M. Fuessling, M. Lemoine-Goumard, M.A. Kastendieck, S. Bonnefoy, Axel Donath, A. W. Chen, I. Shilon, T. Tavernier, G. Emery, Matteo Cerruti, Michael Punch, M. Spir-Jacob, Manami Sasaki, S. Schwemmer, Andrea Santangelo, J. Lau, B. Peyaud, E. Leser, G. Hermann, Regis Terrier, Carlo Romoli, F. Gaté, R. Rauth, Fabian Schüssler, A. Jacholkowska, M. de Naurois, A. Woernlein, P. Bordas, D. A. Prokhorov, R. Marx, Werner Hofmann, Felix Spanier, Catherine Boisson, Stefan Funk, R. Zanin, R. C. G. Chaves, E. O. Angüner, D. Tiziani, I. Lypova, Stefan Wagner, Yasunobu Uchiyama, Christo Venter, D. Berge, D. Huber, D. Gottschall, P. T. O'Brien, Ullrich Schwanke, C. Perennes, Ruizhi Yang, S. Gabici, C. van Rensburg, J.F. Glicenstein, A. Marcowith, C. Hoischen, Wlodek Kluzniak, S. Saito, G. Fontaine, A. Zech, G. Maurin, K. Kosack, Jacek Niemiec, M. Lorentz, J. Becker Tjus, P.-O. Petrucci, L. Mohrmann, R. Steenkamp, A. Djannati-Ataï, S. Nakashima, Robert Wagner, J. Lefaucheur, A. Wierzcholska, Atreyee Sinha, C. van Eldik, C. Mariaud, A.M. Taylor, Aion Viana, S. Klepser, Olaf Reimer, R. J. White, G. Martí-Devesa, J.-P. Lenain, N. Shafi, Pierre Brun, T. Takahashi, Michael Backes, Gianluca Giavitto, T. Garrigoux, R. Blackwell, J. Hahn, N. Zywucka, Dieter Horns, I.D. Davids, S. Raab, Thomas Murach, E. Ruiz-Velasco, K. Egberts, Tim Holch, Reinhard Schlickeiser, M. Tsirou, G. Henri, A. M. W. Mitche, M. Mohamed, G. Vasileiadis, M. Ostrowski, H. Odaka, S. Chandra, P.J. Meintjes, S. Fegan, Marco Padovani, T. Lohse, A. Reimer, J. Bregeon, M. Renaud, H. Iwasaki, A. Carosi, R. R. Kruger, A. Lemière, H. Abdalla, B. Khélifi, Denys Malyshev, Nachiketa Chakraborty, K. Bernloehr, Stefan Ohm, S. Caroff, S. Pita, E. Moulin, Tomasz Bulik, D. Glawion, M. Panter, T. Bylund, Mohanraj Senniappan, A. Fiasson, L. Dirson, V. Poireau, L. Oakes, I. Sushch, A.A. Zdziarski, I. Jung-Richardt, Yvonne Becherini, D. Kerszberg, Masanori Arakawa, I. Oya, G. Heinzelmann, Felix Aharonian, L. Tibaldo, Zorawar Wadiasingh, B. Condon, Monica Barnard, F. Zefi, M. Buechele, M. Capasso, S. Krakau, V. Sahakian, D. Jankowsky, Q. Piel, J. Zorn, U. Katz, A.S. Seyffert, J.-P. Tavernet, P. Vincent, G. Lamanna, T. Vuillaume, P. deWilt, M. Seglar-Arroyo, J. King, B. Rudak, A. Priyana Noel, A. Dmytriiev, R. Moderski, V. Marandon, K. Katarzyński, L. Rinchiuso, L. Jouvin, M. Katsuragawa, C. Arcaro, M. Kraus, A. Specovius, Francois Brun, M. Tluczykont, Celine Armand, C. Steppa, M. Arrieta, Heike Prokoph, M. Haupt, Lukasz Stawarz, J. Dyks, K. Shiningayamwe, Andreas Quirrenbach, N. Tsuji, C. Trichard, J.-P. Ernenwein, R. D. Parsons, A. Ziegler, L. O. 'C. Drury, Ruben Lopez-Coto, M.-H. Grondin, P. Wagner, C. Dei, Y.A. Gallant, Gavin Rowell, M. Bryan, D. Zaborov, F. Niederwanger, Jacco Vink, Sabrina Casanova, H. J. Voelk, Frank M. Rieger, F. Voisin, J. Bolmont, S. Colafrancesco, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Collège de France (CdF), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Electronique et des Technologies de l'Information (CEA-LETI), Université Grenoble Alpes (UGA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), H.E.S.S., H.E.S.S. Collaboration, 26598973 - Abdalla, Hassan, 30588766 - Arcaro, Cornelia, 28644743 - Backes, Michael, 20574266 - Barnard, Monica, 24420530 - Böttcher, Markus, 31125417 - Chandra, Sunil, 26909995 - Garrigoux, Tania, 11749903 - Krüger, Petrus Paulus, 26403366 - Ndiyavala, Hambeleleni, 20126999 - Seyffert, Albertus Stefanus, 25161814 - Spanier, Felix Alexander, 24922986 - Sushch, Iurii, 10060499 - Van der Walt, Diederick Johannes, 21106266 - Van Rensburg, Carlo, 12006653 - Venter, Christo, 26594080 - Wadiasingh, Zorawar, 29092086 - Zacharias, Michael, Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Collège de France (CdF (institution)), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Faculty of Science, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
gamma-rays: galaxies ,principal component analysis ,Energy flux ,Astrophysics ,01 natural sciences ,pixel ,HESS ,ultraviolet ,optical ,energy: flux ,HESS - Abteilung Hofmann ,photon: flux ,010303 astronomy & astrophysics ,model: leptonic ,Physics ,radio wave ,density ,active, [Galaxies] ,Gamma ray ,galaxies [Gamma-rays] ,individual: 1ES 2322-409 [BL Lacertae objects] ,active [galaxies] ,infrared ,Spectral energy distribution ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,Astrophysics::Cosmology and Extragalactic Astrophysics ,gamma ray: energy spectrum ,GLAST ,blazar ,X-ray ,0103 physical sciences ,Blazar ,Astroparticle physics ,non-thermal [Radiation mechanisms] ,synchrotron radiation ,background ,010308 nuclear & particles physics ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,radiation mechanisms: non-thermal ,redshift ,proton synchrotron ,MAGIC ,Redshift ,Crab Nebula ,gamma ray: VHE ,Space and Planetary Science ,spectral ,ddc:520 ,High Energy Physics::Experiment ,BL Lacertae objects: individual: 1ES 2322−409 ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Fermi Gamma-ray Space Telescope - Abstract
著者人数: H.E.S.S. Collaboration 233名 (所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 桂川, 美穂; 中島, 真也; 小高, 裕和; 高橋, 忠幸), Number of authors: H.E.S.S. Collaboration 233 (Affiliation. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS): Katsuragawa, Miho; Nakashima, Shinya; Odaka, Hirokazu; Takahashi, Tadayuki), Accepted: 2018-09-29, 資料番号: SA1180422000
- Published
- 2018
- Full Text
- View/download PDF
17. Decomposing blazar spectra into lepto-hadronic emission components
- Author
-
S. Richter, Felix Spanier, Jörn Wilms, A. Gokus, K. Mannheim, Matthias Kadler, and M. Kreter
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,High Energy Physics::Phenomenology ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Spectral line ,Acceleration ,Space and Planetary Science ,0103 physical sciences ,Spectral energy distribution ,High Energy Physics::Experiment ,Neutrino ,Blazar ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics - Abstract
Recently reported coincidences between high-energy neutrino events and major blazar outbursts reinforce the relevance of lepto-hadronic emission models for blazars. We study the influence of physical parameters on the neutrino output modeling blazar spectral energy distributions self-consistently assuming a relativistically propagating acceleration zone surrounded by a larger cooling zone. We find that the gross features of the spectral energy distribution can readily be explained with the model. A rigorous test requires time-resolved measurements of blazar spectral energy distributions during an outburst and high-statistics neutrino measurements to discriminate the leptonic and hadronic emission components., IBWS Proceedings, 6 pages, 4 figures
- Published
- 2018
18. Population study of Galactic supernova remnants at very high γ-ray energies with H.E.S.S
- Author
-
Christo Venter, H. Iwasaki, Gilles Maurin, Q. Piel, J. F. Glicenstein, J. Becker Tjus, A. Zech, M. Büchele, Julien Lefaucheur, Nachiketa Chakraborty, R. Liu, C. Mariaud, L. O'c. Drury, A.M. Taylor, C. Perennes, T. Garrigoux, Riaan Steenkamp, Ruben Lopez-Coto, Pierre Brun, M. Lemoine-Goumard, A. Wörnlein, P.-O. Petrucci, H. Ndiyavala, G. Lamanna, S. J. Fegan, A. Djannati-Ataï, N. W. Pekeur, P. Wagner, Alison Mitchell, Dieter Horns, Jean-Pierre Ernenwein, Zorawar Wadiasingh, B. Condon, I. Shilon, M. Seglar-Arroyo, Jan Conrad, Marco Padovani, Clemens Hoischen, A. A. Zdziarski, Frank M. Rieger, Johannes Veh, D. Gottschall, D. A. Sanchez, J. Hawkes, Anne Lemiere, Gavin Rowell, M. Bryan, R. C. G. Chaves, E. O. Angüner, Reinhard Schlickeiser, D. Zaborov, D. Jankowsky, Monica Barnard, A. S. Seyffert, Axel Donath, R. de los Reyes, A. W. Chen, M. Tluczykont, D. Fernandez, V. Poireau, Cameron B Rulten, C. Romoli, K. Morå, F. Gaté, Felix Spanier, I. Jung-Richardt, Manuel Meyer, H. Abdalla, Christian Stegmann, I. Oya, Stefan Wagner, Yasunobu Uchiyama, D. Wouters, M. A. Kastendieck, G. Vasileiadis, Nu. Komin, Jim Hinton, Y. A. Gallant, Fabian Schüssler, Matteo Cerruti, Stefan Ohm, Markus Holler, Felix Jankowsky, J. Decock, M. Mayer, S. Pita, Dmitry Khangulyan, Dorit Glawion, E. Moulin, Tomasz Bulik, S. Nakashima, J. Zorn, Robert Wagner, Thomas Lohse, L. Mohrmann, Felix Aharonian, L. Dirson, C. Farnier, Ramin Marx, E. Leser, M. Panter, U. Katz, Stefano Gabici, J. Dyks, C. van Rensburg, Werner Hofmann, G. Emery, Samar Safi-Harb, Thomas Vuillaume, B. Khélifi, S. Saito, Justine Devin, M. Lorentz, S. Bonnefoy, Constantin Steppa, M. Füßling, S. Eschbach, Jacek Niemiec, G. Hermann, Regis Terrier, Stefan Klepser, A. Balzer, Heinrich J. Völk, M. Mohamed, Olaf Reimer, P. P. Krüger, F. Voisin, D. Klochkov, Alexandre Marcowith, D.A. Prokhorov, M. Renaud, F. Zefi, D. Kerszberg, Rachel Simoni, Helen Poon, M. Jingo, R. D. Parsons, D. J. van der Walt, L. Oakes, J. Bolmont, I. Sushch, A. Ivascenko, R. Blackwell, S. Colafrancesco, Michael Backes, H. Prokoph, Masanori Arakawa, Gianluca Giavitto, V. Marandon, K. Dutson, Thomas Murach, Joachim Hahn, J. Lau, M. Settimo, Andreas Quirrenbach, Sami Caroff, Włodek Kluźniak, M. Capasso, S. Krakau, V. Sahakian, P. Bordas, Michael Zacharias, F. Niederwanger, J. P. Lees, H. Odaka, Tim Holch, S. Raab, A. Abramowski, G. Heinzelmann, N. Maxted, Krzysztof Katarzynski, A. Jacholkowska, Naomi Tsuji, Tanya Edwards, K. Kosack, Konrad Bernlöhr, Jacco Vink, Catherine Boisson, L. Tibaldo, D. Berge, Christoph Deil, Sabrina Casanova, Gerard Fontaine, G. Pelletier, B. Peyaud, Ullrich Schwanke, G. Pühlhofer, Johan Bregeon, J.-P. Tavernet, Kleopas Shiningayamwe, R. J. White, A. Reimer, A. Viana, Domenico Tiziani, D. Malyshev, Łukasz Stawarz, S. Bernhard, B. van Soelen, Michal Ostrowski, B. Rudak, J.-P. Lenain, F. Ait Benkhali, P. T. O'Brien, M. V. Fernandes, Manami Sasaki, S. Schwemmer, Andrea Santangelo, Gilles Henri, C. van Eldik, Stefan Funk, Alicja Wierzcholska, Marek Jamrozy, Helene Sol, B. Giebels, R. J. Tuffs, L. Jouvin, Iryna Lypova, Yvonne Becherini, K. Egberts, J. Chevalier, R. Rauth, Thomas Tavernier, N. Shafi, Natalia Żywucka, M. de Naurois, Ruizhi Yang, Tadayuki Takahashi, A. Schulz, Isak Delberth Davids, A. Fiasson, Roberta Zanin, P. Willmann, C. Trichard, P. J. Meintjes, A. Ziegler, H. Laffon, M. Arrieta, P. deWilt, J. King, Marion Spir-Jacob, Maria Haupt, Michelle Tsirou, L. Rinchiuso, Rafal Moderski, A. Carosi, Francois Brun, P. Vincent, M.-H. Grondin, Markus Böttcher, M. Katsuragawa, Pierre-Henri Aubert, M. Kraus, Michael Punch, Laboratoire Univers et Théories ( LUTH ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Univers et Particules de Montpellier ( LUPM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Université de Montpellier ( UM ), Centre d'Etudes Nucléaires de Bordeaux Gradignan ( CENBG ), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Laboratoire Leprince-Ringuet ( LLR ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -École polytechnique ( X ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Centre de Physique des Particules de Marseille ( CPPM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Aix Marseille Université ( AMU ), Institut de Planétologie et d'Astrophysique de Grenoble ( IPAG ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), HESS, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), and API Other Research (FNWI)
- Subjects
electron ,Milky Way ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,Hochenergie-Astrophysik Theorie - Abteilung Hofmann ,Infrarot-Astrophysik - Abteilung Hofmann ,Cosmic ray ,magnetic field ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Compact star ,7. Clean energy ,01 natural sciences ,Luminosity ,HESS ,0103 physical sciences ,supernova ,ddc:530 ,luminosity ,flux: upper limit ,cosmic radiation: acceleration ,010303 astronomy & astrophysics ,HESS - Abteilung Hofmann ,Astrophysics::Galaxy Astrophysics ,ISM: supernova remnants ,Astroparticle physics ,Physics ,radio wave ,density ,energy: high ,cosmic radiation: spectrum ,010308 nuclear & particles physics ,supernova remnants [ISM] ,Molecular cloud ,shell model ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,gamma rays: general ,Galactic plane ,Supernova ,gamma ray: VHE ,Space and Planetary Science ,cosmic radiation: galaxy ,ddc:520 ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,general [gamma rays] - Abstract
著者人数: H.E.S.S. Collaboration 253名 (所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 桂川, 美穂; 中島, 真也; 小高, 裕和; 高橋, 忠幸), Number of authors: H.E.S.S. Collaboration 253 (Affiliation. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS): Katsuragawa, Miho; Nakashima, Shinya; Odaka, Hirokazu; Takahashi, Tadayuki), Accepted: 2018-02-08, 資料番号: SA1170368000
- Published
- 2018
- Full Text
- View/download PDF
19. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT
- Author
-
M. Jingo, Ullrich Schwanke, I. Jung-Richardt, Markus Holler, Victor Zabalza, A. G. Akhperjanian, Michael Punch, Felix Jankowsky, I. Shilon, K. Dutson, D. Jankowsky, Felix Spanier, N. Shafi, Natalia Żywucka, T. Garrigoux, M. de Naurois, Christian Stegmann, Stefan Wagner, Yasunobu Uchiyama, J. Dyks, Mateusz Janiak, Felix Aharonian, H. Laffon, S. Eschbach, F. Spies, Ruizhi Yang, Marco Padovani, L. Mohrmann, C. van Rensburg, Thomas Tavernier, F. Niederwanger, A. Marcowith, C. Mariaud, Dieter Horns, Clemens Hoischen, A. A. Zdziarski, M. Lorentz, A. Schulz, Christoph Deil, T. Jogler, Gavin Rowell, M. Bryan, D. Zaborov, R. de los Reyes, P. Bordas, Nachiketa Chakraborty, Jacco Vink, Sabrina Casanova, R. Liu, C. Romoli, David Salek, E. Moulin, Tomasz Bulik, G. Lamanna, A. Fiasson, Christo Venter, Daniel Kerszberg, Ruben Lopez-Coto, M. Lemoine-Goumard, J. Lau, A. Jacholkowska, P. Willmann, Francois Brun, M. Chrétien, R. Moderski, A. Zech, B. Condon, Riaan Steenkamp, P. Wagner, M. Mayer, David Sánchez, Jacek Niemiec, Maria Haupt, Olaf Reimer, J. Becker Tjus, Thomas Murach, J. Chevalier, J. Hawkes, Krzysztof Katarzynski, Gilles Fontaine, Frank M. Rieger, Denis Wouters, Julien Lefaucheur, J. Bregeon, P.-O. Petrucci, Guillaume Dubus, L. O'c. Drury, Matteo Cerruti, F. Krayzel, R. Chalme-Calvet, Reinhard Schlickeiser, A. S. Seyffert, W. Kluźniak, D. Klochkov, M.-H. Grondin, N. W. Pekeur, Markus Böttcher, F. Zefi, Alison Mitchell, Zorawar Wadiasingh, D.A. Prokhorov, Michal Ostrowski, R. C. G. Chaves, J.-P. Lenain, Stefan Ohm, K. Morå, R. Blackwell, E. O. Angüner, Werner Hofmann, J. Decock, Pierre-Henri Aubert, S. Pita, J. Jeffrey Carr, Monica Barnard, L. Dirson, S. Öttl, F. Voisin, G. Heinzelmann, S. Colafrancesco, Stefano Gabici, Regis Terrier, Jan Conrad, N. Maxted, Aion Viana, C. Perennes, Nu. Komin, K. Egberts, M. Kraus, B. Peyaud, G. Pelletier, M. Kieffer, P. deWilt, A. Wörnlein, H. Odaka, Andrew M. Taylor, Stefan Funk, Alicja Wierzcholska, Ramin Marx, M. Panter, J. King, F. Ait Benkhali, Manami Sasaki, U. Katz, S. Schwemmer, R. J. Tuffs, S. J. Fegan, A. Djannati-Ataï, Andrea Santangelo, L. Tibaldo, M. Füßling, F. Schüssler, A. Balzer, R. J. White, Marek Jamrozy, Helene Sol, Domenico Tiziani, C. Trichard, I. D. Davids, Olivier Hervet, C. B. Rulten, P. J. Meintjes, Mariangela Settimo, Pierre Brun, Y. Cui, Rachel Simoni, Helen Poon, Joachim Hahn, M. Capasso, A. Ziegler, S. Krakau, V. Sahakian, C. Boisson, C. Farnier, M. Gajdus, E. Leser, Jean-Pierre Ernenwein, G. Cologna, Daniela Hadasch, B. Khélifi, G. Hermann, Johannes Veh, V. Lefranc, Heinrich J. Völk, M. Renaud, S. Bernhard, B. van Soelen, B. Rudak, M. Tluczykont, B. Degrange, H. Abdalla, M. A. Kastendieck, D. Gottschall, Anne Lemiere, Stefan Klepser, G. Vasileiadis, A. Ivascenko, Gilles Maurin, Y. A. Gallant, Łukasz Stawarz, Andreas Quirrenbach, Robert Wagner, Thomas Lohse, Justine Devin, Michael Zacharias, Léa Jouvin, T. Andersson, D. Kolitzus, M. Arrieta, Pascal Vincent, T. Vuillaume, Heike Prokoph, A. Förster, K. Stycz, J. F. Glicenstein, D. J. van der Walt, L. Oakes, J. Bolmont, I. Sushch, Axel Donath, A. W. Chen, Gilles Henri, Q. Piel, R. D. Parsons, F. Stinzing, B. Giebels, Junichiro Katsuta, Gianluca Giavitto, I. Oya, Tanya Edwards, S. Rosier-Lees, G. Spengler, Jim Hinton, M. Mohamed, Michael Backes, W. Domainko, J. P. Lees, S. Raab, A. Abramowski, P. P. Krüger, V. Marandon, D. Berge, Arti Goyal, J.-P. Tavernet, Iryna Lypova, Yvonne Becherini, P. T. O'Brien, Manuel Meyer, M. V. Fernandes, Peter Eger, C. van Eldik, K. Kosack, Konrad Bernlöhr, G. Pühlhofer, A. Reimer, Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), ATLAS (IHEF, IoP, FNWI), Laboratoire Univers et Théories (LUTH (UMR_8102)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), HESS, Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Annecy de Physique des Particules (LAPP), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Hochenergie-Astrophysik Theorie - Abteilung Hofmann ,Infrarot-Astrophysik - Abteilung Hofmann ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Spectral line ,0103 physical sciences ,Binary star ,ddc:530 ,Supernova remnant ,010303 astronomy & astrophysics ,HESS - Abteilung Hofmann ,Cherenkov radiation ,Astrophysics::Galaxy Astrophysics ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Computer Science::Information Retrieval ,supernova remnants [ISM] ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,Supernova ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,ddc:520 ,Astrophysics - High Energy Astrophysical Phenomena ,general [gamma rays] ,clouds [ISM] ,Fermi Gamma-ray Space Telescope - Abstract
The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). $\gamma$-ray observations of SNR/MC associations are a powerful tool to constrain the origin of Galactic cosmic-rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. The detection of a $\gamma$-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes is reported together with a study of the source with 5 years of Fermi-LAT high energy $\gamma$-ray (0.06 - 300 GeV) data. The smoothly-connected combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at $304\pm20$ MeV and $8.4_{-2.5}^{+2.2}$ GeV, the latter being constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR/MC associations and are found to be indicative of $\gamma$-ray emission produced through neutral-pion decay., Comment: 10 pages, 6 figures. Accepted for publication in A&A
- Published
- 2018
- Full Text
- View/download PDF
20. AGN Neutrino flux estimates for a realistic hybrid model
- Author
-
S. Richter and Felix Spanier
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Active galactic nucleus ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Proton Synchrotron ,Spectral density ,Astronomy and Astrophysics ,Astrophysics ,Electron ,Parameter space ,01 natural sciences ,symbols.namesake ,0103 physical sciences ,symbols ,Neutrino ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Doppler effect - Abstract
Recent reports of possible correlations between high energy neutrinos observed by IceCube and Active Galactic Nuclei (AGN) activity sparked a burst of publications that attempt to predict the neutrino flux of these sources. However, often rather crude estimates are used to derive the neutrino rate from the observed photon spectra. In this work neutrino fluxes were computed in a wide parameter space. The starting point of the model was a representation of the full spectral energy density (SED) of \textit{3C 279}. The time-dependent hybrid model that was used for this study takes into account the full $p\gamma$ reaction chain as well as proton synchrotron, electron-positron-pair cascades and the full SSC scheme. We compare our results to estimates frequently used in the literature. This allows to identify regions in the parameter space for which such estimates are still valid and those in which they can produce significant errors. Furthermore, if estimates for the Doppler factor, magnetic field, proton and electron densities of a source exist, the expected IceCube detection rate is readily available., Comment: 12 pages, 8 figures, accepted for publication in Astroparticle Physics
- Published
- 2018
21. Analytical treatment of particle motion in circularly polarized slab-mode wave fields
- Author
-
Rami Vainio, Felix Spanier, Felix Sharipov, and Cedric Schreiner
- Subjects
Physics ,ta115 ,Chaotic ,FOS: Physical sciences ,Equations of motion ,Plasma ,Condensed Matter Physics ,01 natural sciences ,Physics - Plasma Physics ,82D10, 37J35, 37M05 ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,Superposition principle ,Quantum electrodynamics ,0103 physical sciences ,Particle ,Test particle ,010303 astronomy & astrophysics ,Monochromatic electromagnetic plane wave ,Magnetosphere particle motion - Abstract
Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations., Comment: 25 pages, 7 figures
- Published
- 2018
- Full Text
- View/download PDF
22. Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86
- Author
-
C.-C. Lu, F. Schüssler, Felix Spanier, M. V. Fernandes, Gilles Henri, Jacco Vink, M. Mayer, F. Krayzel, M. Ostrowski, Sabrina Casanova, N. Chakraborty, E. Birsin, Thomas Tavernier, Werner Hofmann, Peter Eger, C. van Eldik, M. de Naurois, Mateusz Janiak, Ruizhi Yang, Guillaume Dubus, A. Marcowith, P. Espigat, Nu. Komin, Michael Punch, S. Häffner, Rachel Simoni, Helen Poon, A. Lopatin, N. Zywucka, F. Stinzing, B. Giebels, Tanya Edwards, Marek Jamrozy, M. Zacharia, Isak Delberth Davids, Daniel Kerszberg, A. Fiasson, G. Pelletier, K. Dutson, F. Spies, S. J. Wagner, P. Willmann, S. Rosier-Lees, M. Mohamed, Michal Dyrda, T. Vuillaume, Jacek Niemiec, Stefan Ohm, S. Pita, I. Jung-Richardt, M. Lemoine-Goumard, Helene Sol, Olaf Reimer, S. Bernhard, C. Mariaud, M. Kieffer, B. van Soelen, P. Wagner, F. Ait Benkhali, T. Bulik, B. Rudak, K. Stycz, Reinhard Schlickeiser, Yuzhu Cui, S. Schwemmer, Stefano Gabici, B. Degrange, Andrea Santangelo, Christoph Deil, J. Hawkes, V. Marandon, Frank M. Rieger, J. F. Glicenstein, A. Wörnlein, Victor Zabalza, Thomas Murach, U. Menzler, M. Füßling, André Schulz, Jim Hinton, R. Chalme-Calvet, C. Romoli, S. J. Fegan, A. Djannati-Ataï, Markus Holler, Arti Goyal, Michael Backes, Regis Terrier, Felix Jankowsky, J.-P. Lenain, J. Dyks, Joachim Hahn, A. Ivascenko, G. Spengler, Francois Brun, M. Chrétien, V. Lefranc, Olivier Hervet, Denis Wouters, Dieter Horns, R. J. Tuffs, H. Prokoph, Clemens Hoischen, A. A. Zdziarski, C. B. Rulten, Öttl, G. Heinzelmann, D. Fernandez, K. Kosack, F. Voisin, Konrad Bernlöhr, D. Berge, G. Lamanna, Yvonne Becherini, K. Egberts, Petter Hofverberg, Felix Aharonian, R. D. Parsons, G. Pühlhofer, S. Colafrancesco, Pierre Brun, Jan Conrad, J. Bolmont, M. A. Kastendieck, D.A. Prokhorov, J.L. Van der Walt, I. Sushch, C. Couturier, D. Klochkov, Andrew M. Taylor, C. Farnier, Andreas Hillert, J. Becker Tjus, J. Jeffrey Carr, W. Domainko, Gerard Fontaine, Ignasi Reichardt, R. Blackwell, F. Feinstein, J. Bregeon, M. Paz Arribas, Gianluca Giavitto, M. Gajdus, A. Reimer, H. Laffon, Alison Mitchell, Markus Böttcher, Alicja Wierzcholska, T. Garrigoux, K. Valerius, Daniela Hadasch, B. Khélifi, G. Hermann, P.-O. Petrucci, M. Grudzińska, Jean-Pierre Ernenwein, R. C. G. Chaves, E. O. Angüner, L. O'c. Drury, F. Zefi, H. Odaka, N. W. Pekeur, Johannes Veh, A. Balzer, D. Kolitzus, P. deWilt, Lukasz Stawarz, A. Förster, G. Vasileiadis, S. Raab, A. G. Akhperjanian, A. Abramowski, S. Klepser, Aion Viana, Ramin Marx, J.-P. Tavernet, M. Panter, U. Katz, U. Schwanke, M. Tluczykont, B. Opitz, N. Maxted, K. Moraa, S. Krakau, L. B. Oakes, Y. A. Gallant, Christo Venter, Christian Stegmann, Andreas Quirrenbach, V. Sahakian, P.P. Krüger, Riaan Steenkamp, Misao Sasaki, M. Lorentz, R. Moderski, A. Zech, Axel Donath, A. W. Chen, Pascal Vincent, David Sánchez, M.-H. Grondin, J. Lau, Julien Lefaucheur, A. S. Seyffert, J. Chevalier, Krzysztof Katarzynski, C. Boisson, D. Gottschall, Anne Lemiere, C. Trichard, David Salek, E. Moulin, R. Lui, P. J. Meintjes, Matthias Weidinger, B. Condon, A. Jacholkowska, Manuel Meyer, Robert Wagner, B. Peyaud, R. White, Thomas Lohse, W. Kluzniak, Gavin Rowell, M. Bryan, D. Zaborov, R. de los Reyes, Gilles Maurin, G. Cologna, Heinrich J. Völk, M. Renaud, P. Bordas, Igor Oya, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, HESS, 24420530 - Böttcher, Markus, 13146629 - Davids, Isak Delberth, 24790052 - Ivascenko, Alex, 11749903 - Krüger, Petrus Paulus, 22050574 - Pekeur, Nicolette Whilna, 20126999 - Seyffert, Albertus Stefanus, 25161814 - Spanier, Felix Alexander, 24922986 - Sushch, Iurii, 10060499 - Van der Walt, Diederick Johannes, 12006653 - Venter, Christo, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), and ATLAS (IHEF, IoP, FNWI)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Type (model theory) ,Kinetic energy ,01 natural sciences ,cosmic rays ,0103 physical sciences ,ddc:530 ,Sensitivity (control systems) ,010306 general physics ,Supernova remnant ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Spectral index ,supernova remnants [ISM] ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,Supernova ,Space and Planetary Science ,astroparticle physics ,ddc:520 ,Spectral energy distribution ,Production (computer science) ,general [gamma rays] - Abstract
Aim. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy γ-ray emission.Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5–1 keV X-ray band, the 2–5 keV X-ray band, radio, and γ-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models.Results. We present the first conclusive evidence that the TeV γ-ray emission region is shell-like based on our morphological studies. The comparison with 2–5 keV X-ray data reveals a correlation with the 0.4–50 TeV γ-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at Ecut = (3.5 ± 1.2stat) TeV and a spectral index of Γ ≈ 1.6 ± 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ~0.1% of the initial kinetic energy of a Type Ia supernova explosion (1051 erg). When using a hadronic model, a magnetic field of B ≈ 100 μG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2 spectrum for the proton distribution cannot describe the γ-ray data. Instead, a spectral index of Γp ≈ 1.7 would be required, which implies that ∼7 × 1049/ncm−3 has been transferred into high-energy protons with the effective density ncm−3 = n/1 cm−3. This is about 10% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm−3.
- Published
- 2018
- Full Text
- View/download PDF
23. Afterlive: A performant code for Vlasov-Hybrid simulations
- Author
-
Patrick Kilian, Cedric Schreiner, and Felix Spanier
- Subjects
Physics ,J.2 ,Discretization ,Mathematical analysis ,General Physics and Astronomy ,FOS: Physical sciences ,Eulerian path ,Solver ,Numerical diffusion ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,symbols.namesake ,Distribution function ,Dimension (vector space) ,Hardware and Architecture ,Phase space ,Particle Mesh ,0103 physical sciences ,symbols ,Physics - Computational Physics ,010303 astronomy & astrophysics - Abstract
A parallelized implementation of the Vlasov-Hybrid method [Nunn, 1993] is presented. This method is a hybrid between a gridded Eulerian description and Lagrangian meta-particles. Unlike the Particle-in-Cell method [Dawson, 1983] which simply adds up the contribution of meta-particles, this method does a reconstruction of the distribution function $f$ in every time step for each species. This interpolation method combines meta-particles with different weights in such a way that particles with large weight do not drown out particles that represent small contributions to the phase space density. These core properties allow the use of a much larger range of macro factors and can thus represent a much larger dynamic range in phase space density. The reconstructed phase space density $f$ is used to calculate momenta of the distribution function such as the charge density $\rho$. The charge density $\rho$ is also used as input into a spectral solver that calculates the self-consistent electrostatic field which is used to update the particles for the next time-step. Afterlive (A Fourier-based Tool in the Electrostatic limit for the Rapid Low-noise Integration of the Vlasov Equation) is fully parallelized using MPI and writes output using parallel HDF5. The input to the simulation is read from a JSON description that sets the initial particle distributions as well as domain size and discretization constraints. The implementation presented here is intentionally limited to one spatial dimension and resolves one or three dimensions in velocity space. Additional spatial dimensions can be added in a straight forward way, but make runs computationally even more costly., Comment: Accepted for publication in Computer Physics Communications
- Published
- 2018
- Full Text
- View/download PDF
24. Kinetic Simulations of Electron Acceleration at Mercury
- Author
-
Felix Spanier, Xiaowei Zhou, Patrick Kilian, Patricio A. Muñoz, Fabien Widmer, Jörg Büchner, and Neeraj Jain
- Subjects
Physics ,Electron ,Kinetic energy ,01 natural sciences ,010305 fluids & plasmas ,Computational physics ,Solar wind ,Electric field ,0103 physical sciences ,Magnetopause ,Test particle ,Magnetohydrodynamics ,Interplanetary spaceflight ,010303 astronomy & astrophysics - Abstract
In preparation of the ESA-JAXA mission Bepi Colombo we reconsidered the electron acceleration near Mercury. We first reviewed the existing observations starting from NASA’s Mariner-10 (1974–1975). Some of them later were shown to be inaccurate. Recently NASA’s Messenger mission newly observed energetic electrons including bursts of energies up to 100–200 keV. This by far exceeds the electron energies in the upstream solar wind. The acceleration mechanisms are, however, still not well understood. We derive models of electron acceleration near Mercury by passing strong interplanetary shocks, by reconnection at the magnetopause and in the Hermean magnetotail. We obtained the resulting electron energies and spectra in the near-Mercury MHD- and kinetic plasma turbulence as well as due to electric field structures by means of test particle calculations and also by fully self-consistent kinetic two- and three-dimensional PIC-code simulations whose results and, therefore, the acceleration mechanisms should be verified by the coming ESA-JAXA Bepi-Colombo mission to Mercury.
- Published
- 2018
- Full Text
- View/download PDF
25. A search for new supernova remnant shells in the Galactic plane with H.E.S.S
- Author
-
Maria Haupt, Michael Backes, H. Iwasaki, Jacek Niemiec, Axel Donath, A. W. Chen, J. P. Lees, Ramin Marx, M. Panter, U. Katz, Gilles Henri, I. Oya, Tim Holch, Olaf Reimer, M.-H. Grondin, Nachiketa Chakraborty, K. Dutson, Markus Böttcher, F. Spies, S. Raab, A. Abramowski, G. Spengler, Thomas Tavernier, Naomi Tsuji, M. Mohamed, Nu. Komin, L. Jouvin, Włodek Kluźniak, G. Cologna, Rafal Moderski, S. Bonnefoy, P. T. O'Brien, M. V. Fernandes, W. Domainko, J. Carr, Matteo Cerruti, C. van Eldik, Gerard Fontaine, M. Jingo, Yasuo Fukui, Emmanuel Moulin, G. Lamanna, Konrad Bernlöhr, Clemens Hoischen, A. A. Zdziarski, G. Pühlhofer, Thomas Murach, Ullrich Schwanke, A. Reimer, Manuel Meyer, Arache Djannati-Ataï, M. Katsuragawa, Pierre-Henri Aubert, K. Egberts, Anne Lemiere, Heinrich J. Völk, M. Renaud, B. Giebels, H. Prokoph, Victor Zabalza, Christoph Deil, F. Niederwanger, C. Trichard, A. G. Akhperjanian, F. Zefi, M. Kraus, I. D. Davids, P. J. Meintjes, Y. Cui, Werner Hofmann, Tadayuki Takahashi, G. Pelletier, B. Peyaud, R. C. G. Chaves, E. O. Angüner, A. Ziegler, R. Liu, Jacco Vink, H. Laffon, Alexandre Marcowith, P. deWilt, Robert Wagner, Thomas Lohse, Stefan Klepser, I. Shilon, K. Morå, Sabrina Casanova, F. Ait Benkhali, J. King, M. Füßling, Ruben Lopez-Coto, Manami Sasaki, M. Lemoine-Goumard, S. Schwemmer, A. Balzer, D. Klochkov, P. Bordas, J. Chevalier, Stefan Ohm, A. Ivascenko, D. Berge, S. Pita, P. Wagner, M. Gajdus, Michael Punch, Andrea Santangelo, Marek Jamrozy, T. Andersson, D. Kolitzus, R. Blackwell, C. Farnier, Michal Ostrowski, Helene Sol, E. Leser, Stefano Gabici, Thomas Vuillaume, S. Nakashima, P. Eger, M. Arrieta, S. Saito, Aya Bamba, C. Romoli, J. Hawkes, A. Förster, Hidetoshi Sano, J.-P. Tavernet, J.-P. Lenain, M. Capasso, J. Dyks, Christo Venter, Andrew M. Taylor, D. Jankowsky, Aion Viana, Christian Stegmann, Stefan Wagner, Q. Piel, Johan Bregeon, Karl Kosack, M. Mayer, Felix Spanier, Arti Goyal, Iryna Lypova, Stefan Funk, Alicja Wierzcholska, Łukasz Stawarz, Yvonne Becherini, B. Khélifi, G. Hermann, Yasunobu Uchiyama, S. Krakau, L. Mohrmann, Regis Terrier, F. Schüssler, A. Zech, N. Shafi, Natalia Żywucka, N. Maxted, M. de Naurois, V. Sahakian, L. Oakes, R. J. White, V. Lefranc, J. Bolmont, I. Sushch, M. Janiak, C. van Rensburg, S. Bernhard, Francois Brun, B. van Soelen, B. Rudak, Dieter Horns, S. Richter, D. A. Sanchez, T. Garrigoux, P. Vincent, Joachim Hahn, B. Degrange, R. J. Tuffs, Frank M. Rieger, M. Seglar-Arroyo, Domenico Tiziani, Andreas Quirrenbach, M. Lorentz, Gilles Maurin, Riaan Steenkamp, H. Abdalla, D. Gottschall, D. Kerszberg, M. A. Kastendieck, K. Stycz, Michael Zacharias, C. Mariaud, J. Becker Tjus, Ruizhi Yang, G. Vasileiadis, Denis Wouters, Rachel Simoni, Helen Poon, J. Decock, P.-O. Petrucci, Masanori Arakawa, F. Voisin, J. F. Glicenstein, N. W. Pekeur, A. Schulz, S. Colafrancesco, D.A. Prokhorov, Cameron B Rulten, I. Jung-Richardt, A. Fiasson, Roberta Zanin, S. Öttl, Marco Padovani, Jim Hinton, P. Willmann, Dmitry Khangulyan, A. S. Seyffert, D. J. van der Walt, Gavin Rowell, M. Bryan, O. Hervet, D. Zaborov, Markus Holler, Jan Conrad, Felix Jankowsky, R. de los Reyes, A. Jacholkowska, G. Heinzelmann, Tanya Edwards, Felix Aharonian, David Salek, Tomasz Bulik, S. Eschbach, Julien Lefaucheur, M. Coffaro, R. D. Parsons, Alison Mitchell, Zorawar Wadiasingh, B. Condon, Gianluca Giavitto, Monica Barnard, M. Settimo, L. Tibaldo, H. Odaka, Reinhard Schlickeiser, Pierre Brun, Jean-Pierre Ernenwein, L. Dirson, Johannes Veh, M. Tluczykont, Y. A. Gallant, Justine Devin, J. Lau, Satoshi Yoshiike, Krzysztof Katarzynski, Catherine Boisson, T. Jogler, P. P. Krüger, M. Büchele, C. Perennes, A. Wörnlein, L. O. 'C. Drury, S. J. Fegan, V. Marandon, Laboratoire Univers et Théories (LUTH (UMR_8102)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), H.E.S.S., Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire Univers et Théories ( LUTH ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy de Physique des Particules ( LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Univers et Particules de Montpellier ( LUPM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Université de Montpellier ( UM ), Centre d'Etudes Nucléaires de Bordeaux Gradignan ( CENBG ), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Centre de Physique des Particules de Marseille ( CPPM ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Aix Marseille Université ( AMU ), Laboratoire Leprince-Ringuet ( LLR ), Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -École polytechnique ( X ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut de Planétologie et d'Astrophysique de Grenoble ( IPAG ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Faculty of Science, High Energy Astrophys. & Astropart. Phys (API, FNWI), API Other Research (FNWI), and ATLAS (IHEF, IoP, FNWI)
- Subjects
accelerator ,Milky Way ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics::High Energy Astrophysical Phenomena ,leptonic ,Population ,Hochenergie-Astrophysik Theorie - Abteilung Hofmann ,Infrarot-Astrophysik - Abteilung Hofmann ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,hadronic ,cosmic rays ,HESS ,0103 physical sciences ,supernova ,ddc:530 ,High Energy Stereoscopic System ,Supernova remnant ,education ,010303 astronomy & astrophysics ,HESS - Abteilung Hofmann ,Astrophysics::Galaxy Astrophysics ,Computer Science::Information Theory ,ISM: supernova remnants ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,education.field_of_study ,radio wave ,particle: relativistic ,010308 nuclear & particles physics ,supernova remnants [ISM] ,Institut für Physik und Astronomie ,Astronomy and Astrophysics ,Galactic plane ,Supernova ,Space and Planetary Science ,gamma ray ,astroparticle physics ,cosmic radiation: galaxy ,ddc:520 ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
著者人数: H.E.S.S. Collaboration 264名 (所属. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS): 桂川, 美穂; 中島, 真也; 小高, 裕和; 高橋, 忠幸), Number of authors: H.E.S.S. Collaboration 264 (Affiliation. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS): Katsuragawa, Miho; Nakashima, Shinya; Odaka, Hirokazu; Takahashi, Tadayuki), Accepted: 2017-12-11, 資料番号: SA1170364000
- Published
- 2018
- Full Text
- View/download PDF
26. Multi-band implications of external-IC flares
- Author
-
Felix Spanier and Stephan Richter
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,J.2 ,Work (thermodynamics) ,Jet (fluid) ,Field (physics) ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Radiation ,Ergosphere ,law.invention ,Acceleration ,law ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar ,Flare - Abstract
Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan $\gamma$-ray flare of \textit{Mrk501} during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere., Comment: accepted for publication in Astroparticle Physics
- Published
- 2015
- Full Text
- View/download PDF
27. Fully kinetic simulation study of ion-acoustic solitons in the presence of trapped electrons
- Author
-
S. M. Hosseini Jenab and Felix Spanier
- Subjects
Physics ,Vlasov equation ,Electron ,Kinetic energy ,01 natural sciences ,010305 fluids & plasmas ,Ion ,Nonlinear system ,Phase space ,Excited state ,0103 physical sciences ,Atomic physics ,010306 general physics ,Korteweg–de Vries equation ,Nonlinear Sciences::Pattern Formation and Solitons - Abstract
The nonlinear fluid theory developed by Schamel suggests a modified KdV equation to describe the temporal evolution of ion acoustic (IA) solitons in the presence of trapped electrons. The validity of this theory is studied here by verifying solitons' main characteristic, i.e., stability against successive mutual collisions. We have employed a kinetic model as a more comprehensive theory than the fluid one, and utilized a fully kinetic simulation approach (both ions and electrons are treated based on the Vlasov equation). In the simulation approach, these solitons are excited self-consistently by employing the nonlinear process of IA solitons formation from an initial density perturbation (IDP). The effect of the size of IDPs on the chain formation is proved by the simulation code as a benchmark test. It is shown that the IA solitons, in the presence of trapped electrons, can retain their features (both in spatial and velocity direction) after successive mutual collisions. The collisions here include encounters of IA solitons with the same trapping parameter, while differing in size. Kinetic simulation results reveal a complicated behavior during a collision between IA solitons in contrast to the fluid theory predictions and simulations. In the range of parameters considered here, two oppositely propagating solitons rotate around their collective center in the phase space during a collision, independent of their trapping parameters. Furthermore, they exchange some portions of their trapped populations.
- Published
- 2017
- Full Text
- View/download PDF
28. MAGIC upper limits on the GRB 090102 afterglow
- Author
-
M. Gaug, Elisa Bernardini, Gianluca Giavitto, A. González Muñoz, C. Delgado Mendez, Victor Stamatescu, T. Schweizer, A. De Angelis, Mosè Mariotti, A.-K. Overkemping, D. Dominis Prester, Robert Wagner, L. A. Antonelli, Julian Sitarek, Saverio Lombardi, M. L. Knoetig, P. Antoranz, J. Hose, Natalia Lewandowska, T. Toyama, A. Sillanpää, Nikola Godinovic, Takashi Saito, P. Temnikov, Benito Marcote, Abelardo Moralejo, A. La Barbera, Fabrizio Tavecchio, M. V. Fonseca, A. Bouvier, J. Moldón, D. Garrido Terrats, Konstancja Satalecka, Ll. Font, Reiko Orito, Francisco Prada, W. Idec, Julia Thaele, Michele Doro, M. Palatiello, Dario Hrupec, Jelena Aleksić, M. A. Lopez, E. Colombo, P. Da Vela, V. Scalzotto, Dominik Elsaesser, U. Barres de Almeida, A. Niedzwiecki, M. Doert, Damir Lelas, Fabio Zandanel, Ralph Bock, L. O. Takalo, K. Frantzen, Q. Weitzel, Tihomir Surić, M. Uellenbeck, David Paneque, Francesco Dazzi, Patrick Vogler, Hiroyasu Tajima, I. Snidaric, D. Carreto Fidalgo, Ana Babić, Dorota Sobczyńska, G. De Caneva, U. Menzel, M. Salvati, Stefano Ansoldi, S. Rügamer, Juan Abel Barrio, Riccardo Paoletti, Nina Nowak, Diego F. Torres, A. Herrero, Christian Fruck, S. Partini, M. Hayashida, Francesco Longo, E. Lorenz, S. Paiano, Kari Nilsson, Karl Mannheim, Nijil Mankuzhiyil, K. Berger, P. Munar-Adrover, I. Lozano, D. Hadasch, Giacomo Bonnoli, E. Prandini, J. M. Paredes, M. Garczarczyk, Antonio Stamerra, Silvia Preziuso, Marc Ribó, P. G. Prada Moroni, J. Kushida, Aldo Treves, Jose Luis Contreras, J. Krause, B. De Lotto, Masahiro Teshima, O. Tibolla, Juan Cortina, Martin Makariev, Oscar Blanch, Tomislav Terzić, A. Hadamek, J. Storz, Ivica Puljak, Alicia López-Oramas, Pierre Colin, J. Becerra González, Emanuele Paolo Farina, S. Bonnefoy, Aaron Dominguez, Mario Meucci, R. Mirzoyan, D. Eisenacher, E. Carmona, Daniel Ferenc, Thomas Bretz, S. N. Shore, Wlodek Bednarek, Alessandro Carosi, Ruben Lopez-Coto, Felix Spanier, D. Nakajima, C. Schultz, V. Scapin, Jose Miguel Miranda, F. Borracci, Wolfgang Rhode, Ignasi Reichardt, G. Maneva, R. Zanin, A. Saggion, Adrian Biland, J. Rico, R. Reinthal, L. Maraschi, Elina Lindfors, Daniel Mazin, K. Mallot, R. J. García López, Stefano Covino, S. Sun, Massimo Persic, A. Boller, L. Cossio, D. Tescaro, T. Krähenbühl, K. Saito, J. Masbou, M. I. Martínez, V. Kadenius, S. R. Gozzini, J. Rodriguez Garcia, Daniela Dorner, J., Aleksic, S., Ansoldi, L. A., Antonelli, P., Antoranz, A., Babic, U. B., de Almeida, J. A., Barrio, J. B., Gonzalez, W., Bednarek, K., Berger, E., Bernardini, A., Biland, O., Blanch, R. K., Bock, A., Boller, S., Bonnefoy, G., Bonnoli, F., Borracci, T., Bretz, E., Carmona, A., Carosi, D. C., Fidalgo, P., Colin, E., Colombo, J. L., Contrera, J., Cortina, L., Cossio, S., Covino, P., Da Vela, F., Dazzi, A., De Angeli, G., De Caneva, B., De Lotto, C. D., Mendez, M., Doert, A., Dominguez, D. D., Prester, D., Dorner, M., Doro, D., Eisenacher, D., Elsaesser, E., Farina, D., Ferenc, M. V., Fonseca, L., Font, K., Frantzen, C., Fruck, R. J. G., Lopez, M., Garczarczyk, D. G., Terrat, M., Gaug, G., Giavitto, N., Godinovic, A. G., Munoz, S. R., Gozzini, A., Hadamek, D., Hadasch, A., Herrero, J., Hose, D., Hrupec, W., Idec, V., Kadeniu, M. L., Knoetig, T., Krahenbuhl, J., Krause, J., Kushida, A. L., Barbera, D., Lela, N., Lewandowska, E., Lindfor, S., Lombardi, R., Lopez Coto, M., Lopez, A., Lopez Orama, E., Lorenz, I., Lozano, M., Makariev, K., Mallot, G., Maneva, N., Mankuzhiyil, K., Mannheim, L., Maraschi, B., Marcote, M., Mariotti, M., Martinez, J., Masbou, D., Mazin, U., Menzel, M., Meucci, J. M., Miranda, R., Mirzoyan, J., Moldon, A., Moralejo, P., Munar Adrover, D., Nakajima, A., Niedzwiecki, K., Nilsson, N., Nowak, R., Orito, A., Overkemping, S., Paiano, M., Palatiello, D., Paneque, R., Paoletti, J. M., Parede, S., Partini, M., Persic, F., Prada, P. G. P., Moroni, E., Prandini, S., Preziuso, I., Puljak, I., Reichardt, R., Reinthal, W., Rhode, M., Ribo, J., Rico, J. R., Garcia, S., Rugamer, A., Saggion, K., Saito, T., Saito, M., Salvati, K., Satalecka, V., Scalzotto, V., Scapin, C., Schultz, T., Schweizer, S. N., Shore, A., Sillanpaa, J., Sitarek, I., Snidaric, D., Sobczynska, F., Spanier, V., Stamatescu, A., Stamerra, J., Storz, S., Sun, T., Suric, L., Takalo, F., Tavecchio, P., Temnikov, T., Terzic, D., Tescaro, M., Teshima, J., Thaele, O., Tibolla, D. F., Torre, T., Toyama, A., Treve, M., Uellenbeck, P., Vogler, R. M., Wagner, Q., Weitzel, F., Zandanel, R., Zanin, A., Bouvier, M., Hayashida, H., Tajima, and Longo, Francesco
- Subjects
Photon ,General ,Non-thermal - gamma-ray burst ,Radiation mechanisms ,Astrophysics::High Energy Astrophysical Phenomena ,gamma-ray burst: general ,Hadron ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,general [gamma-ray burst] ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,law ,0103 physical sciences ,MAGIC (telescope) ,010306 general physics ,010303 astronomy & astrophysics ,Cherenkov radiation ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Physics ,ta115 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,radiation mechanisms: non-thermal ,non-thermal [radiation mechanisms] ,Afterglow ,gamma-rays bursts: general ,Space and Planetary Science ,ddc:520 ,Electrónica ,Física nuclear ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena ,Gamma-ray burst ,Fermi Gamma-ray Space Telescope - Abstract
Indications of a GeV component in the emission from GRBs are known since the EGRET observations during the 1990's and they have been confirmed by the data of the Fermi satellite. These results have, however, shown that our understanding of GRB physics is still unsatisfactory. The new generation of Cherenkov observatories and in particular the MAGIC telescope, allow for the first time the possibility to extend the measurement of GRBs from several tens up to hundreds of GeV energy range. Both leptonic and hadronic processes have been suggested to explain the possible GeV/TeV counterpart of GRBs. Observations with ground-based telescopes of very high energy photons (E>30 GeV) from these sources are going to play a key role in discriminating among the different proposed emission mechanisms, which are barely distinguishable at lower energies. MAGIC telescope observations of the GRB 090102 (z=1.547) field and Fermi Large Area Telescope (LAT) data in the same time interval are analysed to derive upper limits of the GeV/TeV emission. We compare these results to the expected emissions evaluated for different processes in the framework of a relativistic blast wave model for the afterglow. Simultaneous upper limits with Fermi and a Cherenkov telescope have been derived for this GRB observation. The results we obtained are compatible with the expected emission although the difficulties in predicting the HE and VHE emission for the afterglow of this event makes it difficult to draw firmer conclusions. Nonetheless, MAGIC sensitivity in the energy range of overlap with space-based instruments (above about 40 GeV) is about one order of magnitude better with respect to Fermi. This makes evident the constraining power of ground-based observations and shows that the MAGIC telescope has reached the required performance to make possible GRB multiwavelength studies in the very high energy range., 8 pages, 5 figures, 2 tables. Submitted to MNRAS
- Published
- 2014
- Full Text
- View/download PDF
29. Turbulence evolution in MHD plasmas
- Author
-
Felix Spanier, Ralf Kissmann, and M. Wisniewski
- Subjects
Physics ,Field (physics) ,Turbulence ,FOS: Physical sciences ,Plasma ,Mechanics ,Condensed Matter Physics ,Space Physics (physics.space-ph) ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Physics::Fluid Dynamics ,Interstellar medium ,Physics - Space Physics ,Compressibility ,Magnetohydrodynamics ,Anisotropy - Abstract
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence., Accepted for publication in Journal of Plasma Physics
- Published
- 2013
- Full Text
- View/download PDF
30. Particle Scattering off of Right-Handed Dispersive Waves
- Author
-
Patrick Kilian, Felix Spanier, and Cedric Schreiner
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010504 meteorology & atmospheric sciences ,Waves in plasmas ,Scattering ,FOS: Physical sciences ,Astronomy and Astrophysics ,Electron ,Low frequency ,Rest frame ,01 natural sciences ,Space Physics (physics.space-ph) ,Computational physics ,Scattering amplitude ,Amplitude ,Physics - Space Physics ,Space and Planetary Science ,0103 physical sciences ,Particle ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfv\'en waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, wellestablished analytic models derived in the framework of magnetostatic quasi-linear theory (QLT) can be used as a reference to validate simulation results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for the use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A Particle-in-Cell (PiC) code is employed to study wave-particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed., Comment: 44 pages, 11 figures, accepted by ApJS
- Published
- 2016
31. Advanced models for AGN emission
- Author
-
Felix Spanier, Matthias Weidinger, and Stephan Richter
- Subjects
Physics ,Acceleration ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Astrophysics ,Radiation ,Spatial dependence ,Neutrino ,Focus (optics) ,Fermi Gamma-ray Space Telescope - Abstract
Active Galactic Nuclei have been in the focus of gamma-ray telescopes for the past years. With the ever growing sample of AGN the need for physically motivated, self-consistent modeling is also growing. The major questions to be answered by models are: What are the main constituents of AGN jets? What are the acceleration mechanisms? Are AGN possible accelerators for UHECR and a possible source of UHE neutrinos? We will present new modeling approaches for AGN, which have a focus on the self-consistent approach. Two types of models have emerged from our work: A homogeneous model containing acceleration via Fermi mechanisms, leptonic and photo-hadronic radiation mechanisms and time variability. And a spatially extended model containing the same radiation processes, but spatially resolved shock structures and a non-isotropic particle distribution. The results contain a possible discrimination criteria for hadronic and leptonic radiation models and timing effects of spatial dependence.
- Published
- 2016
- Full Text
- View/download PDF
32. The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system
- Author
-
R. Zanin, Adrian Biland, I. Lozano, J. Rico, Masahiro Teshima, W. Idec, Takashi Saito, J. Krause, B. De Lotto, Nikola Godinovic, Benito Marcote, Stefano Ansoldi, I. Snidaric, David Fink, K. Mallot, R. J. García López, D. Corti, Alessandro Carosi, Mosè Mariotti, A.-K. Overkemping, J. M. Illa, Riccardo Paoletti, Massimo Persic, Gianluca Giavitto, A. González Muñoz, Reiko Orito, P. Temnikov, M. Palatiello, J. Becerra González, Marcel Strzys, Dario Hrupec, M. Bitossi, Ruben Lopez-Coto, Jose Luis Lemus, D. Nakajima, Elina Lindfors, E. Lorenz, Abelardo Moralejo, Saverio Lombardi, A. Treves, Vitaly Neustroev, M. Makariev, Thomas Bretz, Daniel Mazin, Jose Miguel Miranda, M. A. Lopez, S. Rügamer, Juan Abel Barrio, S. Schmidl, T. Steinbring, Francesco Dazzi, J. M. Paredes, Antonio Stamerra, C. Delgado Mendez, G. Maneva, Stefano Covino, B. Biasuzzi, A. Dettlaff, M. Hayashida, D. Hildebrand, Francesco Longo, G. De Caneva, D. Fidalgo, Daniela Dorner, Jose Luis Contreras, Wolfgang Rhode, M. I. Martínez, Marc Ribó, S. Bonnefoy, K. Saito, Natalia Lewandowska, Patrick Vogler, E. Colombo, M. Gaug, Juan Cortina, D. Tescaro, Roberto Cecchi, P. Bangale, H. Wetteskind, A. La Barbera, A. Deangelis, J. Herrera, Hidetoshi Kubo, Sabrina Einecke, S. R. Gozzini, Luis Ángel Tejedor, M. V. Fonseca, Hanna Kellermann, Koji Noda, Louis Antonelli, G. Bonnoli, J. Rodriguez Garcia, Elisa Bernardini, X. Paredes-Fortuny, J. Hose, U. Menzel, K. Kodani, J. Storz, Yusuke Konno, Christian Fruck, A. Sillanpää, D. Elsaesser, L. O. Takalo, F. Borracci, W. Haberer, H. Takami, Oscar Blanch, K. Frantzen, P. G. Prada Moroni, Diego F. Torres, W. Bednarek, Fabrizio Tavecchio, V. Kadenius, S. Paiano, Ll. Font, D. Garrido Terrats, A. Lorca, Karl Mannheim, O. Tibolla, Alicia López-Oramas, T. Schweizer, Felix Spanier, R. Mirzoyan, P. Munar-Adrover, D. Eisenacher, V. Scalzotto, Markus Garczarczyk, N. Mankuzhiyil, Juri Poutanen, Kyoshi Nishijima, D. Dominis Prester, Y. Hanabata, C. Schultz, V. Scapin, P. Antoranz, M. L. Knoetig, Ana Babić, Julia Thaele, E. Carmona, Kari Nilsson, M. Will, L. Maraschi, E. Prandini, Tomislav Terzić, R. Reinthal, M. Negrello, Damir Lelas, Dorota Sobczyńska, Ivica Puljak, Pierre Colin, E. de Oña Wilhelmi, Jelena Aleksić, A. Niedzwiecki, David Paneque, M. Barcelo, D. Galindo, Konstancja Satalecka, Michele Doro, Julian Sitarek, Daniela Hadasch, T. Toyama, Junko Kushida, P. Da Vela, J. Schlammer, Universitat de Barcelona, Aleksić, J, Ansoldi, S., Antonelli, L. A., Antoranz, P., Babic, A., Bangale, P., Barceló, M., Barrio, J. A., Becerra González, J., Bednarek, W., Bernardini, E., Biasuzzi, B., Biland, A., Bitossi, M., Blanch, O., Bonnefoy, S., Bonnoli, G., Borracci, F., Bretz, T., Carmona, E., Carosi, A., Cecchi, R., Colin, P., Colombo, E., Contreras, J. L., Corti, D., Cortina, J., Covino, S., Da Vela, P., Dazzi, F., Deangelis, A., De Caneva, G., De Lotto, B., De Oña Wilhelmi, E., Delgado Mendez, C., Dettlaff, A., Dominis Prester, D., Dorner, D., Doro, M., Einecke, S., Eisenacher, D., Elsaesser, D., Fidalgo, D., Fink, D., Fonseca, M. V., Font, L., Frantzen, K., Fruck, C., Galindo, D., García López, R. J., Garczarczyk, M., Garrido Terrats, D., Gaug, M., Giavitto, G., Godinović, N., González Muñoz, A., Gozzini, S. R., Haberer, W., Hadasch, D., Hanabata, Y., Hayashida, M., Herrera, J., Hildebrand, D., Hose, J., Hrupec, D., Idec, W., Illa, J. M., Kadenius, V., Kellermann, H., Knoetig, M. L., Kodani, K., Konno, Y., Krause, J., Kubo, H., Kushida, J., La Barbera, A., Lelas, D., Lemus, J. L., Lewandowska, N., Lindfors, E., Lombardi, S., Longo, Francesco, López, M., López Coto, R., López Oramas, A., Lorca, A., Lorenz, E., Lozano, I., Makariev, M., Mallot, K., Maneva, G., Mankuzhiyil, N., Mannheim, K., Maraschi, L., Marcote, B., Mariotti, M., Martínez, M., Mazin, D., Menzel, U., Miranda, J. M., Mirzoyan, R., Moralejo, A., Munar Adrover, P., Nakajima, D., Negrello, M., Neustroev, V., Niedzwiecki, A., Nilsson, K., Nishijima, K., Noda, K., Orito, R., Overkemping, A., Paiano, S., Palatiello, Michele, Paneque, D., Paoletti, R., Paredes, J. M., Paredes Fortuny, X., Persic, M., Poutanen, J., Prada Moroni, P. G., Prandini, E., Puljak, I., Reinthal, R., Rhode, W., Ribó, M., Rico, J., Rodriguez Garcia, J., Rügamer, S., Saito, T., Saito, K., Satalecka, K., Scalzotto, V., Scapin, V., Schultz, C., Schlammer, J., Schmidl, S., Schweizer, T., Sillanpää, A., Sitarek, J., Snidaric, I., Sobczynska, D., Spanier, F., Stamerra, A., Steinbring, T., Storz, J., Strzys, M., Takalo, L., Takami, H., Tavecchio, F., Tejedor, L. A., Temnikov, P., Terzić, T., Tescaro, D., Teshima, M., Thaele, J., Tibolla, O., Torres, D. F., Toyama, T., Treves, A., Vogler, P., Wetteskind, H., Will, M., and Zanin, R.
- Subjects
Astrofísica ,Physics::Instrumentation and Detectors ,MAGIC ,Imaging Atmospheric Cherenkov Telescopes ,Instruments ,TeV astrophysics ,Very High Energy Gamma Rays ,Stereoscopy ,Astrophysics ,01 natural sciences ,law.invention ,Raigs gamma ,law ,Overall performance ,MAGIC (telescope) ,TeV ,astrophysics ,CRAB-NEBULA ,PERFORMANCE ,STEREO ,010303 astronomy & astrophysics ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrument ,Upgrade ,ddc:540 ,Electrónica ,Física nuclear ,Astrophysics::Earth and Planetary Astrophysics ,Electricidad ,Astrophysics - Instrumentation and Methods for Astrophysics ,TeV astrophysic ,Noise (radio) ,Computer hardware ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Telescope ,0103 physical sciences ,Very High Energy Gamma Ray ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,ta115 ,Telescopis ,010308 nuclear & particles physics ,business.industry ,Gamma rays ,Cherenkov Telescope Array ,Imaging Atmospheric Cherenkov Telescope ,business ,astro-ph.IM ,Telescopes - Abstract
The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. The telescopes are designed to measure Cherenkov light from air showers initiated by gamma rays in the energy regime from around 50 GeV to more than 50 TeV. The two telescopes were built in 2004 and 2009, respectively, with different cameras, triggers and readout systems. In the years 2011-2012 the MAGIC collaboration undertook a major upgrade to make the stereoscopic system uniform, improving its overall performance and easing its maintenance. In particular, the camera, the receivers and the trigger of the first telescope were replaced and the readout of the two telescopes was upgraded. This paper (Part I) describes the details of the upgrade as well as the basic performance parameters of MAGIC such as raw data treatment, dead time of the system, linearity in the electronic chain and sources of noise. In Part II, we describe the physics performance of the upgraded system., 19 pages, 18 figures, accepted by Astroparticle Physics
- Published
- 2016
- Full Text
- View/download PDF
33. Plasma Waves as a Benchmark Problem
- Author
-
Patrick Kilian, Patricio A. Muñoz, Cedric Schreiner, and Felix Spanier
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Field (physics) ,FOS: Physical sciences ,Space physics ,Plasma ,Computational Physics (physics.comp-ph) ,Condensed Matter Physics ,Notation ,01 natural sciences ,Physics - Plasma Physics ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,Cover (topology) ,0103 physical sciences ,Benchmark (computing) ,Code (cryptography) ,Fraction (mathematics) ,Statistical physics ,Physics - Computational Physics ,0105 earth and related environmental sciences - Abstract
A large number of wave modes exist in a magnetized plasma. Their properties are determined by the interaction of particles and waves. In a simulation code, the correct treatment of field quantities and particle behaviour is essential to correctly reproduce the wave properties. Consequently, plasma waves provide test problems that cover a large fraction of the simulation code. The large number of possible wave modes and the freedom to choose parameters make the selection of test problems time consuming and comparison between different codes difficult. This paper therefore aims to provide a selection of test problems, based on different wave modes and with well-defined parameter values, that is accessible to a large number of simulation codes to allow for easy benchmarking and cross-validation. Example results are provided for a number of plasma models. For all plasma models and wave modes that are used in the test problems, a mathematical description is provided to clarify notation and avoid possible misunderstanding in naming.
- Published
- 2016
- Full Text
- View/download PDF
34. Semi-analytical model of cosmic ray electron transport
- Author
-
Alex Ivascenko and Felix Spanier
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,education.field_of_study ,Physics and Astronomy (miscellaneous) ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electron ,Prolate spheroidal coordinates ,Computational physics ,Momentum ,Pion ,Astrophysics - High Energy Astrophysical Phenomena ,education ,Astrophysics::Galaxy Astrophysics ,Lepton ,Fermi Gamma-ray Space Telescope - Abstract
We present a numerical extension to the analytical propagation model introduced in Hein and Spanier (2008) to describe the leptonic population in the galactic disc. The model is used to derive a possible identification of the components that contribute to the leptonic cosmic ray spectrum, as measured by PAMELA, Fermi and HESS, with an emphasis on secondary e+ - e- production in collisions of cosmic ray particles with ambient interstellar medium (ISM). We find that besides secondaries, an additional source symmetric in e+ and e- production is needed to explain both the PAMELA anomaly and the Fermi bump, assuming a power-law primary electron spectrum. Our model also allows us to derive constraints for some properties of the ISM., 5 pages, 2 figures
- Published
- 2011
- Full Text
- View/download PDF
35. Particle acceleration in Blazars
- Author
-
Felix Spanier and Matthias Weidinger
- Subjects
Shock wave ,Particle acceleration ,Physics ,Acceleration ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,Spectral energy distribution ,Radiant energy ,Astronomy and Astrophysics ,Astrophysics ,Blazar ,Fermi Gamma-ray Space Telescope ,Shock (mechanics) - Abstract
Understanding the variable emission of blazars observed with gamma-ray telescopes and Fermi has become a major challenge for theoretical models of particle acceleration. Here, we introduce a novel time-dependent emission model in which the maximum energy of particles is determined from a balance between Fermi type I and II acceleration energy gains and radiative energy losses, allowing for an explanation of both the characteristic spectral energy distribution of blazars and their intrinsic sub-hour variability. Additionally, we can determine the physical condition of the emitting plasma concerning its turbulence and typical shock speeds.
- Published
- 2010
- Full Text
- View/download PDF
36. Weak turbulence theory of dispersive waves in the solar corona
- Author
-
Felix Spanier and Rami Vainio
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Coronal loop ,Plasma ,01 natural sciences ,Corona ,Coronal radiative losses ,Nanoflares ,Solar wind ,Space and Planetary Science ,Physics::Space Physics ,0103 physical sciences ,Coronal mass ejection ,Astrophysics::Solar and Stellar Astrophysics ,Helioseismology ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
The interaction of plasma waves plays a crucial role in the dynamics of weakly turbulent plasmas. So far the interaction of non-dispersive waves has been studied. In this paper the theory is extended to dispersive waves. It is well known that dispersive waves may be found in the solar corona, where they contribute to the heating of the corona. Here the possible interactions in the solar corona are described and the interaction rates are derived in the framework of Hall MHD.
- Published
- 2010
- Full Text
- View/download PDF
37. MODELING THE EMISSION FROM BLAZAR JETS: THE CASE OF PKS 2155-304
- Author
-
Matthias Weidinger and Felix Spanier
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,PKS 2155-304 ,Physics ,Jet (fluid) ,Astrophysics::High Energy Astrophysical Phenomena ,Time evolution ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Acceleration ,Space and Planetary Science ,Radiative transfer ,Spectral energy distribution ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar ,Mathematical Physics ,Fermi Gamma-ray Space Telescope - Abstract
A time-dependent Synchrotron Self Compton model (SSC) which is able to motivate the used electron spectra of many SSC models as a balance of acceleration and radiative losses is introduced. Using stochastic acceleration as well as Fermi-I processes even electron spectra with a rising part can be explained, which are mandatory to fit the lowstate spectral energy distribution (SED) of PKS 2155-304 as constrained from Fermi LAT observations. Due to the time resolution the outburst of PKS 2155-304 observed by H.E.S.S. in 2006 can be modelled selfconsistently as fluctuations along the jet axis without introducing new sets of parameters. The model makes the time evolution of the SED also accessible. Hence giving new insights into the flaring behavior of blazars., 6 pages, 2 figures; to appear in the proceedings of the conference: "High Energy Phenomena in Relativistic Outflows (HEPRO) II", held in Buenos Aires, Argentina, October 26-30 2009 (IJMPD)
- Published
- 2010
- Full Text
- View/download PDF
38. Three-Wave Interactions of Dispersive Plasma Waves Propagating Parallel to the Magnetic Field
- Author
-
Felix Spanier and Rami Vainio
- Subjects
Health (social science) ,010504 meteorology & atmospheric sciences ,General Computer Science ,General Mathematics ,FOS: Physical sciences ,Electron ,Astrophysics ,01 natural sciences ,Education ,Physics::Plasma Physics ,Dispersion relation ,0103 physical sciences ,Wavenumber ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,General Environmental Science ,Physics ,Astrophysics (astro-ph) ,General Engineering ,Resonance ,Transverse wave ,Plasma ,Computational physics ,Magnetic field ,General Energy ,Physics::Space Physics ,Longitudinal wave - Abstract
Three-wave interactions of plasma waves propagating parallel to the mean magnetic field at frequencies below the electron cyclotron frequency are considered. We consider Alfv\'en--ion-cyclotron waves, fast-magnetosonic--whistler waves, and ion-sound waves. Especially the weakly turbulent low-beta plasmas like the solar corona are studied, using the cold-plasma dispersion relation for the transverse waves and the fluid-description of the warm plasma for the longitudinal waves. We analyse the resonance conditions for the wave frequencies $\omega$ and wavenumbers $k$, and the interaction rates of the waves for all possible combinations of the three wave modes, and list those reactions that are not forbidden., Comment: accepted for publication in Advanced Science Letters
- Published
- 2009
- Full Text
- View/download PDF
39. The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud
- Author
-
J.-P. Lenain, A. Foerster, S. Krakau, F. Schüssler, Jim Hinton, Andrew M. Taylor, Julien Lefaucheur, Alison Mitchell, Matthias Weidinger, A. Djannati-Ataï, D. Klochkov, Martin Ward, Nu. Komin, M. Panter, M. Renaud, Alicja Wierzcholska, T. Garrigoux, Ignasi Reichardt, A. A. Zdziarski, S. Rosier-Lees, S. Schwarzburg, S. Balenderan, Markus Holler, Felix Jankowsky, M. Mohamed, Felix Aharonian, J. Becker-Tjus, H. Laffon, J. Mehault, L. O’C. Drury, U. Katz, P. Espigat, Chia-Chun Lu, K. Valerius, F. Krayzel, Igor Oya, J. Dyks, Francois Brun, Riaan Steenkamp, Werner Hofmann, M. Chrétien, G. Heinzelmann, N. Maxted, Tanya Edwards, Helen Poon, M. Füßling, C. B. Rulten V. Sahakian, Faical Ait Benkhali, Svenja Carrigan, A. Lopatin, Y. A. Gallant, H.-S. Zechlin, D. Gottschall, Anne Lemiere, M. J. Vorster, E. Birsin, Sarah Kaufmann, M. Gajdus, K. Kosack, Konrad Bernlöhr, R. C. G. Chaves, S. J. Nolan, Pascal Vincent, G. Pühlhofer, Axel Donath, D. Kolitzus, R. D. Parsons, G. Pelletier, S. Bernhard, Christian Stegmann, M. Mayer, J. Perez, A. Reimer, Johan Bregeon, K. Morå, Christo Venter, B. van Soelen, M. Kieffer, M. Zacharias, O. Hervet, Robert Wagner, Joachim Hahn, Mateusz Janiak, I. Jung, B. Rudak, Kathrin Egberts, Thomas Lohse, A. G. Akhperjanian, M. V. Fernandes, Andreas Quirrenbach, B. Degrange, A. Marcowith, S. Schwemmer, Andrea Santangelo, Gianluca Giavitto, Jacek Niemiec, C. Jahn, Michael Punch, P.P. Krüger, A. Wörnlein, S. Häffner, M. Ostrowski, A. Ivascenko, Jacco Vink, Peter Eger, S. J. Fegan, R. Moderski, Aion Viana, Sabrina Casanova, Olaf Reimer, Guillaume Dubus, H. J. Voelk, Denis Wouters, A. Zech, U. Schwanke, Frank M. Rieger, P. M. Chadwick, Krzysztof Katarzynski, Gilles Maurin, Catherine Boisson, Vincent Marandon, B. Opitz, M.-H. Grondin, Markus Böttcher, Reinhard Schlickeiser, Pol Bordas, P.-O. Petrucci, David Berge, David Sánchez, M. Grudzińska, N. W. Pekeur, Gavin Rowell, M. Bryan, D. Zaborov, R. de los Reyes, André Schulz, M. S. Meyer, C. Romoli, H. Odaka, M. Dalton, L. B. Oakes, E. O. Angüner, Johannes Veh, Thomas Murach, S. Colafrancesco, Dieter Horns, Michael Backes, Quirin Weitzel, J. Bolmont, C. Farnier, W. Kluźniak, M. Tluczykont, G. Spengler, Victor Zabalza, Daniela Hadasch, U. Menzler, B. Khélifi, G. Hermann, L. Rob, V. Lefranc, D. Fernandez, T. J. L. McComb, Andreas Hillert, M. A. Kastendieck, G. Vasileiadis, K. Dutson, F. Spies, P. Brun, C. Trichard, I. D. Davids, P. de Wilt, P. J. Meintjes, Gilles Henri, Y. Cui, C. Couturier, David Salek, E. Moulin, Tomasz Bulik, A. Jacholkowska, B. Peyaud, W. Domainko, R. White, A. Balzer, Christoph Deil, Felix Spanier, S. Klepser, Nachiketa Chakraborty, M. Lemoine-Goumard, R. Chalme-Calvet, P. Wagner, J.-P. Tavernet, Francesca Volpe, G. Lamanna, Jan Conrad, F. Stinzing, B. Giebels, G. Fontaine, Ramin Marx, A. Fiasson, T. Vuillaume, S. J. Wagner, P. Willmann, K. Stycz, Michal Dyrda, J. F. Glicenstein, M. de Naurois, Ruizhi Yang, Thomas Tavernier, Yvonne Becherini, Petter Hofverberg, F. Feinstein, Marek Jamrozy, Stefan Ohm, Helene Sol, S. Pita, J. Harris, Stefano Gabici, Regis Terrier, Ł. Stawarz, I. Sushch, S. Raab, A. Abramowski, M. Paz Arribas, J. Biteau, A. Barnacka, G. Cologna, C. van Eldik, H.E.S.S. Collaboration, Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique (ex SAP) (DAP), HESS, Département de Physique des Particules (ex SPP) (DPhP), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Superbubble ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Pulsar wind nebula ,Pulsar ,0103 physical sciences ,Satellite galaxy ,Astrophysics::Solar and Stellar Astrophysics ,Large Magellanic Cloud ,Supernova remnant ,HESS - Abteilung Hofmann ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Multidisciplinary ,010308 nuclear & particles physics ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Institut für Physik und Astronomie ,Astronomy ,Galaxy ,Supernova ,ddc:500 ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble., Published in Science Magazine (Jan. 23, 2015). This ArXiv version has the supplementary online material incorporated as an appendix to the main paper
- Published
- 2015
- Full Text
- View/download PDF
40. PICPANTHER: A simple, concise implementation of the relativistic moment implicit Particle-in-Cell method
- Author
-
Andreas M. Kempf, Felix Spanier, Patrick Kilian, Urs Ganse, and Cedric Schreiner
- Subjects
Implicit function ,Message Passing Interface ,General Physics and Astronomy ,FOS: Physical sciences ,Domain decomposition methods ,Parallel computing ,Solver ,Computational Physics (physics.comp-ph) ,computer.software_genre ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,Hardware and Architecture ,Particle Mesh ,Calculus ,Compiler ,Physics - Computational Physics ,computer ,Mathematics ,Test data ,Sparse matrix - Abstract
A three-dimensional, parallelized implementation of the electromagnetic relativistic moment implicit particle-in-cell method in Cartesian geometry (Noguchi et. al., 2007) is presented. Particular care was taken to keep the C++11 codebase simple, concise, and approachable. GMRES is used as a field solver and during the Newton-Krylov iteration of the particle pusher. Drifting Maxwellian problem setups are available while more complex simulations can be implemented easily. Several test runs are described and the code's numerical and computational performance is examined. Weak scaling on the SuperMUC system is discussed and found suitable for large-scale production runs., Comment: 29 pages, 8 figures
- Published
- 2015
- Full Text
- View/download PDF
41. Search for dark matter annihilation signatures in H.E.S.S. observations of dwarf spheroidal galaxies
- Author
-
S. Rosier-Lees, Jacco Vink, Sabrina Casanova, H. Sano, D. Gottschall, P. Vincent, M. J. Vorster, Marie-Hélène Grondin, Christo Venter, V. Sahakian, M. de Naurois, S. J. Fegan, Petter Hofverberg, Denis Wouters, Michael Punch, Stefano Gabici, C. Jahn, Svenja Carrigan, Tanya Edwards, R. Moderski, A. Zech, Quirin Weitzel, G. Fontaine, A. Jacholkowska, J. Lau, A. Ivascenko, I. D. Davids, Y. Cui, E. Birsin, Y. A. Gallant, H.-S. Zechlin, Robert Wagner, Thomas Lohse, W. Kluźniak, J. Becker Tjus, T. Vuillaume, I. Reichardt, H. Laffon, F. Feinstein, Andreas Quirrenbach, F. Krayzel, S. Krakau, G. Heinzelmann, J. Bolmont, Alicja Wierzcholska, Ramin Marx, C. Couturier, D. Fernandez, M. Grudzińska, N. W. Pekeur, Axel Donath, Christian Stegmann, Stefan Wagner, S. Schwarzburg, M. Kieffer, Martin Ward, Cameron B Rulten, P. Wagner, S. Balenderan, P. Willmann, Vincent Marandon, Michal Dyrda, F. Ait Benkhali, M. A. Kastendieck, A. Fiasson, Markus Holler, Andrew M. Taylor, P. P. Krueger, Nachiketa Chakraborty, André Schulz, J. Méhault, Michael Zacharias, S. Schwemmer, Werner Hofmann, Michał Ostrowski, Michael Backes, Emmanuel Moulin, Felix Aharonian, G. Vasileiadis, Dieter Horns, J. Dyks, Anna Barnacka, Ł. Stawarz, O. Hervet, T. Garrigoux, J. Biteau, R. D. Parsons, Jan Conrad, Andrea Santangelo, A. A. Zdziarski, R. C. G. Chaves, K. Valerius, Heinrich J. Völk, Alexandre Marcowith, D. Kolitzus, Pierre Brun, Julien Lefaucheur, Manuel Meyer, Mateusz Janiak, K. Morå, Helen Poon, Gilles Henri, Marek Jamrozy, Pierre-Olivier Petrucci, W. Domainko, A. Wörnlein, M. Panter, A. Balzer, David Berge, Gianluca Giavitto, A. Lopatin, David Sanchez, Guy Pelletier, Ruizhi Yang, L. O'c. Drury, D. Klochkov, A. Djannati-Ataï, A. Förster, S. Häffner, Helene Sol, Stefan Ohm, Uli Katz, S. Pita, J.-P. Lenain, S. Bernhard, Aion Viana, Alison Mitchell, B. van Soelen, B. Rudak, Kathrin Egberts, S. Klepser, B. Degrange, Frank M. Rieger, J. Harris, C. Romoli, Guillaume Dubus, K. Bernloehr, Gavin Rowell, M. Bryan, Matthias Weidinger, David Salek, S. Colafrancesco, Reinhard Schlickeiser, Karl Kosack, Tomasz Bulik, B. Opitz, D. Zaborov, T. Tavernier, R. de los Reyes, Pol Bordas, Yvonne Becherini, F. Stinzing, M. Dalton, B. Giebels, Johan Bregeon, P. M. Chadwick, J.-P. Tavernet, G. Maurin, E. O. Angüner, M. Paz Arribas, M. Mayer, M. Tluczykont, C. Farnier, U. Menzler, K. Dutson, F. Spies, L. Oakes, Ullrich Schwanke, N. Maxted, Francesca Volpe, M. Gajdus, B. Khélifi, Y. Fukui, G. Hermann, Regis Terrier, F. Schüssler, Marianne Lemoine-Goumard, S. J. Nolan, Joachim Hahn, V. Lefranc, Victor Zabalza, A. G. Akhperjanian, R. Chalme-Calvet, Satoshi Yoshiike, Andreas Hillert, R. Steenkamp, K. Stycz, Christoph Deil, S. Raab, A. Abramowski, Catherine Boisson, J. F. Glicenstein, Jim Hinton, Nu. Komin, H. Odaka, M. Füßling, Sarah Kaufmann, J. Veh, Markus Böttcher, T. J. L. McComb, B. Peyaud, R. White, P. J. Meintjes, Francois Brun, M. Chrétien, P. deWilt, K. Katarzyński, P. Espigat, I. Jung-Richardt, I. Oya, Jacek Niemiec, A. Lemière, Olaf Reimer, Thomas Murach, G. Lamanna, Felix Spanier, G. Cologna, C. van Eldik, Felix Jankowsky, M. Renaud, Chia-Chun Lu, G. Pühlhofer, A. Reimer, Iurii Sushch, T. Fukuda, D. Hadasch, G. Spengler, M. Mohamed, M. V. Fernandes, C. Trichard, Peter Eger, H.E.S.S. Collaboration, Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), HESS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules)
- Subjects
Nuclear and High Energy Physics ,Milky Way ,Astrophysics::High Energy Astrophysical Phenomena ,Dwarf galaxy problem ,Hochenergie-Astrophysik Theorie - Abteilung Hofmann ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Black dwarf ,Galaxy group ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,ddc:530 ,010303 astronomy & astrophysics ,HESS - Abteilung Hofmann ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Institut für Physik und Astronomie ,Astronomy ,Galaxy ,Dwarf spheroidal galaxy ,Elliptical galaxy ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore they are amongst the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the re-analysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross-section applicable to Weakly Interacting Massive Particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1-2 TeV masses with a cross-section upper bound of ~3.9x10-24 cm^3 s-1 at a 95% confidence level., Comment: to be published in Physical Review D journal; Contact authors: E. Birsin, C. Farnier, G. Lamanna
- Published
- 2014
- Full Text
- View/download PDF
42. Black hole lightning due to particle acceleration at subhorizon scales
- Author
-
J. Kushida, Jose Luis Contreras, Juan Cortina, J. Hose, R. Reinthal, D. Elsaesser, Michele Palatiello, P. Munar-Adrover, Elina Lindfors, Damir Lelas, Dario Hrupec, R. Zanin, Daniel Mazin, D. Nakajima, Victor Stamatescu, M. A. Lopez, Dorota Sobczyńska, Adrian Biland, K. Nishijima, M. Uellenbeck, D. Garrido Terrats, D. Dominis Prester, J. Rico, V. Scalzotto, Christian Fruck, E. Prandini, Stefano Covino, P. G. Prada Moroni, Francesco Longo, F. Borracci, P. Da Vela, Nikola Godinovic, Benito Marcote, Patrick Vogler, Ana Babić, D. Galindo, Yusuke Konno, O. Tibolla, I. Snidaric, M. Makariev, D. Tescaro, P. Temnikov, Ivica Puljak, M. V. Fonseca, A. Sillanpää, Jörn Wilms, G. Bonnoli, L. Maraschi, Pierre Colin, C. Delgado Mendez, S. R. Gozzini, E. de Oña Wilhelmi, Konstancja Satalecka, Julian Sitarek, Michele Doro, A. Treves, Kari Nilsson, Tomislav Terzić, N. Mankuzhiyil, Daniela Hadasch, Jelena Aleksić, Oscar Blanch, Alessandro Carosi, E. Lorenz, Ruben Lopez-Coto, T. Toyama, A. Niedzwiecki, I. Lozano, G. De Caneva, M. Hayashida, David Paneque, S. Bonnefoy, A. González Muñoz, T. Schweizer, Jose Miguel Miranda, E. Colombo, Francesco Dazzi, Masahiro Teshima, G. Maneva, Felix Spanier, Y. Hanabata, Daniela Dorner, C. Schultz, V. Scapin, Miriam Lucio Martinez, S. Rügamer, Juan Abel Barrio, M. Gaug, W. Bednarek, Fabrizio Tavecchio, Ll. Font, Juri Poutanen, Stefano Ansoldi, J. Herrera, Koji Noda, B. Biasuzzi, U. Bach, Marc Ribó, Riccardo Paoletti, P. Antoranz, Elisa Bernardini, Hajime Takami, P. Bangale, J. M. Paredes, Felicia Krauß, Hidetoshi Kubo, Antonio Stamerra, Julia Thaele, K. Kodani, E. Carmona, L. O. Takalo, Louis Antonelli, J. Storz, A. De Angelis, D. Hildebrand, Mosè Mariotti, A.-K. Overkemping, Sabrina Einecke, Saverio Lombardi, J. Rodriguez Garcia, K. Saito, W. Idec, K. Frantzen, V. Kadenius, S. Paiano, Karl Mannheim, Alicia López-Oramas, Natalia Lewandowska, R. Mirzoyan, A. La Barbera, D. Eisenacher, Markus Garczarczyk, X. Paredes-Fortuny, J. Becerra González, Abelardo Moralejo, T. Steinbring, Hanna Kellermann, U. Menzel, Diego F. Torres, J. Krause, B. De Lotto, Takashi Saito, Reiko Orito, Eduardo Ros, Marcel Strzys, Matthias Kadler, K. Mallot, R. J. García López, Massimo Persic, R. Schulz, Thomas Bretz, S. N. Shore, Wolfgang Rhode, Aleksić, J, Ansoldi, S., Antonelli, L. A., Antoranz, P., Babic, A., Bangale, P., Barrio, J. A., González, J. Becerra, Bednarek, W., Bernardini, E., Biasuzzi, B., Bil, A., Blanch, O., Bonnefoy, S., Bonnoli, G., Borracci, F., Bretz, T., Carmona, E., Carosi, A., Colin, P., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., Da Vela, P., Dazzi, F., De Angelis, A., De Caneva, G., De Lotto, B., De Oña Wilhelmi, E., Mendez, C. Delgado, Prester, D. Domini, Dorner, D., Doro, M., Einecke, S., Eisenacher, D., Elsaesser, D., Fonseca, M. V., Font, L., Frantzen, K., Fruck, C., Galindo, D., López, R. J. García, Garczarczyk, M., Terrats, D. Garrido, Gaug, M., Godinoviæ, N., Muñoz, A. González, Gozzini, S. R., Hadasch, D., Hanabata, Y., Hayashida, M., Herrera, J., Hildebr, D., Hose, J., Hrupec, D., Idec, W., Kadenius, V., Kellermann, H., Kodani, K., Konno, Y., Krause, J., Kubo, H., Kushida, J., Barbera, A. La, Lelas, D., Lewowska, N., Lindfors, E., Lombardi, S., Longo, Francesco, López, M., López Coto, R., López Oramas, A., Lorenz, E., Lozano, I., Makariev, M., Mallot, K., Maneva, G., Mankuzhiyil, N., Mannheim, K., Maraschi, L., Marcote, B., Mariotti, M., Martínez, M., Mazin, D., Menzel, U., Mira, J. M., Mirzoyan, R., Moralejo, A., Munar Adrover, P., Nakajima, D., Niedzwiecki, A., Nilsson, K., Nishijima, K., Noda, K., Orito, R., Overkemping, A., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Paredes Fortuny, X., Persic, M., Poutanen, J., Moroni, P. G. Prada, Prini, E., Puljak, I., Reinthal, R., Rhode, W., Ribó, M., Rico, J., Garcia, J. Rodriguez, Rügamer, S., Saito, T., Saito, K., Satalecka, K., Scalzotto, V., Scapin, V., Schultz, C., Schweizer, T., Shore, S. N., Sillanpää, A., Sitarek, J., Snidaric, I., Sobczynska, D., Spanier, F., Stamatescu, V., Stamerra, A., Steinbring, T., Storz, J., Strzys, M., Takalo, L., Takami, H., Tavecchio, F., Temnikov, P., Terzić, T., Tescaro, D., Teshima, M., Thaele, J., Tibolla, O., Torres, D. F., Toyama, T., Treves, A., Uellenbeck, M., Vogler, P., Zanin, R., Kadler, M., Schulz, R., Ros, E., Bach, U., Krauß, F., and Wilms, J.
- Subjects
Black Holes ,Radio galaxy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Very High Energy Gamma Astronomy ,Black Holes, Very High Energy Gamma Astronomy, Active Galactic Nuclei ,X-shaped radio galaxy ,supermassive black hole ,jet formation ,IC 310 ,MAGIC telescopes ,Astrophysics::Galaxy Astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Supermassive black hole ,ta115 ,Multidisciplinary ,Active Galactic Nuclei ,Astronomy and Astrophysics ,Galaxy ,Intermediate-mass black hole ,Stellar black hole ,Electrónica ,Física nuclear ,ddc:500 ,Spin-flip ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena ,Schwarzschild radius - Abstract
Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here, we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20\% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet., 19 pages, 10 figures, includes Supplementary Materials
- Published
- 2014
- Full Text
- View/download PDF
43. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010
- Author
-
E. Pueschel, J. Hose, Svetlana G. Jorstad, M. F. Aller, David A. Williams, G. H. Sembroski, D. Nakajima, M. Strzys, R. Welsing, A. Archer, E. Colombo, B. Biasuzzi, F. Borracci, Stefano Ansoldi, Riccardo Paoletti, I. Telezhinsky, Jamie Holder, D. Elsaesser, D. Staszak, Dario Hrupec, L. Ciupik, L. C. Reyes, G. Bonnoli, K. Ragan, M. A. Lopez, N. Galante, Hajime Takami, J. M. Paredes, P. T. Reynolds, Natalia Lewandowska, Hugh D. Aller, L. O. Takalo, G. H. Gillanders, T. Schweizer, Mosè Mariotti, Wystan Benbow, A.-K. Overkemping, D. Hadasch, Victor Stamatescu, J. Biteau, Paul S. Smith, Gordon T. Richards, Wei Cui, A. La Barbera, Sinéad M. Griffin, E. Roache, A. López-Oramas, S. Rügamer, Juan Abel Barrio, J. A. Ros, O. M. Kurtanidze, Alessandro Carosi, Ruben Lopez-Coto, X. Paredes-Fortuny, Mark Gurwell, U. Menzel, Saverio Lombardi, Calvin A. Johnson, P. Kar, M. Villata, K. Mallot, R. J. García López, Felix Spanier, M. Kertzman, A. C. S. Readhead, E. Prandini, D. Galindo, Merja Tornikoski, Yusuke Konno, Diego F. Torres, M. G. Nikolashvili, D. Eisenacher, Antonio Stamerra, K. Kodani, Givi N. Kimeridze, Julian Sitarek, Lorand A. Sigua, K. Nishijima, J. V. Tucci, A. Cesarini, M. Perri, P. Kaaret, J. Storz, D. Dominis Prester, Martin Pohl, C. M. Raiteri, Markus Garczarczyk, C. Fruck, A. Sillanpää, N. Håkansson, M. Makariev, T. Toyama, L. Maraschi, A. Pichel, Jose Miguel Miranda, Matteo Cerruti, Konstancja Satalecka, J. Becerra González, P. Antoranz, Amy Furniss, S. P. Wakely, B. Jordan, Elena G. Larionova, Xuhui Chen, H. C. Lin, Geza Gyuk, Louis Antonelli, Michele Doro, Abelardo Moralejo, Jelena Aleksić, S. McArthur, M. L. Knoetig, P. G. Prada Moroni, P. Munar-Adrover, Ivica Puljak, E. Collins-Hughes, K. Meagher, Nikola Godinovic, Benito Marcote, T. Steinbring, W. Idec, M. V. Fonseca, Pierre Colin, P. Temnikov, M. Hayashida, Patrick Vogler, J. Tyler, A. Niedzwiecki, C. Schultz, V. Scapin, J. H. Buckley, P. Moriarty, Tomislav Terzić, K. Berger, T. Sakamoto, C. Delgado Mendez, S. R. Gozzini, B. McBreen, O. Tibolla, Shan Sun, E. de Oña Wilhelmi, Ivan S. Troitsky, David Paneque, I. Snidaric, Marc Ribó, P. Da Vela, D. Hildebrand, B. Steinke, Steven N. Shore, Q. Feng, K. Frantzen, Massimo Persic, Hidetoshi Kubo, A. Boller, D. A. Morozova, A. Wilhelm, R. Reinthal, Thomas Bretz, Sofia O. Kurtanidze, Kari Nilsson, Elina Lindfors, Justin D. Finke, J. Krause, B. De Lotto, Walter Max-Moerbeck, K. Saito, Razmik Mirzoyan, U. Barres de Almeida, A. González Muñoz, V. Kadenius, Damir Lelas, N. Mankuzhiyil, J. P. Finley, J. S. Perkins, Wen Ping Chen, S. Paiano, E. Lorenz, Karl Mannheim, H. Prokoph, Hanna Kellermann, Daniel Mazin, I. Lozano, Dorota Sobczyńska, J. D. Eisch, Wolfgang Rhode, Daniela Dorner, M. Palatiello, Joseph Moody, Lucy Fortson, M. I. Martínez, M. Gaug, P. Bangale, G. De Caneva, J. Herrera, Matthias Beilicke, Koji Noda, J. Millis, Abraham D. Falcone, Francesco Dazzi, Karlen Shahinyan, Elisa Bernardini, S. Bonnefoy, Sabrina Einecke, J. Rodriguez Garcia, W. Bednarek, Fabrizio Tavecchio, Ll. Font, A. C. Sadun, Anne Lähteenmäki, Stefano Covino, M. J. Lang, A. Varlotta, Masahiro Teshima, A. McCann, Ekaterina Koptelova, A. C. Rovero, J. Kushida, D. Tescaro, Jose Luis Contreras, G. Hughes, M. Uellenbeck, Takashi Saito, Y. Hanabata, A. Popkow, Juan Cortina, V. Bugaev, David Kieda, Reiko Orito, S. Buson, J. L. Richards, Ann E. Wehrle, D. Garrido Terrats, P. Fortin, Oscar Blanch, Ralph Bird, S. Archambault, Valeri M. Larionov, V. Scalzotto, Ana Babić, Julia Thaele, E. Carmona, A. De Angelis, A. Treves, R. A. Ong, G. Maneva, R. Zanin, A. N. Otte, Adrian Biland, J. Rico, Alan P. Marscher, Universitat de Barcelona, Department of Radio Science and Engineering, Aalto-yliopisto, Aalto University, and ~
- Subjects
extragalactic background light ,Ciencias Físicas ,spectral energy-distribution ,Flux ,Non-thermal / galaxies ,Astrophysics ,law.invention ,Relativistic particle ,purl.org/becyt/ford/1 [https] ,atmospheric cherenkov telescopes ,Raigs gamma ,bl lacertae objects ,law ,MAGIC (telescope) ,Active / BL Lacertae objects ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,individual: Mrk 421 [BL Lacertae objects] ,education.field_of_study ,gamma-ray outburst ,non-thermal [radiation mechanisms] ,BL Lacertae objects: individual: Mrk 421 ,Galaxies: active ,Gamma rays: galaxies ,Radiation mechanisms: non-thermal ,Astronomy and Astrophysics ,Space and Planetary Science ,Particle acceleration ,NON THERMAL RADIATION ,large-area telescope ,active [galaxies] ,galaxies [gamma rays] ,BL LACERTAE OBJECTS ,Electrónica ,self-compton model ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena ,CIENCIAS NATURALES Y EXACTAS ,Flare ,Astrophysics::High Energy Astrophysical Phenomena ,galaxies: active ,Population ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radio telescope ,radiation mechanisms: non-thermal ,gamma rays: galaxies ,Radiation mechanisms ,BL Lacertae objects: individual ,simultaneous multiwavelength observations ,AGN ,education ,Blazar ,Individual: Mrk 421 / gamma rays ,tev blazars ,Gamma rays ,Institut für Physik und Astronomie ,purl.org/becyt/ford/1.3 [https] ,Galaxies ,Astronomía ,x-ray ,Galàxies actives ,Active galaxies ,ddc:520 - Abstract
A flare from the TeV blazar Mrk 421, occurring in March 2010, was observed for 13 consecutive days from radio to very high energy (VHE, E > 100 GeV) gamma-rays with MAGIC, VERITAS, Whipple, FermiLAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We model the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigate the physical parameters, and evaluate whether the observed broadband SED variability can be associated to variations in the relativistic particle population. Flux variability was remarkable in the X-ray and VHE bands while it was minor or not significant in the other bands. The one-zone SSC model can describe reasonably well the SED of each day for the 13 consecutive days. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission while the other smaller zone, which is spatially separated from the first one, contributes to the daily-variable emission occurring in X-rays and VHE gamma-rays. Both the one-zone SSC and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly to the underlying particle population. This shows that the particle acceleration and cooling mechanism producing the radiating particles could be the main one responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement to the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by the variation of the parameters related to the emitting region itself ($\delta$, $B$ and $R$), in addition to the parameters related to the particle population., Comment: Published in A&A, 30 pages, 15 figures, 6 tables. Online-data: multi-wavelength light curves (data in Fig. 1) and broadband spectral energy distributions (the data in Figs. 6, and B1-B4) are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A22. Corresponding authors: David Paneque (dpaneque@mpp.mpg.de), Shangyu Sun (sysun@mpp.mpg.de), Hajime Takami (takami@post.kek.jp)
- Published
- 2014
- Full Text
- View/download PDF
44. First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
- Author
-
Robert Wagner, Konstancja Satalecka, Michele Doro, K. Nishijima, K. Mallot, R. J. García López, A. Herrero, D. Dominis Prester, M. Uellenbeck, Nina Nowak, J. M. Paredes, A. López-Oramas, J. Kushida, Antonio Stamerra, Jelena Aleksić, Nikola Godinovic, Benito Marcote, Jose Luis Contreras, A. Niedzwiecki, David Paneque, Wlodek Bednarek, Alessandro Carosi, Francisco Prada, J. L. Richards, Juan Cortina, K. Kodani, Ruben Lopez-Coto, Massimo Persic, D. Nakajima, J. Storz, D. Garrido Terrats, Talvikki Hovatta, Patrick Vogler, P. G. Prada Moroni, Valeri M. Larionov, Jose Miguel Miranda, V. Scalzotto, C. Schultz, V. Scapin, Tomislav Terzić, Yusuke Konno, Anthony C. S. Readhead, J. Krause, O. Tibolla, M. Hayashida, B. De Lotto, P. Da Vela, Ana Babić, Hanna Kellermann, L. Maraschi, Elina Lindfors, Kari Nilsson, Daniel Mazin, Marc Ribó, M. V. Fonseca, P. Bangale, Julia Thaele, Hidetoshi Kubo, Stefano Covino, U. Menzel, Emanuele Paolo Farina, A. De Angelis, D. Tescaro, M. Perri, I. Snidaric, Natalia Lewandowska, M. Palatiello, Diego F. Torres, S. Rügamer, Stefano Ansoldi, Juan Abel Barrio, M. I. Martínez, Riccardo Paoletti, Felix Spanier, T. Sakamoto, M. Garczarczyk, E. Lorenz, Hajime Takami, A. La Barbera, L. A. Antonelli, Francesco Dazzi, Sabrina Einecke, P. Antoranz, R. Reinthal, J. Rodriguez Garcia, Dominik Elsaesser, Giacomo Bonnoli, X. Paredes-Fortuny, U. Barres de Almeida, I. Lozano, Fabrizio Tavecchio, Damir Lelas, Ll. Font, Masahiro Teshima, Victor Stamatescu, S. Bonnefoy, R. D. Schwartz, Filippo D'Ammando, Dorota Sobczyńska, R. Mirzoyan, D. Eisenacher, Abelardo Moralejo, P. Temnikov, Fabio Zandanel, Shan Sun, E. Carmona, T. Steinbring, Julian Sitarek, J. Hose, Aaron Dominguez, E. Prandini, Daniela Hadasch, T. Toyama, Aldo Treves, W. Idec, Thomas Bretz, S. N. Shore, Walter Max-Moerbeck, Wolfgang Rhode, K. Frantzen, Ivica Puljak, Tihomir Surić, Pierre Colin, D. Carreto Fidalgo, T. Schweizer, C. Delgado Mendez, S. R. Gozzini, F. Borracci, V. Kadenius, S. Paiano, Karl Mannheim, J. Becerra González, Mario Meucci, F. Verrecchia, E. Colombo, Nijil Mankuzhiyil, P. Munar-Adrover, G. Maneva, Silvia Preziuso, L. O. Takalo, R. Zanin, A. Saggion, Adrian Biland, A. González Muñoz, Mosè Mariotti, A.-K. Overkemping, J. Rico, A. Sillanpää, Daniela Dorner, Takashi Saito, Saverio Lombardi, M. Gaug, Reiko Orito, J. Herrera, Koji Noda, Elisa Bernardini, Christian Fruck, K. Saito, D. Hildebrand, Daniel Ferenc, G. De Caneva, S. Partini, Marcel Strzys, L. C. Reyes, Martin Makariev, Oscar Blanch, M. Doert, Dario Hrupec, M. A. Lopez, Aleksic J, Ansoldi S, Antonelli LA, Antoranz P, Babic A, Bangale P, de Almeida UB, Barrio JA, Gonzalez JB, Bednarek W, Bernardini E, Biland A, Blanch O, Bonnefoy S, Bonnoli G, Borracci F, Bretz T, Carmona E, Carosi A, Fidalgo DC, Colin P, Colombo E, Contreras JL, Cortina J, Covino S, Da Vela P, Dazzi F, De Angelis A, De Caneva G, De Lotto B, Mendez CD, Doert M, Dominguez A, Prester DD, Dorner D, Doro M, Einecke S, Eisenacher D, Elsaesser D, Farina E, Ferenc D, Fonseca MV, Font L, Frantzen K, Fruck C, Lopez RJG, Garczarczyk M, Terrats DG, Gaug M, Godinovic N, Munoz AG, Gozzini SR, Hadasch D, Hayashida M, Herrera J, Herrero A, Hildebrand D, Hose J, Hrupec D, Idec W, Kadenius V, Kellermann H, Kodani K, Konno Y, Krause J, Kubo H, Kushida J, La Barbera A, Lelas D, Lewandowska N, Lindfors E, Lombardi S, Lopez M, Lopez-Coto R, Lopez-Oramas A, Lorenz E, Lozano I, Makariev M, Mallot K, Maneva G, Mankuzhiyil N, Mannheim K, Maraschi L, Marcote B, Mariotti M, Martinez M, Mazin D, Menzel U, Meucci M, Miranda JM, Mirzoyan R, Moralejo A, Munar-Adrover P, Nakajima D, Niedzwiecki A, Nilsson K, Nishijima K, Noda K, Nowak N, Orito R, Overkemping A, Paiano S, Palatiello M, Paneque D, Paoletti R, Paredes JM, Paredes-Fortuny X, Partini S, Persic M, Prada F, Moroni PGP, Prandini E, Preziuso S, Puljak I, Reinthal R, Rhode W, Riboo M, Rico J, Garcia JR, Rugamer S, Saggion A, Saito T, Saito K, Satalecka K, Scalzotto V, Scapin V, Schultz C, Schweizer T, Shore SN, Sillanpaa A, Sitarek J, Snidaric I, Sobczynska D, Spanier F, Stamatescu V, Stamerra A, Steinbring T, Storz J, Strzys M, Sun S, Suric T, Takalo L, Takami H, Tavecchio F, Temnikov P, Terzic T, Tescaro D, Teshima M, Thaele J, Tibolla O, Torres DF, Toyama T, Treves A, Uellenbeck M, Vogler P, Wagner RM, Zandanel F, Zanin R, DAmmando F, Hovatta T, Larionov VM, Max-Moerbeck W, Perri M, Readhead ACS, Richards JL, Sakamoto T, Schwartz RD, Verrecchia F, and Reyes LC
- Subjects
ACTIVE GALACTIC NUCLEI ,BL Lacertae objects: individual: MAGIC J2001+439 ,Galaxies: active ,BL Lac objects: individual (MAGIC J2001+435) ,gamma rays: observations ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,LARGE-AREA TELESCOPE ,Nordic Optical Telescope ,Spectral line ,BL Lacertae objects: individual: MAGIC J2001+435 ,Gamma rays: galaxies ,0103 physical sciences ,GAMMA-RAY SPECTRUM ,MAGIC (telescope) ,010306 general physics ,Blazar ,010303 astronomy & astrophysics ,Physics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,galaxies: active – BL Lacertae objects: individual: MAGIC J2001+435 – BL Lacertae objects: individual: MAGIC J2001+439 – gamma rays: galaxies ,FERMI ERA ,Astronomy and Astrophysics ,PKS 1424+240 ,BL-LACERTAE OBJECTS ,Galaxy ,Redshift ,EXTRAGALACTIC BACKGROUND LIGHT ,LAC OBJECTS ,SKY SURVEY ,RADIATION ,Amplitude ,Space and Planetary Science ,ddc:520 ,Electrónica ,Física nuclear ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena ,BL Lac object - Abstract
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 hours of good quality stereoscopic data. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E > 70 GeV) during a 1.3-hour long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. We determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/- 0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution., Comment: 17 pages, 15 figures, Accepted for publication in A&A
- Published
- 2014
- Full Text
- View/download PDF
45. Evolution of Alfvén waves by three-wave interactions in super-Alfvénic shocks
- Author
-
Felix Spanier and Rami Vainio
- Subjects
Physics ,Shock wave ,010504 meteorology & atmospheric sciences ,Shock (fluid dynamics) ,Astronomy and Astrophysics ,Fermi acceleration ,Astrophysics ,Acoustic wave ,01 natural sciences ,Computational physics ,Alfvén wave ,Particle acceleration ,Acceleration ,Classical mechanics ,Space and Planetary Science ,0103 physical sciences ,Magnetohydrodynamics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
We calculate the evolution of Alfven waves in super-Alfvenic flows, such as the downstream region of a fast-mode shock, via three-wave interactions between two Aflven waves and a sound wave. We show that the process has a significant influence on the evolution of the Alfven wave spectra, driving the system toward a degenerate normalized cross-helicity, He -> ±1. Typical distances in which the system evolves are evaluated, and the effects of the calculated turbulence evolution on test-particle acceleration in super-Alfvenic quasi-parallel shocks are studied. We show that typically the spectrum of accelerated particles is determined by the first-order Fermi acceleration process as described earlier by Vainio & Schlickeiser (1998, AA 1999, A&A, 343, 303), and identify some regions of parameter space, where the earlier results are significantly modified either by changes in the predicted scattering-center compression ratio or by stochastic acceleration in the downstream plasma.
- Published
- 2005
- Full Text
- View/download PDF
46. Damping and wave energy dissipation in the interstellar medium
- Author
-
Reinhard Schlickeiser and Felix Spanier
- Subjects
Physics ,Interstellar medium ,Space and Planetary Science ,Turbulence ,Astronomy and Astrophysics ,Plasma ,Astrophysics ,Magnetohydrodynamics ,Dissipation ,Anisotropy ,Magnetic field ,Heat capacity rate - Abstract
The heating rate of the interstellar medium, especially the warm ionized medium, is calculated considering damping of fast magnetosonic waves. Starting with an anisotropic spectrum the energy dissipation rate is derived from the damping rates. The results show that the damping of fast magnetosonic waves is an extraordinarily strong source of heat. The ion-neutral and viscous damping contribute largely to the heating. Furthermore it is shown that one would expect a strong parallelization of the spectrum with exponents well above 5/3.
- Published
- 2005
- Full Text
- View/download PDF
47. Linear damping and energy dissipation of shear Alfvén waves in the interstellar medium
- Author
-
Marian Lazar, Felix Spanier, and Reinhard Schlickeiser
- Subjects
Physics ,Electron density ,Turbulence ,Astronomy and Astrophysics ,Astrophysics ,Dissipation ,Magnetic field ,Interstellar medium ,Physics::Plasma Physics ,Space and Planetary Science ,Physics::Space Physics ,Magnetic damping ,Wavenumber ,Landau damping - Abstract
The heating of the diffuse interstellar medium by the dissipation of interstellar shear Alfven waves is an important process for the temperature balance of this gas phase. Following our earlier analysis for fast magnetosonic waves we calcu- late here the heating rate from the damping of interstellar shear Alfven waves, because interstellar plasma turbulence most probably is a mixture of fast magnetosonic waves and shear Alfven waves. Relating the Alfvenic magnetic field fluctuation power spectrum to the observed interstellar electron density fluctuation power spectrum we derive the heating rate allowing for a scale independent anisotropy of the power spectrum. Because the diffuse intercloud medium is a partially ionised medium, the shear Alfven waves undergo different types of dissipation. Besides collisionless Landau damping we considered various damping mechanisms from collision-effects such as Joule dissipation, electron and ion viscosity and ion-neutral friction. For all individual damping processes we derive the respective damping rates as a function of wavenumber and propagation angles of the Alfven waves. These damping rates then serve as input in the calculation of the associated heating rates of the inter- stellar medium which results from the integral over the product of the damping rate times the magnetic field fluctuation power spectrum allowing for a scale independent anisotropy of the power spectrum. We demonstrate that for isotropic turbulence and typical diffuse intercloud medium parameters ion-neutral friction provides the dominant contribution to the heating rate of about 10 −29 erg cm −3 s −1 , which is about four orders of magnitude smaller than the cooling rate of the diffuse intercloud medium. Heating by collisionless Landau damping is 13 orders of magnitude smaller than dissipation by ion-neutral friction, heating by Joule and viscosity dissipation is 10 orders of magnitude smaller. Apart from factors of order unity these heating rates also hold for predominantly parallel turbulence (Λ � 1). In case of predominantly perpendicular turbulence (Λ � 1) the heating rates from collisionless Landau damping and Joule and viscosity dissipation decrease ∝Λ 1/2 , whereas the heating rate from ion-neutral friction increases ∝Λ −s/2 as long as Λ ≥ 10 −6 . However, compared to the heating rate by collisionless Landau damping of fast magnetosonic waves the heating rate of Alfven waves is negligibly small. Hence, for the temperature balance of the warm intercloud medium heating from shear Alfven waves is negligible compared to the heating by collisionless damping of fast magnetosonic waves.
- Published
- 2003
- Full Text
- View/download PDF
48. Simulation study of overtaking of ion-acoustic solitons in the fully kinetic regime
- Author
-
S. M. Hosseini Jenab and Felix Spanier
- Subjects
Physics ,Life span ,Trapping ,Electron ,Condensed Matter Physics ,Kinetic energy ,01 natural sciences ,Stability (probability) ,010305 fluids & plasmas ,Ion ,Computational physics ,Chain formation ,Overtaking ,0103 physical sciences ,010306 general physics - Abstract
The overtaking collisions of ion-acoustic solitons in the presence of trapping effects of electrons are studied based on a fully kinetic simulation approach. The method is able to provide all the kinetic details of the process alongside the fluid-level quantities self consistently. Solitons are produced naturally by utilizing the chain formation phenomenon, and then are arranged in a new simulation box to test the different scenarios of overtaking collisions. Three achievements are reported here. First, simulations prove the long-time life span of the ion-acoustic solitons in the presence of trapping effect of electrons (kinetic effects), which serves as the benchmark of the simulation code. Second, their stability against overtaking mutual collisions is established by creating collisions between solitons with different number and shapes of trapped electrons, i.e., different trapping parameter. Finally, details of solitons during collisions for both ions and electrons are provided on both fluid and kineti...
- Published
- 2017
- Full Text
- View/download PDF
49. Discovery of very high energy gamma-ray emission from the blazar 1ES 0033+595 by the MAGIC telescopes
- Author
-
T. Steinbring, A. González Muñoz, Natalia Lewandowska, D. Hildebrand, A. La Barbera, Daniela Dorner, X. Paredes-Fortuny, A. De Angelis, F. Borracci, M. Uellenbeck, Konstancja Satalecka, Michele Doro, S. Partini, S. Buson, Aaron Dominguez, Dario Hrupec, M. A. Lopez, K. Saito, U. Menzel, M. Gaug, J. Becerra González, Mario Meucci, Jelena Aleksić, R. López-Coto, Julian Sitarek, J. Hose, Daniela Hadasch, K. Nishijima, Takashi Saito, A. Niedzwiecki, J. Herrera, T. Toyama, Koji Noda, Giacomo Bonnoli, D. Dominis Prester, Reiko Orito, Diego F. Torres, Thomas Bretz, K. Frantzen, David Paneque, Elisa Bernardini, S. N. Shore, D. Nakajima, G. Maneva, Nikola Godinovic, Benito Marcote, R. Zanin, A. Saggion, P. G. Prada Moroni, M. Garczarczyk, Tihomir Surić, D. Carreto Fidalgo, Martin Makariev, M. I. Martínez, A. Borghese, E. Prandini, Oscar Blanch, O. Tibolla, V. Kadenius, P. Temnikov, Adrian Biland, Francisco Prada, S. Paiano, Lluis Font, Karl Mannheim, M. Hayashida, Victor Stamatescu, J. Krause, A. Herrero, B. De Lotto, J. Rico, Alicia López-Oramas, Stefano Covino, A. Sillanpää, K. Berger, M. Doert, C. Delgado Mendez, V. Tronconi, Hajime Takami, I. Lozano, Nijil Mankuzhiyil, G. De Caneva, S. Bonnefoy, Wolfgang Rhode, Aldo Treves, Sabrina Einecke, S. R. Gozzini, Robert Wagner, J. Rodriguez Garcia, Felix Spanier, W. Idec, P. Munar-Adrover, M. Palatiello, Francesco Dazzi, Masahiro Teshima, S. Sun, Christian Fruck, Daniel Ferenc, D. Tescaro, Yusuke Konno, Silvia Preziuso, Mosè Mariotti, A.-K. Overkemping, P. Da Vela, C. Schultz, V. Scapin, Ivica Puljak, Pierre Colin, Saverio Lombardi, Wlodek Bednarek, Alessandro Carosi, L. Maraschi, Elina Lindfors, E. Colombo, Julia Thaele, Daniel Mazin, Fabio Zandanel, Marc Ribó, L. O. Takalo, P. Bangale, Jose Miguel Miranda, R. Reinthal, Dominik Elsaesser, Hidetoshi Kubo, U. Barres de Almeida, Damir Lelas, R. Mirzoyan, M. V. Fonseca, P. Antoranz, Dorota Sobczyńska, D. Eisenacher, L. A. Antonelli, J. A. Barrio, E. Carmona, Fabrizio Tavecchio, Emanuele Paolo Farina, Nina Nowak, T. Schweizer, S. Rügamer, Tomislav Terzić, Patrick Vogler, I. Snidaric, Hanna Kellermann, K. Mallot, R. J. García López, E. Lorenz, Massimo Persic, J. M. Paredes, Antonio Stamerra, K. Kodani, J. Storz, Stefano Ansoldi, Riccardo Paoletti, J. Kushida, Jose Luis Contreras, Juan Cortina, D. Garrido Terrats, V. Scalzotto, Ana Babić, Kari Nilsson, and Abelardo Moralejo
- Subjects
BL Lacertae objects: individual: (1ES 0033+595) ,Gamma-rays: galaxies ,Astronomy and Astrophysics ,Space and Planetary Science ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,astro-ph.HE ,astro-ph.CO ,astro-ph.GA ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,FOS: Physical sciences ,individual: (1ES 0033 595) ,gamma-rays: galaxies [BL Lacertae objects] ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,BL Lacertae objects: individual: (1ES 0033 595) ,01 natural sciences ,Luminosity ,0103 physical sciences ,MAGIC (telescope) ,education ,Blazar ,010303 astronomy & astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,education.field_of_study ,ta115 ,010308 nuclear & particles physics ,galaxies: BL Lacertae objects: individual (1ES 0033+595) ,gamma rays: galaxies ,Compton scattering ,Astronomy ,Astrophysics - Astrophysics of Galaxies ,Extragalactic background light ,Astrophysics of Galaxies (astro-ph.GA) ,ddc:520 ,Spectral energy distribution ,Astrophysics - High Energy Astrophysical Phenomena ,Fermi Gamma-ray Space Telescope ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Monthly Notices of the Royal Astronomical Society, 446 (1), ISSN:0035-8711, ISSN:1365-2966, ISSN:1365-8711
- Published
- 2014
- Full Text
- View/download PDF
50. MAGIC search for vhe γ-ray emission from ae aquarii in a multiwavelength context
- Author
-
D. Nakajima, P. G. Prada Moroni, Laura Maraschi, Yusuke Konno, A. López-Oramas, Alessandro Carosi, Ruben Lopez-Coto, Victor Stamatescu, B. Biasuzzi, Konstancja Satalecka, Michele Doro, D. Dorner, I. Snidaric, Jose Miguel Miranda, M. Bogosavljevic, E. Lorenz, Fabrizio Tavecchio, Hajime Takami, Z. Ioannou, Tomislav Terzić, Ll. Font, A.-K. Overkemping, Elina Lindfors, M. López, Julia Thaele, E. Carmona, Daniel Mazin, A. Treves, K. Nishijima, M. V. Fonseca, Abelardo Moralejo, Patrick Vogler, M. Mariotti, Thomas Bretz, S. Rügamer, Julian Sitarek, Saverio Lombardi, T. Steinbring, Louis Antonelli, Morihiro Hayashida, P. Da Vela, Pierre Colin, K. Nilsson, J. Kushida, D. Hadasch, Dorothee Hildebrand, P. Antoranz, Robert Wagner, G. De Caneva, J. Becerra González, S. Bonnefoy, C. Schultz, X. Paredes-Fortuny, T. Toyama, Dario Hrupec, R. Paoletti, P. Munar-Adrover, Razmik Mirzoyan, M. Palatiello, I. Lozano, M. Strzys, Jose Luis Contreras, Jelena Aleksić, Silvia Preziuso, Damir Lelas, D. Galindo, D. Dominis Prester, R. Zanin, A. Niedzwiecki, A. Saggion, A. De Angelis, A. Sillanpää, Stefano Covino, Dorota Sobczyńska, V. Scapin, Juan Cortina, K. Frantzen, David Paneque, A. Biland, Diego F. Torres, Masahiro Teshima, Christopher W. Mauche, Takashi Saito, E. de Ona Wilhelmi, Y. Hanabata, D. Tescaro, W. Idec, J. M. Paredes, Nikola Godinovic, Benito Marcote, D. Garrido Terrats, R. Reinthal, M. Uellenbeck, Natalia Lewandowska, Reiko Orito, Francesco Dazzi, V. Scalzotto, A. La Barbera, T. Schweizer, Ana Babić, E. V. Palaiologou, Leo O. Takalo, R. J. García López, Antonio Stamerra, Oscar Blanch, Petar Temnikov, Koji Noda, J. Herrera, Elisa Bernardini, H. Kellermann, G. Bonnoli, N. Mankuzhiyil, W. Rhode, Felix Spanier, K. Kodani, C. Delgado Mendez, O. Tibolla, G. Maneva, A. González Muñoz, Christian Fruck, J. Storz, Juan Abel Barrio, I. Puljak, Stefano Ansoldi, D. Eisenacher, Markus Gaug, Markus Garczarczyk, Nina Nowak, D. Elsaesser, J. Hose, B. De Lotto, Elisa Prandini, M. Makariev, W. Bednarek, J. Rico, S. Paiano, U. Menzel, Miguel A. Pérez-Torres, M. I. Martínez, E. Colombo, P. Bangale, V. Kadenius, M. Doert, Sabrina Einecke, S. R. Gozzini, J. Rodriguez Garcia, K. Saito, Marc Ribó, Hidetoshi Kubo, F. Borracci, K. Mallot, T. Tuominen, Massimo Persic, K. Mannheim, J. Krause, and Universitat de Barcelona
- Subjects
accretion: accretion disks ,Radiation mechanisms: non-thermal ,Novae: cataclysmic variables ,Gamma rays: stars ,Astrofísica ,Accretion ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,Signal region ,Cataclysmic variable star ,Astrophysics ,Noves (Estels) ,Raigs gamma ,Coincident ,Accretion, accretion disks ,Novae, cataclysmic variables ,Astronomy and Astrophysics ,Space and Planetary Science ,New stars ,Novae ,Astrophysics::Galaxy Astrophysics ,Physics ,astro-ph.HE ,cataclysmic variables ,Spectral index ,accretion disks ,Gamma rays ,Gamma ray ,Stars ,Estels ,Wavelength ,13. Climate action ,ddc:520 ,Electrónica ,Física nuclear ,Rayleigh test ,Electricidad ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
It has been claimed that the nova-like cataclysmic variable (CV) AE Aquarii (AE Aqr) is a very-high-energy (VHE, $E>$100 GeV) source both on observational and theoretical grounds. We aim to search for VHE gamma-ray emission from AE Aqr during different states of the source at several wavelengths to confirm or rule out previous claims of detection of gamma-ray emission from this object. We report on observations of AE Aqr performed by MAGIC. The source was observed during 12 hours as part of a multiwavelength campaign carried out between May and June 2012 covering the optical, X-ray, and gamma-ray ranges. Besides MAGIC, the other facilities involved were the KVA, Skinakas, and Vidojevica telescopes in the optical and Swift in X-rays. We calculated integral upper limits coincident with different states of the source in the optical. We computed upper limits to the pulsed emission limiting the signal region to 30% of the phaseogram and we also searched for pulsed emission at different frequencies applying the Rayleigh test. AE Aqr was not detected at VHE energies during the multiwavelength campaign. We establish integral upper limits at the 95\% confidence level for the steady emission assuming the differential flux proportional to a power-law function d\phi/dE \propto E^{-Gamma}, with a Crab-like photon spectral index of Gamma=2.6. The upper limit above 200 GeV is 6.4\times10^{-12} cm^{-2}s^{-1} and above 1 TeV is 7.4\times10^{-13} cm^{-2}s^{-1}. We obtained an upper limit for the pulsed emission of 2.6\times10^{-12} cm^{-2}s^{-1} for energies above 200 GeV. Applying the Rayleigh test for pulsed emission at different frequencies we did not find any significant signal. Our results indicate that AE Aqr is not a VHE gamma-ray emitter at the level of emission previously claimed. We have established the most constraining upper limits for the VHE gamma-ray emission of AE Aqr., Comment: 9 pages, 5 figures. Accepted for publication in A&A
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.