61 results on '"Fehr AR"'
Search Results
2. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication.
- Author
-
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, and Fehr AR
- Subjects
- Animals, Mice, Humans, Mutation, Murine hepatitis virus genetics, Murine hepatitis virus metabolism, Protein Binding, Protein Domains, Viral Nonstructural Proteins metabolism, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins chemistry, Chlorocebus aethiops, N-Glycosyl Hydrolases, Virus Replication, Adenosine Diphosphate Ribose metabolism, Isoleucine metabolism, Isoleucine genetics, Middle East Respiratory Syndrome Coronavirus genetics, Middle East Respiratory Syndrome Coronavirus metabolism, SARS-CoV-2 genetics, SARS-CoV-2 metabolism
- Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication., Importance: The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
3. Identification of a series of pyrrolo-pyrimidine based SARS-CoV-2 Mac1 inhibitors that repress coronavirus replication.
- Author
-
Pfannenstiel JJ, Duong MTH, Cluff D, Sherrill LM, Colquhoun I, Cadoux G, Thorne D, Pääkkönen J, Schemmel NF, O'Connor J, Saenjamsai P, Feng M, Hageman MJ, Johnson DK, Roy A, Lehtiö L, Ferraris DV, and Fehr AR
- Abstract
Coronaviruses (CoVs) can emerge from zoonotic sources and cause severe diseases in humans and animals. All CoVs encode for a macrodomain (Mac1) that binds to and removes ADP-ribose from target proteins. SARS-CoV-2 Mac1 promotes virus replication in the presence of interferon (IFN) and blocks the production of IFN, though the mechanisms by which it mediates these functions remain unknown. Mac1 inhibitors could help elucidate these mechanisms and serve as therapeutic agents against CoV-induced diseases. We previously identified compound 4a (a.k.a. MCD-628), a pyrrolo-pyrimidine that inhibited Mac1 activity in vitro at low micromolar levels. Here, we determined the binding mode of 4a by crystallography, further defining its interaction with Mac1. However, 4a did not reduce CoV replication, which we hypothesized was due to its acidic side chain limiting permeability. To test this hypothesis, we developed several hydrophobic derivatives of 4a . We identified four compounds that both inhibited Mac1 in vitro and inhibited murine hepatitis virus (MHV) replication: 5a , 5c , 6d , and 6e . Furthermore, 5c and 6e inhibited SARS-CoV-2 replication only in the presence of IFN γ , similar to a Mac1 deletion virus. To confirm their specificity, we passaged MHV in the presence of 5a to identify drug-resistant mutations and identified an alanine-to-threonine and glycine-to-valine double mutation in Mac1. Recombinant virus with these mutations had enhanced replication compared to WT virus when treated with 5a , demonstrating the specificity of these compounds during infection. However, this virus is highly attenuated in vivo , indicating that drug-resistance emerged at the expense of viral fitness., Importance: Coronaviruses (CoVs) present significant threats to human and animal health, as evidenced by recent outbreaks of MERS-CoV and SARS-CoV-2. All CoVs encode for a highly conserved macrodomain protein (Mac1) that binds to and removes ADP-ribose from proteins, which promotes virus replication and blocks IFN production, though the exact mechanisms remain unclear. Inhibiting Mac1 could provide valuable insights into these mechanisms and offer new therapeutic avenues for CoV-induced diseases. We have identified several unique pyrrolo-pyrimidine-based compounds as Mac1 inhibitors. Notably, at least two of these compounds inhibited both murine hepatitis virus (MHV) and SARS-CoV-2 replication. Furthermore, we identified a drug-resistant mutation in Mac1, confirming target specificity during infection. However, this mutant is highly attenuated in mice, indicating that drug-resistance appears to come at a fitness cost. These results emphasize the potential of Mac1 as a drug target and the promise of structure-based inhibitor design in combating coronavirus infections.
- Published
- 2024
- Full Text
- View/download PDF
4. Mutation of a highly conserved isoleucine residue in loop 2 of several β -coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection.
- Author
-
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, and Fehr AR
- Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication., Competing Interests: The authors have no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
5. PARP14 is pro- and anti-viral host factor that promotes IFN production and affects the replication of multiple viruses.
- Author
-
Parthasarathy S, Saenjamsai P, Hao H, Ferkul A, Pfannenstiel JJ, Suder EL, Bejan DS, Chen Y, Schwarting N, Aikawa M, Muhlberger E, Orozco RC, Sullivan CS, Cohen MS, Davido DJ, Hume AJ, and Fehr AR
- Abstract
PARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-I and IFN-III responses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14's antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1) and several negative-sense RNA viruses, including vesicular stomatitis virus (VSV), Ebola virus (EBOV), and Nipah virus (NiV), to infect A549 PARP14 knockout (KO) cells. HSV-1 had increased replication in PARP14 KO cells, indicating that PARP14 restricts HSV-1 replication. In contrast, PARP14 was critical for the efficient infection of VSV, EBOV, and NiV, with EBOV infectivity at less than 1% of WT cells. A PARP14 active site inhibitor had no impact on HSV-1 or EBOV infection, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both pro- and anti-viral functions targeting multiple viruses., Competing Interests: Competing interests: ARF is in the process of submitting a patent application for use of SARS-CoV-2 ΔMac1 virus as a live-attenuated vaccine.
- Published
- 2024
- Full Text
- View/download PDF
6. Discovery of 2-Amide-3-methylester Thiophenes that Target SARS-CoV-2 Mac1 and Repress Coronavirus Replication, Validating Mac1 as an Antiviral Target.
- Author
-
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, and Lehtiö L
- Subjects
- Humans, Animals, Drug Discovery, Mice, Crystallography, X-Ray, COVID-19 Drug Treatment, Structure-Activity Relationship, Murine hepatitis virus drug effects, Antiviral Agents pharmacology, Antiviral Agents chemistry, Antiviral Agents chemical synthesis, Thiophenes pharmacology, Thiophenes chemistry, Thiophenes chemical synthesis, Virus Replication drug effects, SARS-CoV-2 drug effects
- Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC
50 of 2.1 μM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27 . Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.- Published
- 2024
- Full Text
- View/download PDF
7. SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling.
- Author
-
Otter CJ, Bracci N, Parenti NA, Ye C, Asthana A, Blomqvist EK, Tan LH, Pfannenstiel JJ, Jackson N, Fehr AR, Silverman RH, Burke JM, Cohen NA, Martinez-Sobrido L, and Weiss SR
- Subjects
- Animals, Mice, Endoribonucleases metabolism, Signal Transduction, Antiviral Agents, SARS-CoV-2 genetics, SARS-CoV-2 metabolism, COVID-19
- Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15
mut ) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures., Competing Interests: Competing interests statement:S.R.W. consults for Powell Gilbert LLP. N.A.C. consults for GSK, AstraZeneca, Novartis, Sanofi/Regeneron. N.A.C. has US Patent “Therapy and Diagnostics for Respiratory Infection” (10,881,698 B2, WO20913112865) and a licensing agreement with GeneOne Life Sciences.- Published
- 2024
- Full Text
- View/download PDF
8. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an anti-viral target.
- Author
-
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, and Lehtiö L
- Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC
50 of 14 μM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts., Competing Interests: Competing interests The authors declare no competing interests.- Published
- 2023
- Full Text
- View/download PDF
9. SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling.
- Author
-
Otter CJ, Bracci N, Parenti NA, Ye C, Tan LH, Asthana A, Pfannenstiel JJ, Jackson N, Fehr AR, Silverman RH, Cohen NA, Martinez-Sobrido L, and Weiss SR
- Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2 (nsp15
mut ) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI culture.- Published
- 2023
- Full Text
- View/download PDF
10. An Update on the Current State of SARS-CoV-2 Mac1 Inhibitors.
- Author
-
O'Connor JJ, Ferraris D, and Fehr AR
- Abstract
Non-structural protein 3 (nsp3) from all coronaviruses (CoVs) contains a conserved macrodomain, known as Mac1, that has been proposed as a potential therapeutic target for CoVs due to its critical role in viral pathogenesis. Mac1 is an ADP-ribose binding protein and ADP-ribosylhydrolase that promotes replication and blocks IFN responses, though the precise mechanisms it uses to carry out these functions remain unknown. Over the past 3 years following the onset of COVID-19, several groups have used high-throughput screening with multiple assays and chemical modifications to create unique chemical inhibitors of the SARS-CoV-2 Mac1 protein. Here, we summarize the current efforts to identify selective and potent inhibitors of SARS-CoV-2 Mac1.
- Published
- 2023
- Full Text
- View/download PDF
11. PARP12 is required to repress the replication of a Mac1 mutant coronavirus in a cell- and tissue-specific manner.
- Author
-
Kerr CM, Parthasarathy S, Schwarting N, O'Connor JJ, Pfannenstiel JJ, Giri E, More S, Orozco RC, and Fehr AR
- Subjects
- Animals, Mice, Coronavirus Infections virology, Disease Models, Animal, Interferons immunology, Mice, Knockout, Organ Specificity, Cell Line, Genes, Viral, Murine hepatitis virus genetics, Murine hepatitis virus growth & development, Murine hepatitis virus metabolism, Murine hepatitis virus pathogenicity, Mutation, Poly(ADP-ribose) Polymerases deficiency, Poly(ADP-ribose) Polymerases genetics, Poly(ADP-ribose) Polymerases metabolism, Virus Replication genetics
- Abstract
ADP-ribosyltransferases (ARTs) mediate the transfer of ADP-ribose from NAD
+ to protein or nucleic acid substrates. This modification can be removed by several different types of proteins, including macrodomains. Several ARTs, also known as PARPs, are stimulated by interferon indicating ADP-ribosylation is an important aspect of the innate immune response. All coronaviruses (CoVs) encode for a highly conserved macrodomain (Mac1) that is critical for CoVs to replicate and cause disease, indicating that ADP-ribosylation can effectively control coronavirus infection. Our siRNA screen indicated that PARP12 might inhibit the replication of a murine hepatitis virus (MHV) Mac1 mutant virus in bone-marrow-derived macrophages (BMDMs). To conclusively demonstrate that PARP12 is a key mediator of the antiviral response to CoVs both in cell culture and in vivo , we produced PARP12-/- mice and tested the ability of MHV A59 (hepatotropic/neurotropic) and JHM (neurotropic) Mac1 mutant viruses to replicate and cause disease in these mice. Notably, in the absence of PARP12, Mac1 mutant replication was increased in BMDMs and mice. In addition, liver pathology was also increased in A59-infected mice. However, the PARP12 knockout did not restore Mac1 mutant virus replication to WT virus levels in all cell or tissue types and did not significantly increase the lethality of Mac1 mutant viruses. These results demonstrate that while PARP12 inhibits MHV Mac1 mutant virus infection, additional PARPs or innate immune factors must contribute to the extreme attenuation of this virus in mice. IMPORTANCE Over the last decade, the importance of ADP-ribosyltransferases (ARTs), also known as PARPs, in the antiviral response has gained increased significance as several were shown to either restrict virus replication or impact innate immune responses. However, there are few studies showing ART-mediated inhibition of virus replication or pathogenesis in animal models. We found that the CoV macrodomain (Mac1) was required to prevent ART-mediated inhibition of virus replication in cell culture. Using knockout mice, we found that PARP12, an interferon-stimulated ART, was required to repress the replication of a Mac1 mutant CoV both in cell culture and in mice, demonstrating that PARP12 represses coronavirus replication. However, the deletion of PARP12 did not fully rescue Mac1 mutant virus replication or pathogenesis, indicating that multiple PARPs function to counter coronavirus infection., Competing Interests: Anthony R. Fehr was named as an inventor on a patent filed by the University of Kansas.- Published
- 2023
- Full Text
- View/download PDF
12. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice.
- Author
-
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O'Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M, Unckless RL, Zuñiga S, Enjuanes L, More S, Channappanavar R, and Fehr AR
- Subjects
- Animals, Mice, SARS-CoV-2 genetics, Cell Culture Techniques, Cell Line, Antiviral Agents, COVID-19, Middle East Respiratory Syndrome Coronavirus genetics, Murine hepatitis virus
- Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.
- Published
- 2023
- Full Text
- View/download PDF
13. Two Commercially Available Blood-Stabilization Reagents Serve as Potent Inactivators of Coronaviruses.
- Author
-
O'Connor JJ, Voth L, Athmer J, George NM, Connelly CM, and Fehr AR
- Abstract
The continued circulation of SARS-CoV-2 and the increasing frequency of coronavirus (CoV) outbreaks over the decades demonstrates the enduring threat that the CoV family poses. There remains a significant need to develop tools to monitor and prevent the spread of these viruses. We tested blood-stabilization reagents from two commercially available blood collection tubes (BCTs) for their ability to inactivate three different coronaviruses (MHV, OC-43, and SARS-CoV-2) and stabilize their RNA. Both Cell-Free DNA BCT
® (cfDNA) and Cyto-Chex® BCT (CytoChex) reagents reduced infectious virus in the buffer to below the limit of detection within 18 h of treatment, with some conditions showing this effect in as little as 3 h. CytoChex had more potent activity than cfDNA as in all cases it more rapidly reduced the actively replicating virus to the limit of detection. Despite the rapid inactivation of the virus, both reagents effectively preserved viral RNA for 7 days. Finally, both reagents accelerated viral inactivation in blood compared to the control samples. These results indicate that cfDNA and CytoChex could be used to inactivate and preserve CoV RNA for detection and further testing.- Published
- 2023
- Full Text
- View/download PDF
14. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in mice.
- Author
-
Alhammad YM, Parthasarathy S, Ghimire R, O'Connor JJ, Kerr CM, Pfannenstiel JJ, Chanda D, Miller CA, Unckless RL, Zuniga S, Enjuanes L, More S, Channappanavar R, and Fehr AR
- Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in this set of proteins is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and interferon-stimulated gene (ISG) expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target., Significance: All CoVs, including SARS-CoV-2, encode for a conserved macrodomain (Mac1) that counters host ADP-ribosylation. Prior studies with SARS-CoV-1 and MHV found that Mac1 blocks IFN production and promotes CoV pathogenesis, which has prompted the development of SARS-CoV-2 Mac1 inhibitors. However, development of these compounds into antivirals requires that we understand how SARS-CoV-2 lacking Mac1 replicates and causes disease in vitro and in vivo . Here we found that SARS-CoV-2 containing a complete Mac1 deletion replicates normally in cell culture but induces an elevated IFN response, has reduced viral loads in vivo , and does not cause significant disease in mice. These results will provide a roadmap for testing Mac1 inhibitors, help identify Mac1 functions, and open additional avenues for coronavirus therapies.
- Published
- 2023
- Full Text
- View/download PDF
15. Inhibitors of One or More Cellular Aurora Kinases Impair the Replication of Herpes Simplex Virus 1 and Other DNA and RNA Viruses with Diverse Genomes and Life Cycles.
- Author
-
Ly CY, Pfannenstiel J, Pant A, Yang Z, Fehr AR, Rodzkin MS, and Davido DJ
- Subjects
- Animals, Mice, Viral Proteins genetics, Viral Proteins metabolism, Cell Line, DNA metabolism, RNA metabolism, Life Cycle Stages, Herpesvirus 1, Human genetics, Immediate-Early Proteins genetics, Herpes Simplex genetics, RNA Viruses
- Abstract
We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.
- Published
- 2023
- Full Text
- View/download PDF
16. ADP-ribosyltransferases, an update on function and nomenclature.
- Author
-
Lüscher B, Ahel I, Altmeyer M, Ashworth A, Bai P, Chang P, Cohen M, Corda D, Dantzer F, Daugherty MD, Dawson TM, Dawson VL, Deindl S, Fehr AR, Feijs KLH, Filippov DV, Gagné JP, Grimaldi G, Guettler S, Hoch NC, Hottiger MO, Korn P, Kraus WL, Ladurner A, Lehtiö L, Leung AKL, Lord CJ, Mangerich A, Matic I, Matthews J, Moldovan GL, Moss J, Natoli G, Nielsen ML, Niepel M, Nolte F, Pascal J, Paschal BM, Pawłowski K, Poirier GG, Smith S, Timinszky G, Wang ZQ, Yélamos J, Yu X, Zaja R, and Ziegler M
- Subjects
- Adenosine Diphosphate Ribose, Adenosine Diphosphate, ADP Ribose Transferases genetics, Protein Biosynthesis
- Abstract
ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD
+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes., (© 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.)- Published
- 2022
- Full Text
- View/download PDF
17. Design, synthesis and evaluation of inhibitors of the SARS-CoV-2 nsp3 macrodomain.
- Author
-
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, and Ferraris D
- Subjects
- Adenosine Diphosphate Ribose metabolism, Amides, Humans, Protein Domains, SARS-CoV-2, COVID-19 Drug Treatment
- Abstract
A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp
22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
18. Discovery of compounds that inhibit SARS-CoV-2 Mac1-ADP-ribose binding by high-throughput screening.
- Author
-
Roy A, Alhammad YM, McDonald P, Johnson DK, Zhuo J, Wazir S, Ferraris D, Lehtiö L, Leung AKL, and Fehr AR
- Subjects
- Adenosine Diphosphate Ribose metabolism, High-Throughput Screening Assays, Humans, Viral Nonstructural Proteins chemistry, SARS-CoV-2, COVID-19 Drug Treatment
- Abstract
The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC
50 values less than 100 μM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors., (Copyright © 2022 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
19. PARP14: A key ADP-ribosylating protein in host-virus interactions?
- Author
-
Parthasarathy S and Fehr AR
- Subjects
- ADP Ribose Transferases metabolism, Adenosine Diphosphate, Host Microbial Interactions, Poly(ADP-ribose) Polymerases metabolism
- Abstract
Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
20. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells.
- Author
-
Comar CE, Otter CJ, Pfannenstiel J, Doerger E, Renner DM, Tan LH, Perlman S, Cohen NA, Fehr AR, and Weiss SR
- Subjects
- Endoribonucleases genetics, Endoribonucleases metabolism, Epithelial Cells metabolism, Humans, Immunity, Innate, Lung metabolism, Nasal Mucosa, SARS-CoV-2 pathogenicity, Uridylate-Specific Endoribonucleases, COVID-19, Coronavirus Infections immunology, Middle East Respiratory Syndrome Coronavirus genetics, Middle East Respiratory Syndrome Coronavirus pathogenicity
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways—interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)—activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung–derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.
- Published
- 2022
- Full Text
- View/download PDF
21. Design, Synthesis and Evaluation of Inhibitors of the SARS-CoV2 nsp3 Macrodomain.
- Author
-
Sherrill LM, Joya EE, Walker A, Roy A, Alhammad YM, Atobatele M, Wazir S, Abbas G, Keane P, Zhuo J, Leung AKL, Johnson DK, Lehtiö L, Fehr AR, and Ferraris D
- Abstract
A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp
22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low μM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.- Published
- 2022
- Full Text
- View/download PDF
22. High-Throughput Activity Assay for Screening Inhibitors of the SARS-CoV-2 Mac1 Macrodomain.
- Author
-
Dasovich M, Zhuo J, Goodman JA, Thomas A, McPherson RL, Jayabalan AK, Busa VF, Cheng SJ, Murphy BA, Redinger KR, Alhammad YMO, Fehr AR, Tsukamoto T, Slusher BS, Bosch J, Wei H, and Leung AKL
- Subjects
- Dasatinib pharmacology, Protein Domains, SARS-CoV-2 enzymology, Antiviral Agents pharmacology, High-Throughput Screening Assays methods, N-Glycosyl Hydrolases antagonists & inhibitors, SARS-CoV-2 drug effects
- Abstract
Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.
- Published
- 2022
- Full Text
- View/download PDF
23. The Conserved Macrodomain Is a Potential Therapeutic Target for Coronaviruses and Alphaviruses.
- Author
-
Leung AKL, Griffin DE, Bosch J, and Fehr AR
- Abstract
Emerging and re-emerging viral diseases pose continuous public health threats, and effective control requires a combination of non-pharmacologic interventions, treatment with antivirals, and prevention with vaccines. The COVID-19 pandemic has demonstrated that the world was least prepared to provide effective treatments. This lack of preparedness has been due, in large part, to a lack of investment in developing a diverse portfolio of antiviral agents, particularly those ready to combat viruses of pandemic potential. Here, we focus on a drug target called macrodomain that is critical for the replication and pathogenesis of alphaviruses and coronaviruses. Some mutations in alphavirus and coronaviral macrodomains are not tolerated for virus replication. In addition, the coronavirus macrodomain suppresses host interferon responses. Therefore, macrodomain inhibitors have the potential to block virus replication and restore the host's protective interferon response. Viral macrodomains offer an attractive antiviral target for developing direct acting antivirals because they are highly conserved and have a structurally well-defined (druggable) binding pocket. Given that this target is distinct from the existing RNA polymerase and protease targets, a macrodomain inhibitor may complement current approaches, pre-empt the threat of resistance and offer opportunities to develop combination therapies for combating COVID-19 and future viral threats.
- Published
- 2022
- Full Text
- View/download PDF
24. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells.
- Author
-
Comar CE, Otter CJ, Pfannenstiel J, Doerger E, Renner DM, Tan LH, Perlman S, Cohen NA, Fehr AR, and Weiss SR
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be in part because MERS-CoV is adept at antagonizing early innate immune pathways - interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase ribonuclease L (OAS/RNase L) - generated in response to viral double-stranded (ds)RNA generated during genome replication. This is in contrast to SARS-CoV-2, which we recently reported activates PKR and RNase L and to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of the dsRNA-induced innate immune pathways. This resulted in ten-fold attenuation of replication in human lung derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of WT MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication., Importance: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes highly lethal respiratory disease. MERS-CoV encodes several innate immune antagonists, accessory proteins NS4a and NS4b unique to the merbeco lineage and the nsp15 protein endoribonuclease (EndoU), conserved among all coronaviruses. While mutation of each antagonist protein alone has little effect on innate immunity, infections with recombinant MERS-CoVs with mutations of EndoU in combination with either NS4a or NS4b, activate innate signaling pathways and are attenuated for replication. Our data indicate that EndoU and accessory proteins NS4a and NS4b together suppress innate immunity during MERS-CoV infection, to optimize viral replication. This is in contrast to SARS-CoV-2 which activates these pathways and consistent with greater mortality observed during MERS-CoV infection compared to SARS-CoV-2.
- Published
- 2021
- Full Text
- View/download PDF
25. Unique Mutations in the Murine Hepatitis Virus Macrodomain Differentially Attenuate Virus Replication, Indicating Multiple Roles for the Macrodomain in Coronavirus Replication.
- Author
-
Voth LS, O'Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P, Johnson DK, and Fehr AR
- Subjects
- Amino Acid Substitution, Animals, HeLa Cells, Humans, Macrophages metabolism, Macrophages virology, Mice, Murine hepatitis virus physiology, Mutation, Missense, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, Virus Replication genetics
- Abstract
All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo . Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-β) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.
- Published
- 2021
- Full Text
- View/download PDF
26. An MHV macrodomain mutant predicted to lack ADP-ribose binding activity is severely attenuated, indicating multiple roles for the macrodomain in coronavirus replication.
- Author
-
Voth LS, O'Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P, Johnson DK, and Fehr AR
- Abstract
All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in non-structural protein 3 (nsp3) which binds and hydrolyzes ADP-ribose covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutant of a highly conserved asparagine-to-alanine mutation, which is known to largely eliminate Mac1 ADP-ribosylhydrolase activity. To determine if Mac1 ADP-ribose binding separately contributes to CoV replication, we compared the replication of a murine hepatitis virus (MHV) Mac1 mutant predicted to dramatically reduce ADP-ribose binding, D1329A, to the previously mentioned asparagine mutant, N1347A. D1329A and N1347A both replicated poorly in bone-marrow derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo . However, D1329A was significantly more attenuated than N1347A in all cell lines tested that were susceptible to MHV infection. In addition, D1329A retained some ability to block IFN-β transcript accumulation compared to N1347A, indicating that these two mutants impacted distinct Mac1 functions. Mac1 mutants predicted to eliminate both binding and hydrolysis activities were unrecoverable, suggesting that the combined activities of Mac1 may be essential for MHV replication. We conclude that Mac1 has multiple roles in promoting the replication of MHV, and that these results provide further evidence that Mac1 could be a prominent target for anti-CoV therapeutics., Importance: In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate, and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within non-structural protein 3. It has received significant attention as a potential drug target as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the various roles and functions of Mac1 during infection remain largely unknown. Here, utilizing recombinant Mac1 mutant viruses, we have determined that different biochemical functions of Mac1 have distinct roles in the replication of MHV, a model CoV. These results indicate that Mac1 is more important for CoV replication than previously appreciated, and could help guide the development of inhibitory compounds that target unique regions of this protein domain.
- Published
- 2021
- Full Text
- View/download PDF
27. The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase.
- Author
-
Alhammad YMO, Kashipathy MM, Roy A, Gagné JP, McDonald P, Gao P, Nonfoux L, Battaile KP, Johnson DK, Holmstrom ED, Poirier GG, Lovell S, and Fehr AR
- Subjects
- Adenosine Diphosphate Ribose chemistry, Adenosine Diphosphate Ribose metabolism, Amino Acid Sequence, Coronavirus chemistry, Coronavirus enzymology, Coronavirus metabolism, Crystallography, X-Ray, Humans, Hydrolysis, Kinetics, N-Glycosyl Hydrolases chemistry, Protein Binding, Protein Domains, SARS-CoV-2 chemistry, SARS-CoV-2 metabolism, Viral Nonstructural Proteins chemistry, N-Glycosyl Hydrolases metabolism, SARS-CoV-2 enzymology, Viral Nonstructural Proteins metabolism
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity. IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain., (Copyright © 2021 Alhammad et al.)
- Published
- 2021
- Full Text
- View/download PDF
28. Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
- Author
-
Heer CD, Sanderson DJ, Voth LS, Alhammad YMO, Schmidt MS, Trammell SAJ, Perlman S, Cohen MS, Fehr AR, and Brenner C
- Subjects
- A549 Cells, ADP-Ribosylation, Adenosine Diphosphate Ribose metabolism, Adult, Animals, COVID-19 immunology, Cell Line, Tumor, Female, Ferrets, Humans, Immunity, Innate, Male, Metabolome, Mice, Mice, Inbred C57BL, NAD metabolism, Niacinamide analogs & derivatives, Niacinamide metabolism, Poly(ADP-ribose) Polymerase Inhibitors pharmacology, Poly(ADP-ribose) Polymerases blood, Pyridinium Compounds, SARS-CoV-2 metabolism, COVID-19 metabolism, NAD immunology, Poly(ADP-ribose) Polymerases immunology, SARS-CoV-2 immunology
- Abstract
Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD
+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses., Competing Interests: Conflict of interest—C. B. is chief scientific adviser of ChromaDex and owns shares of ChromaDex stock. C. B., S. A. J. T., S. P., and A. R. F. filed an invention disclosure on uses of NAD-boosting with respect to protection against coronavirus infection., (© 2020 Heer et al.)- Published
- 2020
- Full Text
- View/download PDF
29. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway.
- Author
-
Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, Takvorian PM, Bleck C, Hsu VW, Fehr AR, Perlman S, Achar SR, Straus MR, Whittaker GR, de Haan CAM, Kehrl J, Altan-Bonnet G, and Altan-Bonnet N
- Subjects
- ADP-Ribosylation Factors metabolism, Animals, COVID-19 pathology, Female, HeLa Cells, Heterocyclic Compounds, 2-Ring pharmacology, Humans, Lysosomes, Mice, Thiourea analogs & derivatives, Thiourea pharmacology, rab GTP-Binding Proteins antagonists & inhibitors, rab GTP-Binding Proteins metabolism, rab7 GTP-Binding Proteins, COVID-19 Drug Treatment, COVID-19 metabolism, SARS-CoV-2 metabolism, Secretory Pathway, Virus Release
- Abstract
β-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that β-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of β-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. β-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities., Competing Interests: Declaration of Interests The authors declare no competing interests., (Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF
30. The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase.
- Author
-
Alhammad YMO, Kashipathy MM, Roy A, Gagné JP, McDonald P, Gao P, Nonfoux L, Battaile KP, Johnson DK, Holmstrom ED, Poirier GG, Lovell S, and Fehr AR
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low μM affinities. Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity., Importance: SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused greater than 900 thousand deaths worldwide. With, no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic post-translational process increasingly recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.
- Published
- 2020
- Full Text
- View/download PDF
31. The Viral Macrodomain Counters Host Antiviral ADP-Ribosylation.
- Author
-
Alhammad YMO and Fehr AR
- Subjects
- Adenosine Diphosphate Ribose metabolism, Cytoplasmic Granules immunology, Cytoplasmic Granules virology, Humans, Interferons immunology, Mutation, Poly(ADP-ribose) Polymerases immunology, Protein Domains, RNA Virus Infections immunology, RNA Virus Infections metabolism, RNA Virus Infections virology, RNA Viruses classification, RNA Viruses genetics, RNA Viruses metabolism, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, Virus Replication, ADP-Ribosylation immunology, RNA Viruses immunology, Viral Nonstructural Proteins chemistry, Viral Nonstructural Proteins immunology
- Abstract
Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.
- Published
- 2020
- Full Text
- View/download PDF
32. The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions.
- Author
-
Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, and Aikawa M
- Subjects
- Humans, Macrophages pathology, Proteomics, Research trends, Systems Biology, Virus Diseases physiopathology, ADP-Ribosylation physiology, Host-Pathogen Interactions physiology, Inflammation, Poly(ADP-ribose) Polymerases metabolism
- Abstract
Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD
+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions., (© 2020 Fehr et al.; Published by Cold Spring Harbor Laboratory Press.)- Published
- 2020
- Full Text
- View/download PDF
33. Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression.
- Author
-
Grunewald ME, Shaban MG, Mackin SR, Fehr AR, and Perlman S
- Subjects
- Animals, Cytokines genetics, Indoleamine-Pyrrole 2,3,-Dioxygenase genetics, Mice, Mice, Knockout, Poly(ADP-ribose) Polymerases genetics, Receptors, Aryl Hydrocarbon genetics, Signal Transduction, Cytokines metabolism, Gene Expression Regulation, Enzymologic, Indoleamine-Pyrrole 2,3,-Dioxygenase metabolism, Murine hepatitis virus physiology, Poly(ADP-ribose) Polymerases biosynthesis, Proviruses physiology, Receptors, Aryl Hydrocarbon metabolism, Virus Replication physiology
- Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor/transcription factor that modulates several cellular and immunological processes following activation by pathogen-associated stimuli, though its role during virus infection is largely unknown. Here, we show that AhR is activated in cells infected with mouse hepatitis virus (MHV), a coronavirus (CoV), and contributes to the upregulation of downstream effector TCDD-inducible poly(ADP-ribose) polymerase (TiPARP) during infection. Knockdown of TiPARP reduced viral replication and increased interferon expression, suggesting that TiPARP functions in a proviral manner during MHV infection. We also show that MHV replication induced the expression of other genes known to be downstream of AhR in macrophages and dendritic cells and in livers of infected mice. Further, we found that chemically inhibiting or activating AhR reciprocally modulated the expression levels of cytokines induced by infection, specifically, interleukin 1β (IL-1β), IL-10, and tumor necrosis factor alpha (TNF-α), consistent with a role for AhR activation in the host response to MHV infection. Furthermore, while indoleamine 2,3-dioxygenase (IDO1) drives AhR activation in other settings, MHV infection induced equal expression of downstream genes in wild-type (WT) and IDO1
-/- macrophages, suggesting an alternative pathway of AhR activation. In summary, we show that coronaviruses elicit AhR activation by an IDO1-independent pathway, contributing to upregulation of downstream effectors, including the proviral factor TiPARP, and to modulation of cytokine gene expression, and we identify a previously unappreciated role for AhR signaling in CoV pathogenesis. IMPORTANCE Coronaviruses are a family of positive-sense RNA viruses with human and agricultural significance. Characterizing the mechanisms by which coronavirus infection dictates pathogenesis or counters the host immune response would provide targets for the development of therapeutics. Here, we show that the aryl hydrocarbon receptor (AhR) is activated in cells infected with a prototypic coronavirus, mouse hepatitis virus (MHV), resulting in the expression of several effector genes. AhR is important for modulation of the host immune response to MHV and plays a role in the expression of TiPARP, which we show is required for maximal viral replication. Taken together, our findings highlight a previously unidentified role for AhR in regulating coronavirus replication and the immune response to the virus., (Copyright © 2020 American Society for Microbiology.)- Published
- 2020
- Full Text
- View/download PDF
34. Bacterial Artificial Chromosome-Based Lambda Red Recombination with the I-SceI Homing Endonuclease for Genetic Alteration of MERS-CoV.
- Author
-
Fehr AR
- Subjects
- Coronavirus Infections prevention & control, Deoxyribonuclease I genetics, Deoxyribonuclease I metabolism, Genetic Engineering, Homologous Recombination, Humans, Middle East Respiratory Syndrome Coronavirus immunology, Mutation, Vaccines, Attenuated genetics, Vaccinia virus genetics, Bacteriophage lambda genetics, Chromosomes, Artificial, Bacterial genetics, Coronavirus Infections virology, Genome, Viral genetics, Middle East Respiratory Syndrome Coronavirus genetics, Viral Vaccines genetics
- Abstract
Over the past two decades, several coronavirus (CoV) infectious clones have been engineered, allowing for the manipulation of their large viral genomes (~30 kb) using unique reverse genetic systems. These reverse genetic systems include targeted recombination, in vitro ligation, vaccinia virus vectors, and bacterial artificial chromosomes (BACs). Quickly after the identification of Middle East respiratory syndrome-CoV (MERS-CoV), both in vitro ligation and BAC-based reverse genetic technologies were engineered for MERS-CoV to study its basic biological properties, develop live-attenuated vaccines, and test antiviral drugs. Here, I will describe how lambda red recombination can be used with the MERS-CoV BAC to quickly and efficiently introduce virtually any type of genetic modification (point mutations, insertions, deletions) into the MERS-CoV genome and recover recombinant virus.
- Published
- 2020
- Full Text
- View/download PDF
35. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes.
- Author
-
Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB Jr, Meyerholz DK, and Perlman S
- Subjects
- Animals, Cell Separation, Cytokines immunology, Female, Flow Cytometry, Gene Expression Profiling, Hematopoietic Stem Cells cytology, Humans, Inflammation, Interferon-beta immunology, Lung immunology, Lung pathology, Macrophages immunology, Male, Mice, Mice, Inbred BALB C, Middle East Respiratory Syndrome Coronavirus pathogenicity, Monocytes immunology, Neutrophils immunology, Signal Transduction, Coronavirus Infections immunology, Interferon-beta pharmacology, Middle East Respiratory Syndrome Coronavirus physiology, Virus Replication
- Abstract
Type 1 IFNs (IFN-I) generally protect mammalian hosts from virus infections, but in some cases, IFN-I is pathogenic. Because IFN-I is protective, it is commonly used to treat virus infections for which no specific approved drug or vaccine is available. The Middle East respiratory syndrome-coronavirus (MERS-CoV) is such an infection, yet little is known about the role of IFN-I in this setting. Here, we show that IFN-I signaling is protective during MERS-CoV infection. Blocking IFN-I signaling resulted in delayed virus clearance, enhanced neutrophil infiltration, and impaired MERS-CoV-specific T cell responses. Notably, IFN-I administration within 1 day after infection (before virus titers peak) protected mice from lethal infection, despite a decrease in IFN-stimulated gene (ISG) and inflammatory cytokine gene expression. In contrast, delayed IFN-β treatment failed to effectively inhibit virus replication, increased infiltration and activation of monocytes, macrophages, and neutrophils in the lungs, and enhanced proinflammatory cytokine expression, resulting in fatal pneumonia in an otherwise sublethal infection. Together, these results suggest that the relative timing of the IFN-I response and maximal virus replication is key in determining outcomes, at least in infected mice. By extension, IFN-αβ or combination therapy may need to be used cautiously to treat viral infections in clinical settings.
- Published
- 2019
- Full Text
- View/download PDF
36. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression.
- Author
-
Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan CS, Perlman S, and Fehr AR
- Subjects
- ADP-Ribosylation, Animals, Coronavirus drug effects, Coronavirus Infections drug therapy, Coronavirus Infections immunology, Coronavirus Infections metabolism, Humans, Immunity, Innate drug effects, Mice, Poly(ADP-ribose) Polymerases chemistry, Poly(ADP-ribose) Polymerases genetics, Protein Domains, Receptor, Interferon alpha-beta genetics, Receptor, Interferon alpha-beta metabolism, Virulence, Coronavirus immunology, Coronavirus Infections virology, Immunity, Innate immunology, Interferons metabolism, Poly(ADP-ribose) Polymerase Inhibitors pharmacology, Poly(ADP-ribose) Polymerases metabolism, Virus Replication
- Abstract
ADP-ribosylation is a ubiquitous post-translational addition of either monomers or polymers of ADP-ribose to target proteins by ADP-ribosyltransferases, usually by interferon-inducible diphtheria toxin-like enzymes known as PARPs. While several PARPs have known antiviral activities, these activities are mostly independent of ADP-ribosylation. Consequently, less is known about the antiviral effects of ADP-ribosylation. Several viral families, including Coronaviridae, Togaviridae, and Hepeviridae, encode for macrodomain proteins that bind to and hydrolyze ADP-ribose from proteins and are critical for optimal replication and virulence. These results suggest that macrodomains counter cellular ADP-ribosylation, but whether PARPs or, alternatively, other ADP-ribosyltransferases cause this modification is not clear. Here we show that pan-PARP inhibition enhanced replication and inhibited interferon production in primary macrophages infected with macrodomain-mutant but not wild-type coronavirus. Specifically, knockdown of two abundantly expressed PARPs, PARP12 and PARP14, led to increased replication of mutant but did not significantly affect wild-type virus. PARP14 was also important for the induction of interferon in mouse and human cells, indicating a critical role for this PARP in the regulation of innate immunity. In summary, these data demonstrate that the macrodomain is required to prevent PARP-mediated inhibition of coronavirus replication and enhancement of interferon production., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
37. Viral Macrodomains: Unique Mediators of Viral Replication and Pathogenesis.
- Author
-
Fehr AR, Jankevicius G, Ahel I, and Perlman S
- Subjects
- Adenosine Diphosphate Ribose metabolism, Coronaviridae genetics, Coronaviridae pathogenicity, Hepevirus genetics, Hepevirus pathogenicity, Histones, Poly(ADP-ribose) Polymerases, Protein Processing, Post-Translational, Togaviridae genetics, Togaviridae pathogenicity, Viral Nonstructural Proteins metabolism, Viruses enzymology, Protein Domains, Viral Nonstructural Proteins chemistry, Virus Replication, Viruses genetics, Viruses pathogenicity
- Abstract
Viruses from the Coronaviridae, Togaviridae, and Hepeviridae families all contain genes that encode a conserved protein domain, called a macrodomain; however, the role of this domain during infection has remained enigmatic. The recent discovery that mammalian macrodomain proteins enzymatically remove ADP-ribose, a common post-translation modification, from proteins has led to an outburst of studies describing both the enzymatic activity and function of viral macrodomains. These new studies have defined these domains as de-ADP-ribosylating enzymes, which indicates that these viruses have evolved to counteract antiviral ADP-ribosylation, likely mediated by poly-ADP-ribose polymerases (PARPs). Here, we comprehensively review this rapidly expanding field, describing the structures and enzymatic activities of viral macrodomains, and discussing their roles in viral replication and pathogenesis., (Copyright © 2017 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
38. Selective Packaging in Murine Coronavirus Promotes Virulence by Limiting Type I Interferon Responses.
- Author
-
Athmer J, Fehr AR, Grunewald ME, Qu W, Wheeler DL, Graepel KW, Channappanavar R, Sekine A, Aldabeeb DS, Gale M Jr, Denison MR, and Perlman S
- Subjects
- Animals, Coronavirus Infections genetics, Coronavirus Infections immunology, Coronavirus Infections virology, Host-Pathogen Interactions, Interferon Type I genetics, Inverted Repeat Sequences, Male, Mice, Murine hepatitis virus chemistry, Murine hepatitis virus genetics, Open Reading Frames, RNA, Viral chemistry, RNA, Viral genetics, RNA, Viral metabolism, Rodent Diseases genetics, Rodent Diseases virology, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, Virulence, Virus Replication, Coronavirus Infections veterinary, Interferon Type I immunology, Murine hepatitis virus pathogenicity, Murine hepatitis virus physiology, Rodent Diseases immunology, Virus Assembly
- Abstract
Selective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packaging in vitro and on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negative-sense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normally in vitro but caused dramatically reduced lethality and weight loss in vivo PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant viruses in vivo PS mutant viruses remained attenuated in MAVS
-/- and Toll-like receptor 7-knockout (TLR7-/- ) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/beta receptor-knockout (IFNAR-/- ) mice or in MAVS-/- mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection. IMPORTANCE Coronaviruses (CoVs) produce many types of RNA molecules during their replication cycle, including both positive- and negative-sense genomic and subgenomic RNAs. Despite this, coronaviruses selectively package only positive-sense genomic RNA into their virions. Why CoVs selectively package their genomic RNA is not clear, as disruption of the packaging signal in MHV, which leads to loss of selective packaging, does not affect genomic RNA packaging or virus replication in cultured cells. This contrasts with other viruses, where disruption of selective packaging generally leads to altered replication. Here, we demonstrate that in the absence of selective packaging, the virulence of MHV was significantly reduced. Importantly, virulence was restored in the absence of interferon signaling, indicating that selective packaging is a mechanism used by CoVs to escape innate immune detection., (Copyright © 2018 Athmer et al.)- Published
- 2018
- Full Text
- View/download PDF
39. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element.
- Author
-
Galasiti Kankanamalage AC, Kim Y, Damalanka VC, Rathnayake AD, Fehr AR, Mehzabeen N, Battaile KP, Lovell S, Lushington GH, Perlman S, Chang KO, and Groutas WC
- Subjects
- 3C Viral Proteases, Animals, Antiviral Agents chemical synthesis, Antiviral Agents chemistry, Cats, Cell Death drug effects, Cells, Cultured, Chlorocebus aethiops, Crystallography, X-Ray, Cysteine Endopeptidases metabolism, Cysteine Proteinase Inhibitors chemical synthesis, Cysteine Proteinase Inhibitors chemistry, Dose-Response Relationship, Drug, Middle East Respiratory Syndrome Coronavirus enzymology, Models, Molecular, Molecular Structure, Piperidines chemical synthesis, Piperidines chemistry, Structure-Activity Relationship, Vero Cells, Viral Proteins metabolism, Antiviral Agents pharmacology, Cysteine Proteinase Inhibitors pharmacology, Drug Design, Middle East Respiratory Syndrome Coronavirus drug effects, Piperidines pharmacology, Viral Proteins antagonists & inhibitors
- Abstract
There are currently no approved vaccines or small molecule therapeutics available for the prophylaxis or treatment of Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections. MERS-CoV 3CL protease is essential for viral replication; consequently, it is an attractive target that provides a potentially effective means of developing small molecule therapeutics for combatting MERS-CoV. We describe herein the structure-guided design and evaluation of a novel class of inhibitors of MERS-CoV 3CL protease that embody a piperidine moiety as a design element that is well-suited to exploiting favorable subsite binding interactions to attain optimal pharmacological activity and PK properties. The mechanism of action of the compounds and the structural determinants associated with binding were illuminated using X-ray crystallography., (Copyright © 2018 Elsevier Masson SAS. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
40. The coronavirus nucleocapsid protein is ADP-ribosylated.
- Author
-
Grunewald ME, Fehr AR, Athmer J, and Perlman S
- Subjects
- Animals, Cell Line, Coronavirus genetics, Coronavirus Nucleocapsid Proteins, Humans, Nucleocapsid Proteins genetics, Protein Domains, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, ADP-Ribosylation physiology, Coronavirus metabolism, Gene Expression Regulation, Viral physiology, Nucleocapsid Proteins metabolism
- Abstract
ADP-ribosylation is a common post-translational modification, although how it modulates RNA virus infection is not well understood. While screening for ADP-ribosylated proteins during coronavirus (CoV) infection, we detected a ~55kDa ADP-ribosylated protein in mouse hepatitis virus (MHV)-infected cells and in virions, which we identified as the viral nucleocapsid (N) protein. The N proteins of porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV were also ADP-ribosylated. ADP-ribosylation of N protein was also observed in cells exogenously expressing N protein by transduction using Venezuelan equine encephalitis virus replicon particles (VRPs). However, plasmid-derived N protein was not ADP-ribosylated following transient transfection but was ADP-ribosylated after MHV infection, indicating that this modification requires virus infection. In conclusion, we have identified a novel post-translation modification of the CoV N protein that may play a regulatory role for this important structural protein., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
41. MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection.
- Author
-
Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, García-Sastre A, Perlman S, Enjuanes L, and Sola I
- Subjects
- Animals, Cells, Cultured, Coronavirus Infections virology, Cricetinae, Host-Pathogen Interactions immunology, Humans, Middle East Respiratory Syndrome Coronavirus immunology, NF-kappa B metabolism, Coronavirus Infections immunology, Immune Evasion, Immunity, Innate physiology, Middle East Respiratory Syndrome Coronavirus physiology, NF-kappa B physiology, Viral Proteins physiology
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel human coronavirus that emerged in 2012, causing severe pneumonia and acute respiratory distress syndrome (ARDS), with a case fatality rate of ~36%. When expressed in isolation, CoV accessory proteins have been shown to interfere with innate antiviral signaling pathways. However, there is limited information on the specific contribution of MERS-CoV accessory protein 4b to the repression of the innate antiviral response in the context of infection. We found that MERS-CoV 4b was required to prevent a robust NF-κB dependent response during infection. In wild-type virus infected cells, 4b localized to the nucleus, while NF-κB was retained in the cytoplasm. In contrast, in the absence of 4b or in the presence of cytoplasmic 4b mutants lacking a nuclear localization signal (NLS), NF-κB was translocated to the nucleus leading to the expression of pro-inflammatory cytokines. This indicates that NF-κB repression required the nuclear import of 4b mediated by a specific NLS. Interestingly, we also found that both in isolation and during infection, 4b interacted with α-karyopherin proteins in an NLS-dependent manner. In particular, 4b had a strong preference for binding karyopherin-α4 (KPNA4), which is known to translocate the NF-κB protein complex into the nucleus. Binding of 4b to KPNA4 during infection inhibited its interaction with NF-κB-p65 subunit. Thereby we propose a model where 4b outcompetes NF-κB for KPNA4 binding and translocation into the nucleus as a mechanism of interference with the NF-κB-mediated innate immune response.
- Published
- 2018
- Full Text
- View/download PDF
42. Virus-induced inflammasome activation is suppressed by prostaglandin D 2 /DP1 signaling.
- Author
-
Vijay R, Fehr AR, Janowski AM, Athmer J, Wheeler DL, Grunewald M, Sompallae R, Kurup SP, Meyerholz DK, Sutterwala FS, Narumiya S, and Perlman S
- Subjects
- Animals, Cyclic AMP metabolism, Cytokines metabolism, Humans, Inflammation metabolism, Interferon Type I metabolism, Interleukin-1beta metabolism, Macrophages metabolism, Mice, Mice, Inbred C57BL, Oligonucleotide Array Sequence Analysis, Protein Domains, Receptors, Prostaglandin antagonists & inhibitors, Up-Regulation, Coronavirus, Inflammasomes metabolism, Prostaglandin D2 metabolism, Receptors, Prostaglandin metabolism, Signal Transduction
- Abstract
Prostaglandin D2 (PGD
2 ), an eicosanoid with both pro- and anti-inflammatory properties, is the most abundantly expressed prostaglandin in the brain. Here we show that PGD2 signaling through the D-prostanoid receptor 1 (DP1) receptor is necessary for optimal microglia/macrophage activation and IFN expression after infection with a neurotropic coronavirus. Genome-wide expression analyses indicated that PGD2 /DP1 signaling is required for up-regulation of a putative inflammasome inhibitor, PYDC3, in CD11b+ cells in the CNS of infected mice. Our results also demonstrated that, in addition to PGD2 /DP1 signaling, type 1 IFN (IFN-I) signaling is required for PYDC3 expression. In the absence of Pydc3 up-regulation, IL-1β expression and, subsequently, mortality were increased in infected DP1-/- mice. Notably, survival was enhanced by IL1 receptor blockade, indicating that the effects of the absence of DP1 signaling on clinical outcomes were mediated, at least in part, by inflammasomes. Using bone marrow-derived macrophages in vitro, we confirmed that PYDC3 expression is dependent upon DP1 signaling and that IFN priming is critical for PYDC3 up-regulation. In addition, Pydc3 silencing or overexpression augmented or diminished IL-1β secretion, respectively. Furthermore, DP1 signaling in human macrophages also resulted in the up-regulation of a putative functional analog, POP3, suggesting that PGD2 similarly modulates inflammasomes in human cells. These findings demonstrate a previously undescribed role for prostaglandin signaling in preventing excessive inflammasome activation and, together with previously published results, suggest that eicosanoids and inflammasomes are reciprocally regulated., Competing Interests: The authors declare no conflict of interest.- Published
- 2017
- Full Text
- View/download PDF
43. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins.
- Author
-
Athmer J, Fehr AR, Grunewald M, Smith EC, Denison MR, and Perlman S
- Subjects
- Animals, Cell Line, Humans, Murine hepatitis virus genetics, Protein Binding, Murine hepatitis virus physiology, Protein Multimerization, Transcription, Genetic, Viral Nonstructural Proteins metabolism, Virus Replication
- Abstract
Coronavirus (CoV) replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER) membranes in replication/transcription complexes (RTC). Many of the CoV nonstructural proteins (nsps) are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV). In MHV, nsp15 contains the genomic RNA packaging signal (P/S), a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA) tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M) protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses., Importance: Despite structural and biochemical data demonstrating that the coronavirus nsp15 protein contains an endoribonuclease domain, its precise function during coronavirus infection remains unknown. In this work, we created a novel in situ tagged form of nsp15 to study interactions and localization during infection. This in situ tag was tolerated by MHV and did not affect viral replication. Utilizing this tag, we established that nsp15 localized to sites of replication but not sites of assembly throughout infection. Furthermore, we found that nsp15 interacted with the putative viral primase nsp8 and polymerase nsp12 during CoV infection. The strong association of nsp15 with replication complexes and interactions with replicative CoV enzymes suggest nsp15 is involved in CoV replication. These data and tools developed in this study help elucidate the function of nsp15 during infection and may be used to uncover other novel viral protein interactions., (Copyright © 2017 Athmer et al.)
- Published
- 2017
- Full Text
- View/download PDF
44. Middle East Respiratory Syndrome: Emergence of a Pathogenic Human Coronavirus.
- Author
-
Fehr AR, Channappanavar R, and Perlman S
- Subjects
- Animals, Camelus, Chiroptera, Coronavirus Infections therapy, Coronavirus Infections virology, Cytokines blood, Humans, Immunity, Cellular, Infection Control, Middle East epidemiology, Zoonoses virology, Coronavirus Infections epidemiology, Coronavirus Infections transmission, Disease Outbreaks, Middle East Respiratory Syndrome Coronavirus, Zoonoses transmission
- Abstract
In 2012, a zoonotic coronavirus was identified as the causative agent of Middle East respiratory syndrome and was named MERS coronavirus (MERS-CoV). As of August 11, 2016, the virus has infected 1,791 patients, with a mortality rate of 35.6%. Although MERS-CoV generally causes subclinical or mild disease, infection can result in serious outcomes, including acute respiratory distress syndrome and multi-organ failure in patients with comorbidities. The virus is endemic in camels in the Arabian Peninsula and Africa and thus poses a consistent threat of frequent reintroduction into human populations. Disease prevalence will increase substantially if the virus mutates to increase human-to-human transmissibility. No therapeutics or vaccines are approved for MERS; thus, development of novel therapies is needed. Further, since many MERS cases are acquired in healthcare settings, public health measures and scrupulous attention to infection control are required to prevent additional MERS outbreaks.
- Published
- 2017
- Full Text
- View/download PDF
45. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection.
- Author
-
Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, Meyerholz DK, Ahel I, and Perlman S
- Subjects
- Adenosine Diphosphate metabolism, Animals, Bronchi cytology, Bronchi immunology, Bronchi virology, Cell Line, Coinfection immunology, Coinfection virology, Coronavirus chemistry, Coronavirus genetics, Cytokines immunology, Epithelial Cells immunology, Epithelial Cells virology, Host-Pathogen Interactions, Humans, Mice, Mutation, Severe acute respiratory syndrome-related coronavirus pathogenicity, Viral Load, Viral Nonstructural Proteins chemistry, Viral Nonstructural Proteins metabolism, Virulence, Coronavirus immunology, Coronavirus pathogenicity, Immunity, Innate, Protein Domains, Severe Acute Respiratory Syndrome immunology, Severe Acute Respiratory Syndrome virology, Viral Nonstructural Proteins genetics
- Abstract
ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3). However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3's de-ADP-ribosylation activity in vitro Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN), interferon-stimulated gene (ISG), and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs., Importance: The macrodomain is a ubiquitous structural domain that removes ADP-ribose from proteins, reversing the activity of ADP-ribosyltransferases. All coronaviruses contain a macrodomain, suggesting that ADP-ribosylation impacts coronavirus infection. However, its function during infection remains unknown. Here, we found that the macrodomain is an important virulence factor for a highly pathogenic human CoV, SARS-CoV. Viruses with macrodomain mutations that abrogate its ability to remove ADP-ribose from protein were unable to cause lethal disease in mice. Importantly, the SARS-CoV macrodomain suppressed the innate immune response during infection. Our data suggest that an early innate immune response can protect mice from lethal disease. Understanding the mechanism used by this enzyme to promote disease will open up novel avenues for coronavirus therapies and give further insight into the role of macrodomains in viral pathogenesis., (Copyright © 2016 Fehr et al.)
- Published
- 2016
- Full Text
- View/download PDF
46. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism.
- Author
-
Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB Jr, and Gallagher T
- Subjects
- Coronavirus Infections virology, Gene Expression Regulation, Viral, Humans, Lung pathology, Middle East Respiratory Syndrome Coronavirus pathogenicity, Mutation, Proteolysis, Viral Tropism genetics, Virion genetics, Virion growth & development, Virus Internalization, Coronavirus Infections genetics, Lung virology, Middle East Respiratory Syndrome Coronavirus genetics, Spike Glycoprotein, Coronavirus genetics
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects humans from zoonotic sources and causes severe pulmonary disease. Virions require spike (S) glycoproteins for binding to cell receptors and for catalyzing virus-cell membrane fusion. Fusion occurs only after S proteins are cleaved sequentially, first during their secretion through the exocytic organelles of virus-producing cells, and second after virus binding to target-cell receptors. To more precisely determine how sequential proteolysis contributes to CoV infection, we introduced S mutations obstructing the first cleavages. These mutations severely compromised MERS-CoV infection into human lung-derived cells, but had little effect on infection into several other cell types. These cell type-specific requirements for proteolysis correlated with S conformations during cell entry. Without the first cleavages, S proteins resisted cell receptor-induced conformational changes, which restricted the second, fusion-activating cleavages. Consistent with these findings, precleaved MERS viruses used receptor-proximal, cell-surface proteases to effect the second fusion-activating cleavages during cell entry, whereas the more rigid uncleaved MERS viruses trafficked past these cell-surface proteases and into endosomes. Uncleaved viruses were less infectious to human airway epithelial and Calu3 cell cultures because they lacked sufficient endosomal fusion-activating proteases. Thus, by sensitizing viruses to receptor-induced conformational changes, the first S cleavages expand virus tropism to cell types that are relevant to lung infection, and therefore may be significant determinants of MERS-CoV virulence., Competing Interests: The authors declare no conflict of interest.
- Published
- 2016
- Full Text
- View/download PDF
47. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.
- Author
-
Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, and Perlman S
- Subjects
- Animals, Female, Humans, Interferon Type I genetics, Mice, Mice, Inbred BALB C, Pneumonia etiology, Pneumonia genetics, Pneumonia immunology, Severe acute respiratory syndrome-related coronavirus genetics, Severe acute respiratory syndrome-related coronavirus immunology, Severe Acute Respiratory Syndrome complications, Severe Acute Respiratory Syndrome genetics, Severe Acute Respiratory Syndrome virology, Interferon Type I immunology, Macrophages immunology, Monocytes immunology, Pneumonia mortality, Severe acute respiratory syndrome-related coronavirus physiology, Severe Acute Respiratory Syndrome immunology
- Abstract
Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
48. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis.
- Author
-
Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, and Perlman S
- Subjects
- Animals, Body Weight, Brain immunology, Brain pathology, Cytokines metabolism, Disease Models, Animal, Encephalitis, Viral virology, Leukocytes immunology, Male, Mice, Inbred C57BL, Murine hepatitis virus growth & development, Mutant Proteins genetics, Mutant Proteins metabolism, Mutation, Missense, Point Mutation, Survival Analysis, Viral Load, Virulence, Encephalitis, Viral pathology, Murine hepatitis virus genetics, Murine hepatitis virus pathogenicity, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, Virulence Factors genetics, Virulence Factors metabolism
- Abstract
Unlabelled: All coronaviruses encode a macrodomain containing ADP-ribose-1"-phosphatase (ADRP) activity within the N terminus of nonstructural protein 3 (nsp3). Previous work showed that mouse hepatitis virus strain A59 (MHV-A59) with a mutated catalytic site (N1348A) replicated similarly to wild-type virus but was unable to cause acute hepatitis in mice. To determine whether this attenuated phenotype is applicable to multiple disease models, we mutated the catalytic residue in the JHM strain of MHV (JHMV), which causes acute and chronic encephalomyelitis, using a newly developed bacterial artificial chromosome (BAC)-based MHV reverse genetics system. Infection of mice with the macrodomain catalytic point mutant virus (N1347A) resulted in reductions in lethality, weight loss, viral titers, proinflammatory cytokine and chemokine expression, and immune cell infiltration in the brain compared to mice infected with wild-type virus. Specifically, macrophages were most affected, with approximately 2.5-fold fewer macrophages at day 5 postinfection in N1347A-infected brains. Tumor necrosis factor (TNF) and interferon (IFN) signaling were not required for effective host control of mutant virus as all N1347A virus-infected mice survived the infection. However, the adaptive immune system was required for protection since N1347A virus was able to cause lethal encephalitis in RAG1(-/-) (recombination activation gene 1 knockout) mice although disease onset was modestly delayed. Overall, these results indicate that the BAC-based MHV reverse genetics system will be useful for studies of JHMV and expand upon previous studies, showing that the macrodomain is critical for the ability of coronaviruses to evade the immune system and promote viral pathogenesis., Importance: Coronaviruses are an important cause of human and veterinary diseases worldwide. Viral processes that are conserved across a family are likely to be good targets for the development of antiviral therapeutics and vaccines. The macrodomain is a ubiquitous structural domain and is also conserved among all coronaviruses. The coronavirus macrodomain has ADP-ribose-1"-phosphatase activity; however, its function during infection remains unclear as does the reason that coronaviruses have maintained this enzymatic activity throughout evolution. For MHV, this domain has now been shown to promote multiple types of disease, including hepatitis and encephalitis. These data indicate that this domain is vital for the virus to replicate and cause disease. Understanding the mechanism used by this enzyme to promote viral pathogenesis will open up novel avenues for therapies and may give further insight into the role of macrodomain proteins in the host cell since these proteins are found in all living organisms., (Copyright © 2015, American Society for Microbiology. All Rights Reserved.)
- Published
- 2015
- Full Text
- View/download PDF
49. Coronaviruses: an overview of their replication and pathogenesis.
- Author
-
Fehr AR and Perlman S
- Subjects
- Animals, Coronavirus Infections diagnosis, Coronavirus Infections therapy, Gene Expression, Genome, Viral, Humans, Viral Proteins genetics, Viral Proteins metabolism, Virus Attachment, Virus Release, Coronavirus physiology, Coronavirus Infections virology, Virus Replication
- Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).
- Published
- 2015
- Full Text
- View/download PDF
50. Human cytomegalovirus infection of langerhans-type dendritic cells does not require the presence of the gH/gL/UL128-131A complex and is blocked after nuclear deposition of viral genomes in immature cells.
- Author
-
Lauron EJ, Yu D, Fehr AR, and Hertel L
- Subjects
- Base Sequence, Cells, Cultured, Cytomegalovirus metabolism, DNA Primers, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Cell Nucleus virology, Cytomegalovirus pathogenicity, Dendritic Cells virology, Genome, Viral, Islets of Langerhans virology, Viral Proteins metabolism
- Abstract
Human cytomegalovirus (CMV) enters its host via the oral and genital mucosae. Langerhans-type dendritic cells (LC) are the most abundant innate immune cells at these sites, where they constitute a first line of defense against a variety of pathogens. We previously showed that immature LC (iLC) are remarkably resistant to CMV infection, while mature LC (mLC) are more permissive, particularly when exposed to clinical-strain-like strains of CMV, which display a pentameric complex consisting of the viral glycoproteins gH, gL, UL128, UL130, and UL131A on their envelope. This complex was recently shown to be required for the infection of immature monocyte-derived dendritic cells. We thus sought to establish if the presence of this complex is also necessary for virion penetration of LC and if defects in entry might be the source of iLC resistance to CMV. Here we report that the efficiency of LC infection is reduced, but not completely abolished, in the absence of the pentameric complex. While virion penetration and nuclear deposition of viral genomes are not impaired in iLC, the transcription of the viral immediate early genes UL122 and UL123 and of the delayed early gene UL50 is substantially lower than that in mLC. Together, these data show that the UL128, UL130, and UL131A proteins are dispensable for CMV entry into LC and that progression of the viral cycle in iLC is restricted at the step of viral gene expression.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.