425 results on '"Feely, R. A."'
Search Results
2. Decadal Trends in the Oceanic Storage of Anthropogenic Carbon From 1994 to 2014
- Author
-
Müller, Jens Daniel, primary, Gruber, N., additional, Carter, B., additional, Feely, R., additional, Ishii, M., additional, Lange, N., additional, Lauvset, S. K., additional, Murata, A., additional, Olsen, A., additional, Pérez, F. F., additional, Sabine, C., additional, Tanhua, T., additional, Wanninkhof, R., additional, and Zhu, D., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Biological and Chemical Response of the Equatorial Pacific Ocean to the 1997-98 El Niño
- Author
-
Chavez, F. P., Strutton, P. G., Friederich, G. E., Feely, R. A., Feldman, G. C., Foley, D. G., and McPhaden, M. J.
- Published
- 1999
4. Seafloor Eruptions and Evolution of Hydrothermal Fluid Chemistry [and Discussion]
- Author
-
Butterfield, D. A., Jonasson, I. R., Massoth, G. J., Feely, R. A., Roe, K. K., Embley, R. E., Holden, J. F., McDuff, R. E., Lilley, M. D., Delaney, J. R., and Pyle, D.
- Published
- 1997
5. Decadal Trends in the Oceanic Storage of Anthropogenic Carbon From 1994 to 2014
- Author
-
Müller, Jens Daniel, Gruber, N., Carter, B., Feely, R., Ishii, M., Lange, Nico, Lauvset, S. K., Murata, A., Olsen, A., Pérez, F. F., Sabine, C., Tanhua, Toste, Wanninkhof, R., Zhu, D., Müller, Jens Daniel, Gruber, N., Carter, B., Feely, R., Ishii, M., Lange, Nico, Lauvset, S. K., Murata, A., Olsen, A., Pérez, F. F., Sabine, C., Tanhua, Toste, Wanninkhof, R., and Zhu, D.
- Published
- 2023
- Full Text
- View/download PDF
6. Global Carbon Budget 2023
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2023
7. Eco-physiological responses of copepods and pteropods to ocean warming and acidification
- Author
-
Engström-Öst, J., Glippa, O., Feely, R. A., Kanerva, M., Keister, J. E., Alin, S. R., Carter, B. R., McLaskey, A. K., Vuori, K. A., and Bednaršek, N.
- Published
- 2019
- Full Text
- View/download PDF
8. Global Carbon Budget 2022
- Author
-
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, College of Life and Environmental Sciences [Exeter], University of Exeter, Rice University [Houston], Center for International Climate and Environmental Research [Oslo] (CICERO), University of Oslo (UiO), Institute of Biogeochemistry and Pollutant Dynamics [ETH Zürich] (IBP), Department of Environmental Systems Science [ETH Zürich] (D-USYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Tyndall Centre for Climate Change Research, University of East Anglia [Norwich] (UEA), Meteorology and Air Quality Group, Wageningen University and Research [Wageningen] (WUR), Geophysical Institute [Bergen] (GFI / BiU), University of Bergen (UiB), Bjerknes Centre for Climate Research (BCCR), Department of Biological Sciences [Bergen] (BIO / UiB), University of Bergen (UiB)-University of Bergen (UiB), Meteorology and Air Quality Department [Wageningen] (MAQ), Ludwig-Maximilians-Universität München (LMU), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Stanford Woods Institute for the Environment, Stanford University, European Commission - Joint Research Centre [Ispra] (JRC), Karlsruhe Institute of Technology (KIT), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada, Austral, Boréal et Carbone (ABC), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Cycles biogéochimiques marins : processus et perturbations (CYBIOM), Earth Sciences, Amsterdam Sustainability Institute, and Isotope Research
- Subjects
WIMEK ,[SDE.MCG]Environmental Sciences/Global Changes ,SDG 13 - Climate Action ,Life Science ,General Earth and Planetary Sciences ,Luchtkwaliteit ,Air Quality - Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1 (40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with a BIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low or sinks were too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest an increase in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %) globally and atmospheric CO2 concentration reaching 417.2 ppm, more than 50 % above pre-industrial levels (around 278 ppm). Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extratropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set. The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).
- Published
- 2022
9. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem
- Author
-
Bednaršek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J., Alin, S. R., and Hales, B.
- Published
- 2014
10. The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission
- Author
-
Chatterjee, Abhishek, Gierach, M, Feely, R, Sutton, A, Landschutzer, P, Crisp, D, Eldering, A, Gunson, M, Keeling, R, Stephens, B, and Schimel, David
- Subjects
Meteorology And Climatology - Abstract
The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of CO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales.
- Published
- 2018
11. The 2015-2016 El Nino and the Response of the Carbon Cycle: Findings from NASA's OCO-2 Mission
- Author
-
Chatterjee, Abhishek, Schimel, D, Stephens, B, Crisp, D, Eldering, A, Feely, R, Gierach, M, Gunson, M, Keeling, R, Landschuetzer, P, Sutton, A, and Weir, B
- Subjects
Geosciences (General) - Abstract
The El Nino Southern Oscillation (ENSO) is the most important mode of tropical climate variability on interannual to decadal time scales. Correlations between atmospheric CO2 growth rate and ENSO activity are relatively well known but the magnitude of this correlation, the contribution from tropical marine vs. terrestrial flux components, and the causal mechanisms, are poorly constrained in space and time. The launch of NASA's Orbiting Carbon Observatory-2 (OCO-2) mission in July 2014 was rather timely given the development of strong ENSO conditions over the tropical Pacific Ocean in 2015-2016. In this presentation, we will discuss how the high-density observations from OCO-2 provided us with a novel dataset to resolve the linkages between El Nino and atmospheric CO2. Along with information from in situ observations of ÎpCO2 from NOAA's Tropical Atmosphere Ocean (TAO) project and atmospheric CO2 from the Scripps CO2 Program, and other remote-sensing missions, we are able to piece together the time dependent response of atmospheric CO2 concentrations over the Tropics. Our findings confirm the hypothesis from studies following the 1997-1998 El Nino event that an early reduction in CO2 outgassing from the tropical Pacific Ocean is later reversed by enhanced net CO2 emissions from the terrestrial biosphere. This implies that a component of the interannual variability (IAV) in the growth rate of atmospheric CO2, which has typically been used to constrain the climate sensitivity of tropical land carbon fluxes, is strongly influenced and modified by ocean fluxes during the early phase of the ENSO event. Our analyses shed further light on the understanding of the marine vs. terrestrial partitioning of tropical carbon fluxes during El Nino events, their relative contributions to the global atmospheric CO2 growth rate, and provide clues about the sensitivity of the carbon cycle to climate forcing on interannual time scales.
- Published
- 2017
12. Best practice data standards for discrete chemical oceanographic observations
- Author
-
Jiang, Li-Qing, Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Burne, R.H., Carter, B.R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, Mario, Humphreys, M.P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, Ernie R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. H., Tanhua, T., Trull, T. W., Velo, A., Allegra, Andrew J., Barker, P., Burger, Eugene, Cai, W.-J., Chen, C.-T. A., Cross, Jessica, Garcia, Hernan, Hernandez-Ayon, Jose Martin, Hu, X., Kozyr, A., Langdon, Chris, Lee, K., Salisbury, J., Wang, Z.A., Xue, Liang, Jiang, Li-Qing, Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Burne, R.H., Carter, B.R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, Mario, Humphreys, M.P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, Ernie R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. H., Tanhua, T., Trull, T. W., Velo, A., Allegra, Andrew J., Barker, P., Burger, Eugene, Cai, W.-J., Chen, C.-T. A., Cross, Jessica, Garcia, Hernan, Hernandez-Ayon, Jose Martin, Hu, X., Kozyr, A., Langdon, Chris, Lee, K., Salisbury, J., Wang, Z.A., and Xue, Liang
- Abstract
Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.
- Published
- 2022
13. Global Carbon Budget 2022
- Author
-
Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B., Integr. Assessm. Global Environm. Change, Environmental Sciences, Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., Arneth, A., Arora, V. K., Bates, N. R., Becker, M., Bellouin, N., Bittig, H. C., Bopp, L., Chevallier, F., Chini, L. P., Cronin, M., Evans, W., Falk, S., Feely, R. A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gürses, Ö., Harris, I., Hefner, M., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jain, A. K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M. J., Metzl, N., Monacci, N. M., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Rodriguez, C., Rosan, T. M., Schwinger, J., Séférian, R., Shutler, J. D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tanhua, T., Tans, P. P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., Walker, A. P., Wanninkhof, R., Whitehead, C., Willstrand Wranne, A., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.
- Published
- 2022
14. Mitigating Local Causes of Ocean Acidification with Existing Laws
- Author
-
Kelly, R. P., Foley, M. M., Fisher, W. S., Feely, R. A., Halpern, B. S., Waldbusser, G. G., and Caldwell, M. R.
- Published
- 2011
- Full Text
- View/download PDF
15. Chapter 17: Biogeochemical Effects of Rising Atmospheric Carbon Dioxide. Second State of the Carbon Cycle Report
- Author
-
Cooley, S. R., primary, Moore, D. J. P., additional, Alin, S. R., additional, Butman, D., additional, Clow, D. W., additional, French, N. H. F., additional, Feely, R. A., additional, Johnson, Z. I., additional, Keppel-Aleks, G., additional, Lohrenz, S. E., additional, Ocko, I. B., additional, Shadwick, E. H., additional, Sutton, A. J., additional, Potter, C. S., additional, Takatsuka, Y., additional, Walker, A. P., additional, and Yu, R. M. S., additional
- Published
- 2018
- Full Text
- View/download PDF
16. Chapter 16: Coastal Ocean and Continental Shelves. Second State of the Carbon Cycle Report
- Author
-
Fennel, K., primary, Alin, S., additional, Barbero, L., additional, Evans, W., additional, Bourgeois, T., additional, Cooley, S., additional, Dunne, J., additional, Feely, R. A., additional, Hernandez-Ayon, J. M., additional, Hu, C., additional, Hu, Xinping, additional, Lohrenz, S, additional, Muller-Karger, F., additional, Najjar, R., additional, Robbins, L., additional, Russell, J., additional, Shadwick, E., additional, Siedlecki, S., additional, Steiner, N., additional, Turk, D., additional, Vlahos, P., additional, and Wang, Z. A., additional
- Published
- 2018
- Full Text
- View/download PDF
17. The Oceanic Carbonate System: A Reassessment of Biogenic Controls
- Author
-
Betzer, P. R., Byrne, R. H., Acker, J. G., Lewis, C. S., Jolley, R. R., and Feely, R. A.
- Published
- 1984
18. Acantharian Fluxes and Strontium to Chlorinity Ratios in the North Pacific Ocean
- Author
-
Bernstein, R. E., Betzer, P. R., Feely, R. A., Byrne, R. H., Lamb, M. F., and Michaels, A. F.
- Published
- 1987
19. GLODAPv2.2020 – the second update of GLODAPv2
- Author
-
Olsen, A., Lange, N., Key, R.M., Tanhua, T., Bittig, H.C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P.J., Carter, B.R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, Mario, Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S.K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., Woosley, R. J., Olsen, A., Lange, N., Key, R.M., Tanhua, T., Bittig, H.C., Kozyr, A., Álvarez, M., Azetsu-Scott, K., Becker, S., Brown, P.J., Carter, B.R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, Mario, Ishii, M., Jeansson, E., Jutterström, S., Landa, C. S., Lauvset, S.K., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.
- Abstract
The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are: data from 106 more cruises added, extension of time coverage until 2019, and the inclusion of available discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product. They correct for errors related to measurement, calibration, and data handling practices, while taking into account any known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg−1 in dissolved inorganic carbon, 4 μmol kg−1 in total alkalinity, 0.01–0.02, depending on region, in pH, and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2 were not subjected to bias comparison or adjustments. The original data, their documentation and doi
- Published
- 2020
20. Processes Driving Global Interior Ocean pH Distribution
- Author
-
Lauvset, S. K., Carter, B. R., Perez, Ff, Jiang, L-q, Feely, R. A., Velo, A., Olsen, A., Lauvset, S. K., Carter, B. R., Perez, Ff, Jiang, L-q, Feely, R. A., Velo, A., and Olsen, A.
- Abstract
Ocean acidification evolves on the background of a natural ocean pH gradient that is the result of the interplay between ocean mixing, biological production and remineralization, calcium carbonate cycling, and temperature and pressure changes across the water column. While previous studies have analyzed these processes and their impacts on ocean carbonate chemistry, none have attempted to quantify their impacts on interior ocean pH globally. Here we evaluate how anthropogenic changes and natural processes collectively act on ocean pH, and how these processes set the vulnerability of regions to future changes in ocean acidification. We use the mapped data product from the Global Ocean Data Analysis Project version 2, a novel method to estimate preformed total alkalinity based on a combination of a total matrix intercomparison and locally interpolated regressions, and a comprehensive uncertainty analysis. We find that the largest contribution to the interior ocean pH gradient comes from organic matter remineralization, with CaCO3 cycling being the second most important process. The estimates of the impact of anthropogenic CO2 changes on pH reaffirm the large and well-understood anthropogenic impact on pH in the surface ocean, and put it in the context of the natural pH gradient in the interior ocean. We also show that in the depth layer 500-1,500 m natural processes enhance ocean acidification by on average 28 +/- 15%, but with large regional gradients.
- Published
- 2020
- Full Text
- View/download PDF
21. Products from a surface ocean CO2 reference network, SOCONET
- Author
-
Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., Schuster, U., Wanninkhof, R., Bakker, D. C. E., Pfeil, B., Smith, K., Hankin, S., Alin, S. R., Cosca, C., Harasawa, S., Kozyr, A., Nojiri, Y., O'Brien, K., Telszewski, M., Tilbrook, B., Wada, C., Akl, J., Barbero, L., Bates, N. R., Boutin, J., Bozec, Y., Cai, W. J., Castle, R. D., Chavez, F. P., Chen, L., Chierici, M., Currie, K., De Baar, H. J. W., Evans, W., Feely, R. A., Fransson, A., Gao, Z., Hales, B., Hardman-Mountford, N. J., Hoppema, Mario, Huang, W.J., Hunt, C. W., Huss, B., Ichikawa, T., Johannessen, T., Jones, E. M., Jones, S. D., Jutterström, S., Kitidis, V., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefevre, N., Manke, A., Mathis, J. T., Merlivat, L., Metzl, N., Murata, A., Monteiro, P., Newberger, T., Omar, A. M., Ono, T., Park, G. H., Paterson, K., Pierrot, D., Rios, A. F., Sabine, C. L., Saito, S., Salisbury, J., Sarma, V. V. S. S., Schlitzer, Reiner, Sieger, Rainer, Skjelvan, I., Steinhoff, T., Sullivan, K. F., Sun, H., Sutton, A.J., Suzuki, T., Sweeney, C., Takahashi, T., Tjiputra, J., Tsurushima, N., Van Heuven, S. M. A. C., Vandemark, D., Vlahos, P., Wallace, D. W. R., Watson, A., Pickers, P. A., Olsen, A., Stephens, B.B., Munro, D., Rehder, G., Santana-Casiano, J. M., Müller, J. D., Trianes, J., Tedesco, K., Ishii, M., González-Dávila, M., Suntharalingam, P., Nakaoka, S.-i., and Schuster, U.
- Published
- 2020
22. Global carbon budget 2019
- Author
-
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevalier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, Patrick C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., ven der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use change (ELUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in EFF was about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history, ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of −0.2 % to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959–2018, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein et al., 2019).
- Published
- 2019
23. Water Column CO2Measurements During the Gas Ex-98 Expedition
- Author
-
Feely, R. A., primary, Wanninkhof, R., additional, Hansell, D. A., additional, Lamb, M. F., additional, Greeley, D., additional, and Lee, K., additional
- Published
- 2013
- Full Text
- View/download PDF
24. Preformed Properties for Marine Organic Matter and Carbonate Mineral Cycling Quantification
- Author
-
Carter, B. R., primary, Feely, R. A., additional, Lauvset, S. K., additional, Olsen, A., additional, DeVries, T., additional, and Sonnerup, R., additional
- Published
- 2020
- Full Text
- View/download PDF
25. OCEANS: Mitigating Local Causes of Ocean Acidification with Existing Laws
- Author
-
Kelly, R. P., Foley, M. M., Fisher, W. S., Feely, R. A., Halpern, B. S., Waldbussur, G. G., and Caldwell, M. R.
- Published
- 2011
- Full Text
- View/download PDF
26. Processes Driving Global Interior Ocean pH Distribution
- Author
-
Lauvset, S. K., primary, Carter, B. R., additional, Pèrez, F. F., additional, Jiang, L.‐Q., additional, Feely, R. A., additional, Velo, A., additional, and Olsen, A., additional
- Published
- 2020
- Full Text
- View/download PDF
27. The oceanic sink for carbon dioxide.
- Author
-
Sabine, C. L., primary and Feely, R. A., additional
- Published
- 2007
- Full Text
- View/download PDF
28. Global carbon budget 2019 [Data paper]
- Author
-
Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quere, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschutzer, P., Lauvset, S. K., Lefèvre, Nathalie, Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, Jems, Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Seferian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.
- Abstract
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FF) are based on energy statistics and cement production data, while emissions from land use change (E-LUC), mainly deforestation, are based on land use and land use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) and terrestrial CO2 sink (S-LAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the last decade available (2009-2018), E-FF was 9.5 +/- 0.5 GtC yr 1, E-LUC 1.5 +/- 0.7 GtC yr 1, G(ATM) 4.9 +/- 0.02 GtC yr(-1) (2.3 +/- 0.01 ppm yr(-1)), S-OCEAN 2.5 +/- 0.6 GtC yr(-1), and S-LAND 3.2 +/- 0.6 GtC yr(-1), with a budget imbalance B-IM of 0.4 GtC yr(-1) indicating overestimated emissions and/or underestimated sinks. For the year 2018 alone, the growth in E-FF was about 2.1% and fossil emissions increased to 10.0 +/- 0.5 GtC yr 1, reaching 10 GtC yr(-1) for the first time in history, E-LUC was 1.5 +/- 0.7 GtC yr(-1), for total anthropogenic CO2 emissions of 11.5 +/- 0.9 GtC yr(-1) (42.5 +/- 3.3 GtCO(2)). Also for 2018, G(ATM) was 5.1 +/- 0.2 GtC yr(-1) (2.4 +/- 0.1 ppm yr(-1)), S-OCEAN was 2.6 +/- 0.6 GtC yr(-1), and S-LAND was 3.5 +/- 0.7 GtC yr(-1), with a B-IM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38 +/- 0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6-10 months indicate a reduced growth in E-FF of +0.6% (range of -0.2% to 1.5 %) based on national emissions projections for China, the USA, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. Overall, the mean and trend in the five components of the global carbon budget are consistently estimated over the period 1959-2018, but discrepancies of up to 1 GtC yr(-1) persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations shows (1) no consensus in the mean and trend in land use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Le Quere et al., 2018a, b, 2016, 2015a, b, 2014, 2013).
- Published
- 2019
29. Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge
- Author
-
Mottl, M.J., Wheat, G., Baker, E., Becker, N., Davis, E., Feely, R., Grehan, A., Kadko, D., Lilley, M., Massoth, G, Moyer, C., and Sansone, F.
- Subjects
Juan de Fuca Strait -- Environmental aspects ,Hot springs -- Environmental aspects ,Earth sciences - Abstract
We have located warm springs on an isolated basement outcrop on 3.5 Ma crust on the eastern flank of the Juan de Fuca Ridge in the northeast Pacific Ocean. These are the first ridge-flank hydrothermal springs discovered on crust older than 1 Ma. The springs are venting altered seawater at 25.0 [degrees] C along a fault near the summit of Baby Bare outcrop, a high point along a ridge-axis-parallel basement ridge that is otherwise buried by turbidite sediment. Baby Bare is a small volcano that probably erupted off-axis ca. 1.7 Ma; it is thermally extinct, but acts as a high-permeability conduit for venting of basement fluids. The springs have been sampled from the manned submersible Alvin. Compared with the ambient ocean bottom water, they are heavily depleted in Mg, alkalinity, [CO.sub.2], sulfate, K, Li, U, [O.sub.2], nitrate, and phosphate, and enriched in Ca, chlorinity, ammonia, Fe, Mn, [H.sub.2]S, [H.sub.2], [CH.sub.4], 222Rn, and 226Ra. The springs appear to support a community of thysirid clams. Although we saw no obvious bacterial mats, the surficial sediments contain the highest biomass concentrations ever measured in the deep sea, based on their phospholipid phosphate content. Areal integration of Alvin heat-flow and pore-water velocity data yields flux estimates of 4-13 L/s and 2-3 MW for the total (diffuse and focused) hydrothermal output from Baby Bare, comparable to that from a black smoker vent on the ridge axis. Warm springs such as those on Baby Bare may be important for global geochemical fluxes.
- Published
- 1998
30. State of the Climate in 2018
- Author
-
Arndt, D. S., Blunden, J., Dunn, R. J. H., Stanitski, D. M., Gobron, N., Willett, K. M., Sanchez-lugo, A., Berrisford, P., Morice, C., Nicolas, Jp, Carrea, L., Woolway, R. I., Merchant, C. J., Dokulil, M. T., De Eyto, E., Degasperi, C. L., Korhonen, J., Marszelewski, W., May, L., Paterson, A. M., Rusak, J. A., Schladow, S. G., Schmid, M., Verburg, P., Watanabe, S., Weyhenmeyer, G. A., King, A. D., Donat, M. G., Christy, J. R., Po-chedley, S., Mears, C. R., Haimberger, L., Covey, C., Randel, W., Noetzli, J., Biskaborn, B. K., Christiansen, H. H., Isaksen, K., Schoeneich, P., Smith, S., Vieira, G., Zhao, L., Streletskiy, D. A., Robinson, D. A., Pelto, M., Berry, D. I., Bosilovich, M. G., Simmons, A. J., Mears, C., Ho, S. P., Bock, O., Zhou, X., Nicolas, J, Vose, R. S., Adler, R., Gu, G., Becker, A., Yin, X, Tye, M. R., Blenkinsop, S., Durre, I., Ziese, M., Collow, A. B. Marquardt, Rustemeier, E., Foster, M. J., Di Girolamo, L., Frey, R. A., Heidinger, A. K., Sun-mack, S., Phillips, C., Menzel, W. P., Stengel, M., Zhao, G., Kim, H., Rodell, M., Li, B., Famiglietti, J. S., Scanlon, T., Van Der Schalie, R., Preimesberger, W., Reimer, C., Hahn, S., Gruber, A., Kidd, R., De Jeu, R. A. M., Dorigo, W. A., Barichivich, J., Osborn, T. J., Harris, I., Van Der Schrier, G., Jones, P. D., Miralles, D. G., Martens, B., Beck, H. E., Dolman, A. J., Jimenez, C., Mccabe, M. F., Wood, E. F., Allan, R., Azorin-molina, C., Mears, C. A., Mcvicar, T. R., Mayer, M., Schenzinger, V., Hersbach, H., Stackhouse, P. W., Jr., Wong, T., Kratz, D. P., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G., Muhle, J., Elkins, J. W., Miller, Br, Remy, S., Bellouin, N., Kipling, Z., Ades, M., Benedetti, A., Boucher, O., Weber, M., Steinbrecht, W., Arosio, C., Van Der A, R., Frith, S. M., Anderson, J., Coldewey-egbers, M., Davis, S., Degenstein, D., Fioletov, V. E., Froidevaux, L., Hubert, D., Long, C. S., Loyola, D., Rozanov, A., Roth, C., Sofieva, V., Tourpali, K., Wang, R., Wild, J. D., Davis, S. M., Rosenlof, K. H., Hurst, D. F., Selkirk, H. B., Vomel, H., Ziemke, J. R., Cooper, O. R., Flemming, J., Inness, A., Pinty, B., Kaiser, J. W., Van Der Werf, G. R., Hemming, D. L., Garforth, J., Park, T., Richardson, A. D., Rutishauser, T., Sparks, T. H., Thackeray, S. J., Myneni, R., Lumpkin, R., Huang, B., Kennedy, J., Xue, Y., Zhang, H. -m., Hu, C., Wang, M., Johnson, G. C., Lyman, J. M., Boyer, T., Cheng, L., Domingues, C. M., Gilson, J., Ishii, M., Killick, R. E., Monselesan, D., Purkey, S. G., Wijffels, S. E., Locarnini, R., Yu, L., Jin, X., Stackhouse, P. W., Kato, S., Weller, R. A., Thompson, P. R., Widlansky, M. J., Leuliette, E., Sweet, W., Chambers, D. P., Hamlington, B. D., Jevrejeva, S., Marra, J. J., Merrifield, M. A., Mitchum, G. T., Nerem, R. S., Kelble, C., Karnauskas, M., Hubbard, K., Goni, G., Streeter, C., Dohan, K., Franz, B. A., Cetinic, I., Karakoylu, E. M., Siegel, D. A., Westberry, T. K., Feely, R. A., Wanninkhof, R., Carter, B. R., Landschutzer, P., Sutton, A. J., Cosca, C., Trinanes, J. A., Baxter, S., Schreck, C., Bell, G. D., Mullan, A. B., Pezza, A. B., Coelho, C. A. S., Wang, B., He, Q., Diamond, H. J., Schreck, C. J., Blake, E. S., Landsea, C. W., Wang, H., Goldenberg, S. B., Pasch, R. J., Klotzbach, P. J., Kruk, M. C., Camargo, S. J., Trewin, B. C., Pearce, P. R., Lorrey, A. M., Domingues, R., Goni, G. J., Knaff, J. A., Lin, I. -i., Bringas, F., Richter-menge, J., Osborne, E., Druckenmiller, M., Jeffries, M. O., Overland, J. E., Hanna, E., Hanssen-bauer, I., Kim, S. -j., Walsh, J. E., Bhatt, U. S., Timmermans, M. -l., Ladd, C., Perovich, D., Meier, W., Tschudi, M., Farrell, S., Hendricks, S., Gerland, S., Haas, C., Krumpen, T., Polashenski, C., Ricker, R, Webster, M., Stabeno, P. J., Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Andersen, J. K., Mote, T., Smeets, C. J. P. P., Van As, D., Van De Wal, R. S. W., Romanovsky, V. E., Smith, S. L., Shiklomanov, N. I., Kholodov, A. L., Drozdov, D. S., Malkova, G. V., Marchenko, S. S., Jella, K. B., Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., Holmes, R. M., Shiklomanov, A. I., Suslova, A., Tretiakov, M., Mcclelland, J. W., Spencer, R. G. M., Tank, S. E., Epstein, H., Bhatt, U., Raynolds, M., Walker, D., Forbes, B., Phoenix, G., Bjerke, J., Tommervik, H., Karlsen, S. -r., Goetz, S., Jia, G., Bernhard, G. H., Grooss, J. -u., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Mueller, R., Scambos, T., Stammerjohn, S., Clem, K. R., Barreira, S., Fogt, R. L., Colwell, S., Keller, L. M., Lazzara, M. A., Reid, P., Massom, R. A., Lieser, J. L., Meijers, A., Sallee, J. -b., Grey, A., Johnson, K., Arrigo, K., Swart, S., King, B., Meredith, M., Mazloff, M., Scardilli, A., Claus, F., Shuman, C. A., Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Braathen, G. O., Coy, L., De Laat, J., Bissolli, P., Ganter, C., Li, T., Mekonnen, A., Gleason, K., Smith, A., Fenimore, C., Heim, R. R., Jr., Nauslar, N. J., Brown, T. J., Mcevoy, D. J., Lareau, N. P., Amador, J. A., Hidalgo, H. G., Alfaro, E. J., Calderon, B., Mora, N., Stephenson, T. S., Taylor, M. A., Trotman, A. R., Van Meerbeeck, C. J., Campbell, J. D., Brown, A., Spence, J., Martinez, R., Diaz, E., Marin, D., Hernandez, R., Caceres, L., Zambrano, E., Nieto, J., Marengo, J. A., Espinoza, J. C., Alves, L. M., Ronchail, J., Lavado-casimiro, J. W., Ramos, I., Davila, C., Ramos, A. M., Diniz, F. A., Aliaga-nestares, V., Castro, A. Y., Stella, J. L., Aldeco, L. S., Diaz, D. A. Campos, Misevicius, N., Kabidi, K., Sayouri, A., Elkharrim, M., Mostafa, A. E., Hagos, S., Feng, Z., Ijampy, J. A., Sima, F., Francis, S. D., Tsidu, G. Mengistu, Kruger, A. C., Mcbride, C., Jumaux, G., Dhurmea, K. R., Belmont, M., Rakotoarimalala, C. L., Labbe, L., Rosner, B., Benedict, I., Van Heerwaarden, C., Weerts, A., Hazeleger, W., Trachte, K., Zhu, Z., Zhang, P., Lee, T. C., Ripaldi, A., Mochizuki, Y., Lim, J. -y, Oyunjargal, L., Timbal, B., Srivastava, A. K., Revadekar, J. V., Rajeevan, M., Shimpo, A., Khoshkam, M., Kazemi, A. Fazl, Zeyaeyan, S., Lander, M. A., Mcgree, S., Tobin, S., Bettio, L., Arndt, D. S., Blunden, J., Dunn, R. J. H., Stanitski, D. M., Gobron, N., Willett, K. M., Sanchez-lugo, A., Berrisford, P., Morice, C., Nicolas, Jp, Carrea, L., Woolway, R. I., Merchant, C. J., Dokulil, M. T., De Eyto, E., Degasperi, C. L., Korhonen, J., Marszelewski, W., May, L., Paterson, A. M., Rusak, J. A., Schladow, S. G., Schmid, M., Verburg, P., Watanabe, S., Weyhenmeyer, G. A., King, A. D., Donat, M. G., Christy, J. R., Po-chedley, S., Mears, C. R., Haimberger, L., Covey, C., Randel, W., Noetzli, J., Biskaborn, B. K., Christiansen, H. H., Isaksen, K., Schoeneich, P., Smith, S., Vieira, G., Zhao, L., Streletskiy, D. A., Robinson, D. A., Pelto, M., Berry, D. I., Bosilovich, M. G., Simmons, A. J., Mears, C., Ho, S. P., Bock, O., Zhou, X., Nicolas, J, Vose, R. S., Adler, R., Gu, G., Becker, A., Yin, X, Tye, M. R., Blenkinsop, S., Durre, I., Ziese, M., Collow, A. B. Marquardt, Rustemeier, E., Foster, M. J., Di Girolamo, L., Frey, R. A., Heidinger, A. K., Sun-mack, S., Phillips, C., Menzel, W. P., Stengel, M., Zhao, G., Kim, H., Rodell, M., Li, B., Famiglietti, J. S., Scanlon, T., Van Der Schalie, R., Preimesberger, W., Reimer, C., Hahn, S., Gruber, A., Kidd, R., De Jeu, R. A. M., Dorigo, W. A., Barichivich, J., Osborn, T. J., Harris, I., Van Der Schrier, G., Jones, P. D., Miralles, D. G., Martens, B., Beck, H. E., Dolman, A. J., Jimenez, C., Mccabe, M. F., Wood, E. F., Allan, R., Azorin-molina, C., Mears, C. A., Mcvicar, T. R., Mayer, M., Schenzinger, V., Hersbach, H., Stackhouse, P. W., Jr., Wong, T., Kratz, D. P., Sawaengphokhai, P., Wilber, A. C., Gupta, S. K., Loeb, N. G., Dlugokencky, E. J., Hall, B. D., Montzka, S. A., Dutton, G., Muhle, J., Elkins, J. W., Miller, Br, Remy, S., Bellouin, N., Kipling, Z., Ades, M., Benedetti, A., Boucher, O., Weber, M., Steinbrecht, W., Arosio, C., Van Der A, R., Frith, S. M., Anderson, J., Coldewey-egbers, M., Davis, S., Degenstein, D., Fioletov, V. E., Froidevaux, L., Hubert, D., Long, C. S., Loyola, D., Rozanov, A., Roth, C., Sofieva, V., Tourpali, K., Wang, R., Wild, J. D., Davis, S. M., Rosenlof, K. H., Hurst, D. F., Selkirk, H. B., Vomel, H., Ziemke, J. R., Cooper, O. R., Flemming, J., Inness, A., Pinty, B., Kaiser, J. W., Van Der Werf, G. R., Hemming, D. L., Garforth, J., Park, T., Richardson, A. D., Rutishauser, T., Sparks, T. H., Thackeray, S. J., Myneni, R., Lumpkin, R., Huang, B., Kennedy, J., Xue, Y., Zhang, H. -m., Hu, C., Wang, M., Johnson, G. C., Lyman, J. M., Boyer, T., Cheng, L., Domingues, C. M., Gilson, J., Ishii, M., Killick, R. E., Monselesan, D., Purkey, S. G., Wijffels, S. E., Locarnini, R., Yu, L., Jin, X., Stackhouse, P. W., Kato, S., Weller, R. A., Thompson, P. R., Widlansky, M. J., Leuliette, E., Sweet, W., Chambers, D. P., Hamlington, B. D., Jevrejeva, S., Marra, J. J., Merrifield, M. A., Mitchum, G. T., Nerem, R. S., Kelble, C., Karnauskas, M., Hubbard, K., Goni, G., Streeter, C., Dohan, K., Franz, B. A., Cetinic, I., Karakoylu, E. M., Siegel, D. A., Westberry, T. K., Feely, R. A., Wanninkhof, R., Carter, B. R., Landschutzer, P., Sutton, A. J., Cosca, C., Trinanes, J. A., Baxter, S., Schreck, C., Bell, G. D., Mullan, A. B., Pezza, A. B., Coelho, C. A. S., Wang, B., He, Q., Diamond, H. J., Schreck, C. J., Blake, E. S., Landsea, C. W., Wang, H., Goldenberg, S. B., Pasch, R. J., Klotzbach, P. J., Kruk, M. C., Camargo, S. J., Trewin, B. C., Pearce, P. R., Lorrey, A. M., Domingues, R., Goni, G. J., Knaff, J. A., Lin, I. -i., Bringas, F., Richter-menge, J., Osborne, E., Druckenmiller, M., Jeffries, M. O., Overland, J. E., Hanna, E., Hanssen-bauer, I., Kim, S. -j., Walsh, J. E., Bhatt, U. S., Timmermans, M. -l., Ladd, C., Perovich, D., Meier, W., Tschudi, M., Farrell, S., Hendricks, S., Gerland, S., Haas, C., Krumpen, T., Polashenski, C., Ricker, R, Webster, M., Stabeno, P. J., Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Andersen, J. K., Mote, T., Smeets, C. J. P. P., Van As, D., Van De Wal, R. S. W., Romanovsky, V. E., Smith, S. L., Shiklomanov, N. I., Kholodov, A. L., Drozdov, D. S., Malkova, G. V., Marchenko, S. S., Jella, K. B., Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., Holmes, R. M., Shiklomanov, A. I., Suslova, A., Tretiakov, M., Mcclelland, J. W., Spencer, R. G. M., Tank, S. E., Epstein, H., Bhatt, U., Raynolds, M., Walker, D., Forbes, B., Phoenix, G., Bjerke, J., Tommervik, H., Karlsen, S. -r., Goetz, S., Jia, G., Bernhard, G. H., Grooss, J. -u., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Mueller, R., Scambos, T., Stammerjohn, S., Clem, K. R., Barreira, S., Fogt, R. L., Colwell, S., Keller, L. M., Lazzara, M. A., Reid, P., Massom, R. A., Lieser, J. L., Meijers, A., Sallee, J. -b., Grey, A., Johnson, K., Arrigo, K., Swart, S., King, B., Meredith, M., Mazloff, M., Scardilli, A., Claus, F., Shuman, C. A., Kramarova, N., Newman, P. A., Nash, E. R., Strahan, S. E., Johnson, B., Pitts, M., Santee, M. L., Petropavlovskikh, I., Braathen, G. O., Coy, L., De Laat, J., Bissolli, P., Ganter, C., Li, T., Mekonnen, A., Gleason, K., Smith, A., Fenimore, C., Heim, R. R., Jr., Nauslar, N. J., Brown, T. J., Mcevoy, D. J., Lareau, N. P., Amador, J. A., Hidalgo, H. G., Alfaro, E. J., Calderon, B., Mora, N., Stephenson, T. S., Taylor, M. A., Trotman, A. R., Van Meerbeeck, C. J., Campbell, J. D., Brown, A., Spence, J., Martinez, R., Diaz, E., Marin, D., Hernandez, R., Caceres, L., Zambrano, E., Nieto, J., Marengo, J. A., Espinoza, J. C., Alves, L. M., Ronchail, J., Lavado-casimiro, J. W., Ramos, I., Davila, C., Ramos, A. M., Diniz, F. A., Aliaga-nestares, V., Castro, A. Y., Stella, J. L., Aldeco, L. S., Diaz, D. A. Campos, Misevicius, N., Kabidi, K., Sayouri, A., Elkharrim, M., Mostafa, A. E., Hagos, S., Feng, Z., Ijampy, J. A., Sima, F., Francis, S. D., Tsidu, G. Mengistu, Kruger, A. C., Mcbride, C., Jumaux, G., Dhurmea, K. R., Belmont, M., Rakotoarimalala, C. L., Labbe, L., Rosner, B., Benedict, I., Van Heerwaarden, C., Weerts, A., Hazeleger, W., Trachte, K., Zhu, Z., Zhang, P., Lee, T. C., Ripaldi, A., Mochizuki, Y., Lim, J. -y, Oyunjargal, L., Timbal, B., Srivastava, A. K., Revadekar, J. V., Rajeevan, M., Shimpo, A., Khoshkam, M., Kazemi, A. Fazl, Zeyaeyan, S., Lander, M. A., Mcgree, S., Tobin, S., and Bettio, L.
- Published
- 2019
31. A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements
- Author
-
Wanninkhof, R., Pickers, P.A., Omar, A. M., Sutton, A., Murata, A., Olsen, A., Stephens, B.B., Tilbrook, B., Munro, D., Pierrot, D., Rehder, G., Santana-Casiano, J.M., Müller, J.D., Trianes, J., Tedesco, K., O'Brien, K., Currie, K., Barbero, L., Telszewski, M., Hoppema, Mario, Ishii, M., González-Dávila, M., Bates, N. R., Metzl, N., Suntharalingam, P., Feely, R. A., Nakaoka, S.-i., Lauvset, S. K., Takahashi, T., Steinhoff, T., Schuster, U., Wanninkhof, R., Pickers, P.A., Omar, A. M., Sutton, A., Murata, A., Olsen, A., Stephens, B.B., Tilbrook, B., Munro, D., Pierrot, D., Rehder, G., Santana-Casiano, J.M., Müller, J.D., Trianes, J., Tedesco, K., O'Brien, K., Currie, K., Barbero, L., Telszewski, M., Hoppema, Mario, Ishii, M., González-Dávila, M., Bates, N. R., Metzl, N., Suntharalingam, P., Feely, R. A., Nakaoka, S.-i., Lauvset, S. K., Takahashi, T., Steinhoff, T., and Schuster, U.
- Abstract
The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (uatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices.
- Published
- 2019
32. Seafloor eruptions and evolution of hydrothermal fluid chemistry
- Author
-
Butterfield, D. A., primary, Jonasson, I. R., additional, Massoth, G. J., additional, Feely, R. A., additional, Roe, K. K., additional, Embley, R. E., additional, Holden, J. F., additional, McDuff, R. E., additional, Lilley, M. D., additional, and Delaney, J. R., additional
- Published
- 1999
- Full Text
- View/download PDF
33. Appendix 4: Frequently Asked Questions. Climate Change Impacts in the United States: The Third National Climate Assessment
- Author
-
Walsh, J., primary, Wuebbles, D., additional, Hayhoe, K., additional, Kossin, J., additional, Kunkel, K., additional, Stephens, G., additional, Thorne, P., additional, Vose, R., additional, Wehner, M., additional, Willis, J., additional, Anderson, D., additional, Doney, S., additional, Feely, R., additional, Hennon, P., additional, Kharin, V., additional, Knutson, T., additional, Landerer, F., additional, Kennedy, J., additional, and Somerville, R., additional
- Published
- 2014
- Full Text
- View/download PDF
34. Ch. 2: Our Changing Climate. Climate Change Impacts in the United States: The Third National Climate Assessment
- Author
-
Walsh, J., primary, Wuebbles, D., additional, Hayhoe, K., additional, Kossin, J., additional, Kunkel, K., additional, Stephens, G., additional, Thorne, P., additional, Vose, R., additional, Wehner, M., additional, Willis, J., additional, Anderson, D., additional, Doney, S., additional, Feely, R., additional, Hennon, P., additional, Kharin, V., additional, Knutson, T., additional, Landerer, F., additional, Lenton, T., additional, Kennedy, J., additional, and Somerville, R., additional
- Published
- 2014
- Full Text
- View/download PDF
35. Appendix 3: Climate Science Supplement. Climate Change Impacts in the United States: The Third National Climate Assessment
- Author
-
Walsh, J., primary, Wuebbles, D., additional, Hayhoe, K., additional, Kossin, J., additional, Kunkel, K., additional, Stephens, G., additional, Thorne, P., additional, Vose, R., additional, Wehner, M., additional, Wilis, J., additional, Anderson, D., additional, Doney, S., additional, Feely, R., additional, Hennon, P., additional, Kharin, V., additional, Knutson, T., additional, Landerer, F., additional, Lenton, T., additional, Kennedy, J., additional, and Somerville, R., additional
- Published
- 2014
- Full Text
- View/download PDF
36. Global ocean carbon cycle [in 'State of the Climate in 2017']
- Author
-
Feely, R., Wanninkhof, R., Carter , B., Landschützer, P., https://orcid.org/0000-0002-7398-3293, Sutton, A., and Trinanes, J.
- Published
- 2018
37. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate
- Author
-
Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., and Takeshita, Y.
- Abstract
We have taken advantage of the release of version 2 of the Global Data Analysis Project data product (Olsen et al. ) to refine the locally interpolated alkalinity regression (LIAR) code for global estimation of total titration alkalinity of seawater (A(T)), and to extend the method to also produce estimates of nitrate (N) and in situ pH (total scale). The updated MATLAB software and methods are distributed as Supporting Information for this article and referred to as LIAR version 2 (LIARv2), locally interpolated nitrate regression (LINR), and locally interpolated pH regression (LIPHR). Collectively they are referred to as locally interpolated regressions (LIRs). Relative to LIARv1, LIARv2 has an 18% lower average A(T) estimate root mean squared error (RMSE), improved uncertainty estimates, and fewer regions in which the method has little or no available training data. LIARv2, LINR, and LIPHR produce estimates globally with skill that is comparable to or better than regional alternatives used in their respective regions. LIPHR pH estimates have an optional adjustment to account for ongoing ocean acidification. We have used the improved uncertainty estimates to develop LIR functionality that selects the lowest-uncertainty estimate from among possible estimates. Current and future versions of LIR software will be available on GitHub.
- Published
- 2018
38. Pacific Anthropogenic Carbon Between 1991 and 2017
- Author
-
Carter, B. R., primary, Feely, R. A., additional, Wanninkhof, R., additional, Kouketsu, S., additional, Sonnerup, R. E., additional, Pardo, P. C., additional, Sabine, C. L., additional, Johnson, G. C., additional, Sloyan, B. M., additional, Murata, A., additional, Mecking, S., additional, Tilbrook, B., additional, Speer, K., additional, Talley, L. D., additional, Millero, F. J., additional, Wijffels, S. E., additional, Macdonald, A. M., additional, Gruber, N., additional, and Bullister, J. L., additional
- Published
- 2019
- Full Text
- View/download PDF
39. Time of Detection as a Metric for Prioritizing Between Climate Observation Quality, Frequency, and Duration
- Author
-
Carter, B. R., primary, Williams, N. L., additional, Evans, W., additional, Fassbender, A. J., additional, Barbero, L., additional, Hauri, C., additional, Feely, R. A., additional, and Sutton, A. J., additional
- Published
- 2019
- Full Text
- View/download PDF
40. State of the climate in 2016
- Author
-
Aaron-Morrison, A. P., Ackerman, S. A., Adams, N. G., Adler, R. F., Albanil, A., Alfaro, E. J., Allan, R., Alves, L. M., Amador, J. A., Andreassen, L. M., Arendt, A., Arévalo, J., Arndt, D. S., Arzhanova, N. M., Aschan, M. M., Azorin-Molina, C., Banzon, V., Bardin, M. U., Barichivich, J., Baringer, M. O., Barreira, S., Baxter, S., Bazo, J., Becker, A., Bedka, K. M., Behrenfeld, M. J., Bell, G. D., Belmont, M., Benedetti, A., Bernhard, G., Berrisford, P., Berry, D. I., Bettolli, M. L., Bhatt, U. S., Bidegain, M., Bill, B. D., Billheimer, S., Bissolli, P., Blake, E. S., Blunden, J., Bosilovich, M. G., Boucher, O., Boudet, D., Box, J. E., Boyer, T., Braathen, G. O., Bromwich, D. H., Brown, R., Bulygina, O. N., Burgess, D., Calderón, B., Camargo, S. J., Campbell, J. D., Cappelen, J., Carrasco, G., Carter, B. R., Chambers, D. P., Chandler, E., Christiansen, H. H., Christy, J. R., Chung, D., Chung, E. S., Cinque, K., Clem, K. R., Coelho, C. A., Cogley, J. G., Coldewey-Egbers, M., Colwell, S., Cooper, O. R., Copland, L., Cosca, C. E., Cross, J. N., Crotwell, M. J., Crouch, J., Davis, S. M., Eyto, E., Jeu, R. A. M., Laat, J., Degasperi, C. L., Degenstein, D., Demircan, M., Derksen, C., Destin, D., Di Girolamo, L., Di Giuseppe, F., Diamond, H. J., Dlugokencky, E. J., Dohan, K., Dokulil, M. T., Dolgov, A. V., Dolman, A. J., Domingues, C. M., Donat, M. G., Dong, S., Dorigo, W. A., Dortch, Q., Doucette, G., Drozdov, D. S., Ducklow, H., Dunn, R. J. H., Durán-Quesada, A. M., Dutton, G. S., Ebrahim, A., Elkharrim, M., Elkins, J. W., Espinoza, J. C., Etienne-Leblanc, S., Evans, T. E., Famiglietti, J. S., Farrell, S., Fateh, S., Fausto, R. S., Fedaeff, N., Feely, R. A., Feng, Z., Fenimore, C., Fettweis, X., Fioletov, V. E., Flemming, J., Fogarty, C. T., Fogt, R. L., Folland, C., Fonseca, C., Fossheim, M., Foster, M. J., Fountain, A., Francis, S. D., Franz, B. A., Frey, R. A., Frith, S. M., Froidevaux, L., Ganter, C., Garzoli, S., Gerland, S., Gobron, N., Goldenberg, S. B., Gomez, R. S., Goni, G., Goto, A., Grooß, J. U., Gruber, A., Guard, C. C., Gugliemin, M., Gupta, S. K., Gutiérrez, J. M., Hagos, S., Hahn, S., Haimberger, L., Hakkarainen, J., Hall, B. D., Halpert, M. S., Hamlington, B. D., Hanna, E., Hansen, K., Hanssen-Bauer, I., Harris, I., Heidinger, A. K., Heikkilä, A., Heil, A., Heim, R. R., Hendricks, S., Hernández, M., Hidalgo, H. G., Hilburn, K., Ho, S. P. B., Holmes, R. M., Hu, Z. Z., Huang, B., Huelsing, H. K., Huffman, G. J., Hughes, C., Hurst, D. F., Ialongo, I., Ijampy, J. A., Ingvaldsen, R. B., Inness, A., Isaksen, K., Ishii, M., Jevrejeva, S., Jiménez, C., Jin, X., Johannesen, E., John, V., Johnsen, B., Johnson, B., Johnson, G. C., Jones, P. D., Joseph, A. C., Jumaux, G., Kabidi, K., Kaiser, J. W., Kato, S., Kazemi, A., Keller, L. M., Kendon, M., Kennedy, J., Kerr, K., Kholodov, A. L., Khoshkam, M., Killick, R., Kim, H., Kim, S. J., Kimberlain, T. B., Klotzbach, P. J., Knaff, J. A., Kobayashi, S., Kohler, J., Korhonen, J., Korshunova, N. N., Kovacs, K. M., Kramarova, N., Kratz, D. P., Kruger, A., Kruk, M. C., Kudela, R., Kumar, A., Lakatos, M., Lakkala, K., Lander, M. A., Landsea, C. W., Lankhorst, M., Lantz, K., Lazzara, M. A., Lemons, P., Leuliette, E., L’heureux, M., Lieser, J. L., Lin, I. I., Liu, H., Liu, Y., Locarnini, R., Loeb, N. G., Lo Monaco, C., Long, C. S., López Álvarez, L. A., Lorrey, A. M., Loyola, D., Lumpkin, R., Luo, J. J., Luojus, K., Lydersen, C., Lyman, J. M., Maberly, S. C., Maddux, B. C., Malheiros Ramos, A., Malkova, G. V., Manney, G., Marcellin, V., Marchenko, S. S., Marengo, J. A., Marra, J. J., Marszelewski, W., Martens, B., Martínez-Güingla, R., Massom, R. A., Mata, M. M., Mathis, J. T., May, L., Mayer, M., Mazloff, M., Mcbride, C., Mccabe, M. F., Mccarthy, M., Mcclelland, J. W., Mcgree, S., Mcvicar, T. R., Mears, C. A., Meier, W., Meinen, C. S., Mekonnen, A., Menéndez, M., Mengistu Tsidu, G., Menzel, W. P., Merchant, C. J., Meredith, M. P., Merrifield, M. A., Metzl, N., Minnis, P., Miralles, D. G., Mistelbauer, T., Mitchum, G. T., Monselesan, D., Monteiro, P., Montzka, S. A., Morice, C., Mote, T., Mudryk, L., Mühle, J., Mullan, A. B., Nash, E. R., Naveira-Garabato, A. C., Nerem, R. S., Newman, P. A., Nieto, J. J., Noetzli, J., O’neel, S., Osborn, T. J., Overland, J., Oyunjargal, L., Parinussa, R. M., Park, E. H., Parker, D., Parrington, M., Parsons, A. R., Pasch, R. J., Pascual-Ramírez, R., Paterson, A. M., Paulik, C., Pearce, P. R., Pelto, M. S., Peng, L., Perkins-Kirkpatrick, S. E., Perovich, D., Petropavlovskikh, I., Pezza, A. B., Phillips, D., Pinty, B., Pitts, M. C., Pons, M. R., Porter, A. O., Primicerio, R., Proshutinsky, A., Quegan, S., Quintana, J., Rahimzadeh, F., Rajeevan, M., Randriamarolaza, L., Razuvaev, V. N., Reagan, J., Reid, P., Reimer, C., Rémy, S., Renwick, J. A., Revadekar, J. V., Richter-Menge, J., Riffler, M., Rimmer, A., Rintoul, S., Robinson, D. A., Rodell, M., Rodríguez Solís, J. L., Romanovsky, V. E., Ronchail, J., Rosenlof, K. H., Roth, C., Rusak, J. A., Sabine, C. L., Sallée, J. B., Sánchez-Lugo, A., Santee, M. L., Sawaengphokhai, P., Sayouri, A., Scambos, T. A., Schemm, J., Schladow, S. G., Schmid, C., Schmid, M., Schmidtko, S., Schreck, C. J., Selkirk, H. B., Send, U., Sensoy, S., Setzer, A., Sharp, M., Shaw, A., Shi, L., Shiklomanov, A. I., Shiklomanov, N. I., Siegel, D. A., Signorini, S. R., Sima, F., Simmons, A. J., Smeets, C. J. P. P., Smith, S. L., Spence, J. M., Srivastava, A. K., Stackhouse, P. W., Stammerjohn, S., Steinbrecht, W., Stella, J. L., Stengel, M., Stennett-Brown, R., Stephenson, T. S., Strahan, S., Streletskiy, D. A., Sun-Mack, S., Swart, S., Sweet, W., Talley, L. D., Tamar, G., Tank, S. E., Taylor, M. A., Tedesco, M., Teubner, K., Thoman, R. L., Thompson, P., Thomson, L., Timmermans, M. L., Maxim Timofeyev, Tirnanes, J. A., Tobin, S., Trachte, K., Trainer, V. L., Tretiakov, M., Trewin, B. C., Trotman, A. R., Tschudi, M., As, D., Wal, R. S. W., A, R. J., Schalie, R., Schrier, G., Werf, G. R., Meerbeeck, C. J., Velicogna, I., Verburg, P., Vigneswaran, B., Vincent, L. A., Volkov, D., Vose, R. S., Wagner, W., Wåhlin, A., Wahr, J., Walsh, J., Wang, C., Wang, J., Wang, L., Wang, M., Wang, S. H., Wanninkhof, R., Watanabe, S., Weber, M., Weller, R. A., Weyhenmeyer, G. A., Whitewood, R., Wijffels, S. E., Wilber, A. C., Wild, J. D., Willett, K. M., Williams, M. J. M., Willie, S., Wolken, G., Wong, T., Wood, E. F., Woolway, R. I., Wouters, B., Xue, Y., Yamada, R., Yim, S. Y., Yin, X., Young, S. H., Yu, L., Zahid, H., Zambrano, E., Zhang, P., Zhao, G., Zhou, L., Ziemke, J. R., Love-Brotak, S. E., Gilbert, K., Maycock, T., Osborne, S., Sprain, M., Veasey, S. W., Ambrose, B. J., Griffin, J., Misch, D. J., Riddle, D. B., Young, T., Macias Fauria, M, Blunden, J, Arndt, D, Earth and Climate, Faculty of Earth and Life Sciences, Clinical Developmental Psychology, Climate Change and Landscape Dynamics, and Molecular Cell Physiology
- Subjects
Meteor (satellite) ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,02 engineering and technology ,01 natural sciences ,020801 environmental engineering ,Geography ,13. Climate action ,Climatology ,SDG 13 - Climate Action ,SDG 14 - Life Below Water ,0105 earth and related environmental sciences - Abstract
In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
- Published
- 2017
41. The Effect of Magmatic Activity on Hydrothermal Venting Along the Superfast-Spreading East Pacific Rise
- Author
-
Urabe, T., Baker, E. T., Ishibashi, J., Feely, R. A., Marumo, K., Massoth, G. J., Maruyama, A., Shitashima, K., Okamura, K., Lupton, J. E., Sonoda, A., Yamazaki, T., Aoki, M., Gendron, J., Greene, R., Kaiho, Y., Kisimoto, K., Lebon, G., Matsumoto, T., Nakamura, K., Nishizawa, A., Okano, O., Paradis, G., Roe, K., Shibata, T., Tennant, D., Vance, T., Walker, S. L., Yabuki, T., and Ytow, N.
- Published
- 1995
42. New observational constraints on the global ocean uptake of anthropogenic CO2
- Author
-
Gruber, N., Clement, D., Carter, B.R., Feely, R. A., van Heuven, S., Hoppema, Mario, Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J.T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., Wanninkhof, R., Gruber, N., Clement, D., Carter, B.R., Feely, R. A., van Heuven, S., Hoppema, Mario, Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J.T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.
- Published
- 2018
43. Preformed Properties for Marine Organic Matter and Carbonate Mineral Cycling Quantification.
- Author
-
Carter, B. R., Feely, R. A., Lauvset, S. K., Olsen, A., DeVries, T., and Sonnerup, R.
- Subjects
CARBONATE minerals ,ORGANIC compounds ,BIOGEOCHEMICAL cycles ,WATER masses ,OXYGEN consumption ,CALCIUM carbonate - Abstract
We estimate preformed ocean phosphate, nitrate, oxygen, silicate, and alkalinity by combining a reconstruction of ventilation pathways in the ocean interior with estimates of submixed layer properties. These new preformed property estimates are intended to aid biogeochemical cycling studies and validation of modeled preformed property distributions and are available online. Analyses of net property accumulations (observed minus preformed properties) indicate net remineralization ratios in the ocean interior of [1 P]: [14.1 ± 0.6 N]: [−141 ± 12 O2]: [95 ± 25 Si]: [89 ± 9 TA]. These ratios imply that the interior ocean stores 1,300 (±230) PgC through organic matter remineralization and 540 (±60) PgC through carbonate mineral dissolution and that apparent oxygen utilization can overestimate the interior ocean oxygen consumption by ~25%. Further, only 4 (±1%) and 46 (±5%) of the total alkalinity accumulated from carbonate mineral dissolution are found in seawater that is supersaturated with respect to the aragonite and calcite mineral forms of calcium carbonate, respectively. These small excess alkalinity inventories are due to smaller volumes of the supersaturated water masses and shorter ventilation timescales, as carbonate mineral dissolution rates appear nearly independent of depth and saturation state. Key Points: We have updated global preformed biogeochemical property estimates and provided the estimates for analysis and model validationThe updated estimates support recent literature findings regarding remineralization ratios and deficiencies in apparent oxygen utilizationCarbonate mineral dissolution rates are likely more uniform between saturation regimes than previously found [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
44. Calculating surface ocean pCO 2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis
- Author
-
Williams, N. L., Juranek, L. W., Feely, R. A., Johnson, K. S., Sarmiento, J. L., Talley, L. D., Dickson, A. G., Gray, A. R., Wanninkhof, R., Russell, J. L., Riser, S. C., and Takeshita, Y.
- Abstract
More than 74 biogeochemical profiling floats that measure water column pH, oxygen, nitrate, fluorescence, and backscattering at 10 day intervals have been deployed throughout the Southern Ocean. Calculating the surface ocean partial pressure of carbon dioxide (pCO2sw) from float pH has uncertainty contributions from the pH sensor, the alkalinity estimate, and carbonate system equilibrium constants, resulting in a relative standard uncertainty in pCO2sw of 2.7% (or 11 µatm at pCO2sw of 400 µatm). The calculated pCO2sw from several floats spanning a range of oceanographic regimes are compared to existing climatologies. In some locations, such as the subantarctic zone, the float data closely match the climatologies, but in the polar Antarctic zone significantly higher pCO2sw are calculated in the wintertime implying a greater air-sea CO2 efflux estimate. Our results based on four representative floats suggest that despite their uncertainty relative to direct measurements, the float data can be used to improve estimates for air-sea carbon flux, as well as to increase knowledge of spatial, seasonal, and interannual variability in this flux.
- Published
- 2017
45. Global ocean carbon cycle [in 'State of the Climate in 2016']
- Author
-
Feely, R., Wanninkhof, R., Landschützer, P., https://orcid.org/0000-0002-7398-3293, Carter, B., and Triñanes, J.
- Published
- 2017
46. Calculating surface ocean pCO from biogeochemical Argo floats equipped with pH: An uncertainty analysis
- Author
-
Williams, N. L., Juranek, L. W., Feely, R. A., Johnson, K. S., Sarmiento, J. L., Talley, L. D., Dickson, A. G., Gray, A. R., Wanninkhof, R., Russell, J. L., Riser, S. C., and Takeshita, Y.
- Subjects
0106 biological sciences ,Atmospheric Science ,Global and Planetary Change ,Ocean observations ,Biogeochemical cycle ,010504 meteorology & atmospheric sciences ,Meteorology ,Surface ocean ,010604 marine biology & hydrobiology ,Global change ,01 natural sciences ,Oceanography ,13. Climate action ,Environmental Chemistry ,Environmental science ,14. Life underwater ,Uncertainty analysis ,Argo ,0105 earth and related environmental sciences ,General Environmental Science - Abstract
U.S. National Science Foundation's Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project under the NSF [PLR-1425989]; NASA [NNX14AP49G]; U.S. Argo through NOAA/JISAO grant [NA17RJ1232]; Ocean Observations and Monitoring Division, Climate Program Office, National Oceanic and Atmospheric Administration, U.S. Department of Commerce; David and Lucile Packard Foundation; NOAA Climate and Global Change postdoctoral fellowship; ARCS Foundation Oregon Chapter
- Published
- 2017
- Full Text
- View/download PDF
47. Carbon dioxide, hydrographic, and chemical data obtained during the R/Vs Roger Revelle and Thomas Thompson repeat hydrography cruises in the Pacific Ocean: CLIVAR CO2 sections P16S-2005 (9 January - 19 February, 2005) and P16N-2006 (13 February - 30 March, 2006)
- Author
-
Kozyr, Alex, primary, Feely, R. A., additional, Sabine, C. L., additional, Millero, F. J., additional, Langdon, C., additional, Dickson, A. G., additional, Fine, R. A., additional, Bullister, J. L., additional, Hansell, D. A., additional, Carlson, C. A., additional, Sloyan, B. M., additional, McNichol, A. P., additional, Key, R. M., additional, Byrne, R. H., additional, and Wanninkhof, R., additional
- Published
- 2009
- Full Text
- View/download PDF
48. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system
- Author
-
Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A., Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J., and Kozyr, A.
- Subjects
lcsh:GE1-350 ,lcsh:Geology ,lcsh:QE1-996.5 ,lcsh:Environmental sciences - Abstract
In an intensifying effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2) systems, have dramatically improved our ability to characterize ocean climate, sea–air gas exchange, and biogeochemical processes. The MAPCO2 system provides high-resolution data that can measure interannual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on carbon dioxide (CO2) flux. Overall uncertainty of the MAPCO2 using in situ calibrations with certified gas standards and post-deployment standard operating procedures is < 2 μatm for seawater partial pressure of CO2 (pCO2) and < 1 μatm for air pCO2. The MAPCO2 maintains this level of uncertainty for over 400 days of autonomous operation. MAPCO2 measurements are consistent with shipboard seawater pCO2 measurements and GLOBALVIEW-CO2 boundary layer atmospheric values. Here we provide an open-ocean MAPCO2 data set including over 100 000 individual atmospheric and seawater pCO2 measurements on 14 surface buoys from 2004 through 2011 and a description of the methods and data quality control involved. The climate-quality data provided by the MAPCO2 have allowed for the establishment of open-ocean observatories to track surface ocean pCO2 changes around the globe. Data are available at doi:10.3334/CDIAC/OTG.TSM_NDP092 and http://cdiac.ornl.gov/oceans/Moorings/ndp092.
- Published
- 2014
49. Diagnosing CO2 fluxes in the upwelling system off the Oregon–California coast
- Author
-
Cao, Z., Dai, M., Evans, W., Gan, J., and Feely, R.
- Subjects
lcsh:Geology ,lcsh:QH501-531 ,lcsh:QH540-549.5 ,lcsh:QE1-996.5 ,lcsh:Life ,lcsh:Ecology - Abstract
It is generally known that the interplay between the carbon and nutrients supplied from subsurface waters via biological metabolism determines the CO2 fluxes in upwelling systems. However, quantificational assessment of such interplay is difficult because of the dynamic nature of both upwelling circulation and the associated biogeochemistry. We recently proposed a new framework, the Ocean-dominated Margin (OceMar), for semi-quantitatively diagnosing the CO2 source/sink nature of an ocean margin over a given period of time, highlighting that the relative consumption between carbon and nutrients determines if carbon is in excess (i.e., CO2 source) or in deficit (i.e., CO2 sink) in the upper waters of ocean margins relative to their off-site inputs from the adjacent open ocean. In the present study, such a diagnostic approach based upon both couplings of physics–biogeochemistry and carbon–nutrients was applied to resolve the CO2 fluxes in the well-known upwelling system off Oregon and northern California of the US west coast, using data collected along three cross-shelf transects from the inner shelf to the open basin in spring/early summer 2007. Through examining the biological consumption on top of the water mass mixing revealed by the total alkalinity–salinity relationship, we successfully predicted and semi-analytically resolved the CO2 fluxes showing strong uptake from the atmosphere beyond the nearshore regions. This CO2 sink nature primarily resulted from the higher utilization of nutrients relative to dissolved inorganic carbon (DIC) based on their concurrent inputs from the depth. On the other hand, the biological responses to intensified upwelling were minor in nearshore waters off the Oregon–California coast, where significant CO2 outgassing was observed during the sampling period and resolving CO2 fluxes could be simplified without considering DIC/nutrient consumption, i.e., decoupling between upwelling and biological consumption. We reasoned that coupling physics and biogeochemistry in the OceMar model would assume a steady state with balanced DIC and nutrients via both physical transport and biological alterations in comparable timescales.
- Published
- 2014
50. Assessment of the Carbonate Chemistry Seasonal Cycles in the Southern Ocean From Persistent Observational Platforms
- Author
-
Williams, N. L., primary, Juranek, L. W., additional, Feely, R. A., additional, Russell, J. L., additional, Johnson, K. S., additional, and Hales, B., additional
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.