90 results on '"Fedrigo O"'
Search Results
2. Semi-automated assembly of high-quality diploid human reference genomes
- Author
-
Jarvis, E.D., Formenti, G., Rhie, A., Guarracino, A., Yang, C., Wood, J., Tracey, A., Thibaud-Nissen, F., Vollger, M.R., Porubsky, D., Cheng, H., Asri, M., Logsdon, G.A., Carnevali, P., Chaisson, M.J.P., Chin, C.S., Cody, S., Collins, J., Ebert, P., Escalona, M., Fedrigo, O., Fulton, R.S., Fulton, L.L., Garg, S., Gerton, J.L., Ghurye, J., Granat, A., Green, R.E., Harvey, W., Hasenfeld, P., Hastie, A., Haukness, M., Jaeger, E.B., Jain, M., Kirsche, M., Kolmogorov, M., Korbel, J.O., Koren, S., Korlach, J., Lee, J., Li, D., Lindsay, T., Lucas, J., Luo, F., Marschall, T., Mitchell, M.W., McDaniel, J., Nie, F., Olsen, H.E., Olson, N.D., Pesout, T., Potapova, T., Puiu, D., Regier, A., Ruan, J., Salzberg, S.L., Sanders, A.D., Schatz, M.C., Schmitt, A., Schneider, V.A., Selvaraj, S., Shafin, K., Shumate, A., Stitziel, N.O., Stober, C., Torrance, J., Wagner, J., Wang, J., Wenger, A., Xiao, C., Zimin, A.V., Zhang, G., Wang, T., Li, H., Garrison, E., Haussler, D., Hall, I., Zook, J.M., Eichler, E.E., Phillippy, A.M., Paten, B., Howe, K., and Miga, K.H.
- Subjects
Cancer Research ,Haplotypes ,Genome, Human ,Humans ,Chromosome Mapping ,High-Throughput Nucleotide Sequencing ,Chromosomes, Human ,Genetic Variation ,Sequence Analysis, DNA ,Genomics ,Reference Standards ,Diploidy - Abstract
The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted societysup1,2/sup. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individualssup3,4/sup. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genomesup5/sup. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversitysup6/sup. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.
- Published
- 2021
3. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes
- Author
-
Toh, H., primary, Yang, C., additional, Formenti, G., additional, Raja, K., additional, Yan, L., additional, Tracey, A., additional, Chow, W., additional, Howe, K., additional, Bergeron, L.A., additional, Zhang, G., additional, Haase, B., additional, Mountcastle, J., additional, Fedrigo, O., additional, Fogg, J., additional, Kirilenko, B., additional, Munegowda, C., additional, Hiller, M., additional, Jain, A., additional, Kihara, D., additional, Rhie, A., additional, Phillippy, A.M., additional, Swanson, S., additional, Jiang, P., additional, Clegg, D.O., additional, Jarvis, E.D., additional, Thomson, J.A., additional, Stewart, R., additional, Chaisson, M.J.P., additional, and Bukhman, Y.V., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Platypus and echidna genomes reveal mammalian biology and evolution
- Author
-
Zhou, Y, Shearwin-Whyatt, L, Li, J, Song, Z, Hayakawa, T, Stevens, D, Fenelon, JC, Peel, E, Cheng, Y, Pajpach, F, Bradley, N, Suzuki, H, Nikaido, M, Damas, J, Daish, T, Perry, T, Zhu, Z, Geng, Y, Rhie, A, Sims, Y, Wood, J, Haase, B, Mountcastle, J, Fedrigo, O, Li, Q, Yang, H, Wang, J, Johnston, SD, Phillippy, AM, Howe, K, Jarvis, ED, Ryder, OA, Kaessmann, H, Donnelly, P, Korlach, J, Lewin, HA, Graves, J, Belov, K, Renfree, MB, Grutzner, F, Zhou, Q, Zhang, G, Zhou, Y, Shearwin-Whyatt, L, Li, J, Song, Z, Hayakawa, T, Stevens, D, Fenelon, JC, Peel, E, Cheng, Y, Pajpach, F, Bradley, N, Suzuki, H, Nikaido, M, Damas, J, Daish, T, Perry, T, Zhu, Z, Geng, Y, Rhie, A, Sims, Y, Wood, J, Haase, B, Mountcastle, J, Fedrigo, O, Li, Q, Yang, H, Wang, J, Johnston, SD, Phillippy, AM, Howe, K, Jarvis, ED, Ryder, OA, Kaessmann, H, Donnelly, P, Korlach, J, Lewin, HA, Graves, J, Belov, K, Renfree, MB, Grutzner, F, Zhou, Q, and Zhang, G
- Abstract
Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.
- Published
- 2021
5. Population genomics of the critically endangered kākāpō.
- Author
-
Dussex, N, van der Valk, T, Morales, HE, Wheat, CW, Díez-Del-Molino, D, von Seth, J, Foster, Y, Kutschera, VE, Guschanski, K, Rhie, A, Phillippy, AM, Korlach, J, Howe, K, Chow, W, Pelan, S, Mendes Damas, JD, Lewin, HA, Hastie, AR, Formenti, G, Fedrigo, O, Guhlin, J, Harrop, TWR, Le Lec, MF, Dearden, PK, Haggerty, L, Martin, FJ, Kodali, V, Thibaud-Nissen, F, Iorns, D, Knapp, M, Gemmell, NJ, Robertson, F, Moorhouse, R, Digby, A, Eason, D, Vercoe, D, Howard, J, Jarvis, ED, Robertson, BC, Dalén, L, Dussex, N, van der Valk, T, Morales, HE, Wheat, CW, Díez-Del-Molino, D, von Seth, J, Foster, Y, Kutschera, VE, Guschanski, K, Rhie, A, Phillippy, AM, Korlach, J, Howe, K, Chow, W, Pelan, S, Mendes Damas, JD, Lewin, HA, Hastie, AR, Formenti, G, Fedrigo, O, Guhlin, J, Harrop, TWR, Le Lec, MF, Dearden, PK, Haggerty, L, Martin, FJ, Kodali, V, Thibaud-Nissen, F, Iorns, D, Knapp, M, Gemmell, NJ, Robertson, F, Moorhouse, R, Digby, A, Eason, D, Vercoe, D, Howard, J, Jarvis, ED, Robertson, BC, and Dalén, L
- Abstract
The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.
- Published
- 2021
6. The genome sequence of the Eurasian red squirrel, Sciurus vulgaris Linnaeus 1758
- Author
-
Mead, D, Fingland, K, Cripps, R, PORTELA MIGUEZ, ROBERTO, Smith, M, Corton, C, Oliver, K, Skelton, J, Betteridge, E, Dolucan, J, Dudchenko, O, Omer, AD, Weisz, D, Lieberman Aiden, E, Fedrigo, O, Mountcastle, J, Jarvis, E, McCarthy, SA, Sims, Y, Torrance, J, Tracey, A, Howe, K, Challis, R, Durbin, R, Blaxter, M, Mead, D, Fingland, K, Cripps, R, PORTELA MIGUEZ, ROBERTO, Smith, M, Corton, C, Oliver, K, Skelton, J, Betteridge, E, Dolucan, J, Dudchenko, O, Omer, AD, Weisz, D, Lieberman Aiden, E, Fedrigo, O, Mountcastle, J, Jarvis, E, McCarthy, SA, Sims, Y, Torrance, J, Tracey, A, Howe, K, Challis, R, Durbin, R, and Blaxter, M
- Abstract
We present a genome assembly from an individual male Sciurus vulgaris (the Eurasian red squirrel; Vertebrata; Mammalia; Eutheria; Rodentia; Sciuridae). The genome sequence is 2.88 gigabases in span. The majority of the assembly is scaffolded into 21 chromosomal-level scaffolds, with both X and Y sex chromosomes assembled.
- Published
- 2020
7. Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation
- Author
-
Tung, J., primary, Fedrigo, O., additional, Haygood, R., additional, Mukherjee, S., additional, and Wray, G. A., additional
- Published
- 2009
- Full Text
- View/download PDF
8. A gene-specific DNA sequencing chip for exploring molecular evolutionary change
- Author
-
Fedrigo, O., primary
- Published
- 2004
- Full Text
- View/download PDF
9. PAQ: Partition Analysis of Quasispecies.
- Author
-
Baccam, P, Thompson, R J, Fedrigo, O, Carpenter, S, and Cornette, J L
- Abstract
The complexities of genetic data may not be accurately described by any single analytical tool. Phylogenetic analysis is often used to study the genetic relationship among different sequences. Evolutionary models and assumptions are invoked to reconstruct trees that describe the phylogenetic relationship among sequences. Genetic databases are rapidly accumulating large amounts of sequences. Newly acquired sequences, which have not yet been characterized, may require preliminary genetic exploration in order to build models describing the evolutionary relationship among sequences. There are clustering techniques that rely less on models of evolution, and thus may provide nice exploratory tools for identifying genetic similarities. Some of the more commonly used clustering methods perform better when data can be grouped into mutually exclusive groups. Genetic data from viral quasispecies, which consist of closely related variants that differ by small changes, however, may best be partitioned by overlapping groups.
- Published
- 2001
- Full Text
- View/download PDF
10. Erratum: The genome of the sea urchin Strongylocentrotus purpuratus (Science (2006) (941))
- Author
-
Elsik, C. G., Taku Hibino, Vacquier, V. D., Kitts, P., Landrum, M. J., Maglott, D., Pruitt, K., Souvorov, A., Fedrigo, O., Primus, A., Satija, R., Adams, N., Flytzanis, C., Galindo, B. E., Goldstone, J. V., Manning, G., Mellott, D., Song, J., Terwilliger, D. P., and Wikramanayake, A.
11. The Genome of the Sea Urchin Strongylocentrotus purpuratus
- Author
-
Amro Hamdoun, Virginia Brockton, Huyen Dinh, Qiang Tu, Richard O. Hynes, Maria Ina Arnone, Wratko Hlavina, L. Courtney Smith, Mariano A. Loza, David R. Burgess, Matthew P. Hoffman, Florian Raible, Qiu Autumn Yuan, Geoffrey Okwuonu, Mark Y. Tong, Jennifer Hume, Donna Maglott, Manisha Goel, Olivier Fedrigo, Manuel L. Gonzalez-Garay, Celina E. Juliano, Judith Hernandez, Gary M. Wessel, William F. Marzluff, Audrey J. Majeske, Christian Gache, Louise Duloquin, Xingzhi Song, François Lapraz, Fowler J, Alexandre Souvorov, Jared V. Goldstone, Georgia Panopoulou, Sandra Hines, Kyle M. Judkins, Clay Davis, Christine G. Elsik, Paul Kitts, Mariano Loza-Coll, Greg Wray, Taku Hibino, Eric Röttinger, Allison M. Churcher, Annamaria Locascio, Arcady Mushegian, Masashi Kinukawa, Anna Reade, Katherine M. Buckley, I. R. Gibbons, Bert Gold, Aleksandar Milosavljevic, David Epel, Victor D. Vacquier, Ling Ling Pu, Vincenzo Cavalieri, Erin L. Allgood, Lan Zhang, Lynne V. Nazareth, Constantin N. Flytzanis, Ian Bosdet, Yi-Hsien Su, Zeev Pancer, Matthew L. Rowe, Robert C. Angerer, David R. McClay, William H. Klein, Rachel F. Gray, Julian L. Wong, Shunsuke Yaguchi, Robert Bellé, Aaron J. Mackey, Herath Jayantha Gunaratne, Karl Frederik Bergeron, Bruce P. Brandhorst, Greg Murray, Avis H. Cohen, Stephanie Bell, Kristin Tessmar-Raible, Ian K. Townley, Bertrand Cosson, Thomas D. Glenn, Jongmin Nam, Cynthia A. Bradham, Michael Dean, Joseph Chacko, Anthony J. Robertson, Margherita Branno, Valeria Matranga, K. James Durbin, Esther Miranda, Lili Chen, Eran Elhaik, Robert D. Burke, Rita A. Wright, Paola Oliveri, Sandra L. Lee, Gary W. Moy, Alexander E Primus, Shawn S. McCafferty, Cristina Calestani, David A. Garfield, Erica Sodergren, Karen Wilson, Joel Smith, Marco A. Marra, Cynthia Messier, Julia Morales, Kim D. Pruitt, Rachel Thorn, Rachel Gill, John S. Taylor, Mark E. Hahn, Victor Sapojnikov, Meredith Howard-Ashby, Lynne M. Angerer, Maurice R. Elphick, Kathy R. Foltz, Anne Marie Genevière, Justin T. Reese, Blanca E. Galindo, Kim C. Worley, Andrew Leone, Glen Humphrey, Kevin Berney, Olga Ermolaeva, George Miner, David P. Terwilliger, Elly Suk Hen Chow, Lora Lewis, Dan Graur, C. Titus Brown, Gerard Manning, Kevin J. Peterson, Angela Jolivet, Michele K. Anderson, Francesca Rizzo, Ekaterina Voronina, Thierry Lepage, Giorgio Matassi, Antonio Fernandez-Guerra, Mamoru Nomura, Charles A. Whittaker, James R.R. Whittle, James A. Coffman, George M. Weinstock, Mohammed M. Idris, Ashlan M. Musante, Sebastian D. Fugmann, Katherine D. Walton, Sorin Istrail, Shu-Yu Wu, Cerrissa Hamilton, Jonah Cool, Jacqueline E. Schein, Stacey M. Curry, Athula Wikramanayke, Seth Carbonneau, Blair J. Rossetti, Christopher E. Killian, Melissa J. Landrum, Amanda P. Rawson, Jenifer C. Croce, Ryan C. Range, Rahul Satija, John J. Stegeman, Yufeng Shen, Cavit Agca, Terry Gaasterland, Rocky Cheung, Takae Kiyama, Nikki Adams, Jonathan P. Rast, Robert Piotr Olinski, Andrew Cree, Mark Scally, Shuguang Liang, David A. Parker, Rebecca Thomason, Gretchen E. Hofmann, Michelle M. Roux, Ronghui Xu, Robert A. Obar, Enrique Arboleda, Odile Mulner-Lorillon, Shannon Dugan-Rocha, David J. Bottjer, Gabriele Amore, Manoj P. Samanta, Waraporn Tongprasit, Véronique Duboc, La Ronda Jackson, Fred H. Wilt, Viktor Stolc, Anna T. Neill, Michael Raisch, Pei Yun Lee, Jia L. Song, Margaret Morgan, Brian T. Livingston, Sofia Hussain, Zheng Wei, Bryan J. Cole, Tonya F. Severson, Victor V. Solovyev, Finn Hallböök, Donna M. Muzny, Christine A. Byrum, Albert J. Poustka, Xiuqian Mu, Andrew R. Jackson, Shin Heesun, Euan R. Brown, Nansheng Chen, Patrick Cormier, Ralph Haygood, Pedro Martinez, R. Andrew Cameron, D. Wang, Wendy S. Beane, Eric H. Davidson, Christie Kovar, Hemant Kelkar, Charles A. Ettensohn, Sham V. Nair, Robert L. Morris, Stefan C. Materna, Michael C. Thorndyke, Richard A. Gibbs, Dan O Mellott, Department of Physiology and Biophysics, Stony Brook University [The State University of New York] ( SBU ), Astronomy Unit ( AU ), Queen Mary University of London ( QMUL ), Urban and Industrial Air Quality Group, CSIRO Energy Technology, Commonwealth Scientific and Industrial Research Organisation Energy Technology ( CSIRO Energy Technology ), Commonwealth Scientific and Industrial Research Organisation, Center for Polymer Studies ( CPS ), Boston University [Boston] ( BU ), Physics Department [Boston] ( BU-Physics ), Max Planck Institute for Psycholinguistics, Max-Planck-Institut, Department of Biology [Norton], Wheaton College [Norton], Mathematical Institute [Oxford] ( MI ), University of Oxford [Oxford], Centre for the Analysis of Time Series ( CATS ), London School of Economics and Political Science ( LSE ), Thomas Jefferson National Accelerator Facility ( Jefferson Lab ), Thomas Jefferson National Accelerator Facility, Laboratoire d'Energétique et de Mécanique Théorique Appliquée ( LEMTA ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Evolution, Génomes et Spéciation ( LEGS ), Centre National de la Recherche Scientifique ( CNRS ), Department of Geology, University of Illinois at Urbana-Champaign [Urbana], Department of Electrical and Computer Engineering [Portland] ( ECE ), Portland State University [Portland] ( PSU ), Saint-Gobain Crystals [USA], SAINT-GOBAIN, Institute for Animal Health ( IAH ), Biotechnology and Biological Sciences Research Council, Center for Agricultural Resources Research, Chinese Academy of Sciences [Changchun Branch] ( CAS ), Ipsen Inc. [Milford] ( Ipsen ), IPSEN, Department of Physics [Berkeley], University of California [Berkeley], Institute for Climate and Atmospheric Science [Leeds] ( ICAS ), University of Leeds, Chung-Ang University ( CAU ), Chung-Ang University [Seoul], Antarctic Climate and Ecosystems Cooperative Research Center ( ACE-CRC ), Institute of Aerodynamics and Fluid Mechanics ( AER ), Technische Universität München [München] ( TUM ), Mer et santé ( MS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Imperial College London, Radio and Atmospheric Sciences Division, National Physical Laboratory [Teddington] ( NPL ), International Research Institute for Climate and Society ( IRI ), Earth Institute at Columbia University, Columbia University [New York]-Columbia University [New York], Soils Group, The Macaulay Institute, Department of Haematology, University of Cambridge [UK] ( CAM ), School of Biology and Biochemistry, Queen's University, Leslie Hill Institute for Plant Conservation ( PCU ), University of Cape Town, Institute for Microelectronics and Microsystems/ Istituto per la Microelettronica e Microsistemi ( IMM ), Consiglio Nazionale delle Ricerche ( CNR ), Laboratoire d'acoustique de l'université du Mans ( LAUM ), Le Mans Université ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactive Systems Labs ( ISL ), Carnegie Mellon University [Pittsburgh] ( CMU ), Dalian Institute of Chemical Physics ( DICP ), Architectures, Languages and Compilers to Harness the End of Moore Years ( ALCHEMY ), Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Clean Air Task Force ( CATF ), Clean Air Task Force, Space Physics Laboratory, Indian Space Research Organisation ( ISRO ), Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Microbiology and Immunology, College of Medicine and Health Sciences-Sultan Qaboos University, European Molecular Biology Laboratory [Heidelberg] ( EMBL ), Department of Biostatistics, University of Michigan [Ann Arbor], Department of Radiation Oncology [Michigan] ( Radonc ), Department of Physics and Astronomy [Leicester], University of Leicester, Informatique, Biologie Intégrative et Systèmes Complexes ( IBISC ), Université d'Évry-Val-d'Essonne ( UEVE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut für Meteorologie und Klimaforschung ( IMK ), Karlsruher Institut für Technologie ( KIT ), Physics Department [UNB], University of New Brunswick ( UNB ), Laboratoire Parole et Langage ( LPL ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Bioprojet, Laboratoire de Matériaux à Porosité Contrôlée ( LMPC ), Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique ( CNRS ), School of Information Engineering [USTB] ( SIE ), University of Science and Technology Beijing [Beijing] ( USTB ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Department of Applied Mathematics [Sheffield], University of Sheffield [Sheffield], School of Mathematics and Statistics [Sheffield] ( SoMaS ), Laboratoire de Mécanique de Lille - FRE 3723 ( LML ), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique ( CNRS ), Computer Science Department [UCLA] ( CSD ), University of California at Los Angeles [Los Angeles] ( UCLA ), Développement et évolution ( DE ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie du Développement de Villefranche sur mer ( LBDV ), Laboratoire Pierre Aigrain ( LPA ), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris ( FRDPENS ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics and Statistics [Mac Gill], McGill University, Departamento de Botánica [Comahue], Universidad nacional del Comahue, Bioénergétique Cellulaire et Pathologique ( BECP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Environnements et Paléoenvironnements OCéaniques ( EPOC ), Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -École pratique des hautes études ( EPHE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratori Nazionali del Sud ( LNS ), National Institute for Nuclear Physics ( INFN ), Departament de Matemàtiques [Barcelona], Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Max-Planck-Institut für Kohlenforschung (coal research), Institute of Oceanology [CAS] ( IOCAS ), National Chiao Tung University ( NCTU ), Department of Hydrology and Water Resources ( HWR ), University of Arizona, Centre for Educational Technology, Environment Department [York], University of York [York, UK], State Key Laboratory of Nuclear Physics and Technology ( SKL-NPT ), Peking University [Beijing], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa], NASA Ames Research Center ( ARC ), Department of Materials, Digital Language & Knowledge Contents Research Association ( DICORA ), Hankuk University of Foreign Studies, Department of Physics [Coventry], University of Warwick [Coventry], Space Science and Technology Department [Didcot] ( RAL Space ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ) -Science and Technology Facilities Council ( STFC ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), H M Nautical Almanac Office [RAL] ( HMNAO ), Rutherford Appleton Laboratory, United Kingdom Met Office [Exeter], University College of London [London] ( UCL ), Department of Pathology and Laboratory Medicine [UCLA], University of California at Los Angeles [Los Angeles] ( UCLA ) -School of Medicine, School of Earth and Environmental Sciences [Seoul] ( SEES ), Seoul National University [Seoul], Department of Chemistry, Seoul Women's University, MicroMachines Centre ( MMC ), Nanyang Technological University [Singapour], Regroupement Québécois sur les Matériaux de Pointe ( RQMP ), École Polytechnique de Montréal ( EPM ) -Université de Sherbrooke [Sherbrooke]-McGill University-Université de Montréal-Fonds Québécois de Recherche sur la Nature et les Technologies ( FQRNT ), Département de Physique [Montréal], Université de Montréal, School of Earth and Environment [Leeds] ( SEE ), Centre for Ecology and Hydrology ( CEH ), Natural Environment Research Council ( NERC ), Norwegian Institute for Water Research ( NIVA ), Norwegian Institute for Water Research, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Astronomy Unit [London] (AU), Queen Mary University of London (QMUL), Commonwealth Scientific and Industrial Research Organisation Energy Technology (CSIRO Energy Technology), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biochemistry and Molecular Biology [Houston], The University of Texas Medical School at Houston, Mathematical Institute [Oxford] (MI), University of Oxford, Centre for the Analysis of Time Series (CATS), London School of Economics and Political Science (LSE), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Evolution, Génomes et Spéciation (LEGS), Centre National de la Recherche Scientifique (CNRS), University of Illinois System-University of Illinois System, Department of Electrical and Computer Engineering [Portland] (ECE), Portland State University [Portland] (PSU), Saint-Gobain, Institute for Animal Health (IAH), Biotechnology and Biological Sciences Research Council (BBSRC), Chinese Academy of Sciences [Changchun Branch] (CAS), Ipsen Inc. [Milford] (Ipsen), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Chung-Ang University (CAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Institute of Aerodynamics and Fluid Mechanics (AER), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), National Physical Laboratory [Teddington] (NPL), International Research Institute for Climate and Society (IRI), Macaulay Institute, University of Cambridge [UK] (CAM), Queen's University [Kingston, Canada], Leslie Hill Institute for Plant Conservation (PCU), Istituto per la Microelettronica e Microsistemi [Catania] (IMM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Interactive Systems Labs (ISL), Carnegie Mellon University [Pittsburgh] (CMU), Dalian Institute of Chemical Physics (DICP), Architectures, Languages and Compilers to Harness the End of Moore Years (ALCHEMY), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clean Air Task Force (CATF), Indian Space Research Organisation (ISRO), Centre d'études et de recherches appliquées à la gestion (CERAG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS), Sultan Qaboos University (SQU)-College of Medicine and Health Sciences [Baylor], Baylor University-Baylor University, European Molecular Biology Laboratory [Heidelberg] (EMBL), University of Michigan System-University of Michigan System, Department of Radiation Oncology [Michigan] (Radonc), Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), University of New Brunswick (UNB), Laboratoire Parole et Langage (LPL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Matériaux à Porosité Contrôlée (LMPC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), School of Information Engineering [USTB] (SIE), University of Science and Technology Beijing [Beijing] (USTB), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], School of Mathematics and Statistics [Sheffield] (SoMaS), Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Computer Science Department [UCLA] (CSD), University of California [Los Angeles] (UCLA), Développement et évolution (DE), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Departamento de Botánica [Bariloche], Centro Regional Universitario Bariloche [Bariloche] (CRUB), Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Bioénergétique Cellulaire et Pathologique (BECP), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratori Nazionali del Sud (LNS), Istituto Nazionale di Fisica Nucleare (INFN), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Max-Planck-Institut für Kohlenforschung (Coal Research), Max-Planck-Gesellschaft, CAS Institute of Oceanology (IOCAS), Chinese Academy of Sciences [Beijing] (CAS), National Chiao Tung University (NCTU), Department of Hydrology and Water Resources (HWR), State Key Laboratory of Nuclear Physics and Technology (SKL-NPT), University of Iowa [Iowa City], NASA Ames Research Center (ARC), Digital Language & Knowledge Contents Research Association (DICORA), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), H M Nautical Almanac Office [RAL] (HMNAO), University College of London [London] (UCL), University of California (UC)-University of California (UC)-School of Medicine, School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), MicroMachines Centre (MMC), Regroupement Québécois sur les Matériaux de Pointe (RQMP), École Polytechnique de Montréal (EPM)-Université de Sherbrooke (UdeS)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal (UdeM), Centre for Ecology and Hydrology (CEH), Natural Environment Research Council (NERC), Norwegian Institute for Water Research (NIVA), SEA URCHIN GENOME SEQUENCING CONSORTIUM, SODERGREN E, WEINSTOCK GM, DAVIDSON EH, CAMERON RA, GIBBS RA, ANGERER RC, ANGERER LM, ARNONE MI, BURGESS DR, BURKE RD, COFFMAN JA, DEAN M, ELPHICK MR, ETTENSOHN CA, FOLTZ KR, HAMDOUN A, HYNES RO, KLEIN WH, MARZLUFF W, MCCLAY DR, MORRIS RL, MUSHEGIAN A, RAST JP, SMITH LC, THORNDYKE MC, VACQUIER VD, WESSEL GM, WRAY G, ZHANG L, ELSIK CG, ERMOLAEVA O, HLAVINA W, HOFMANN G, KITTS P, LANDRUM MJ, MACKEY AJ, MAGLOTT D, PANOPOULOU G, POUSTKA AJ, PRUITT K, SAPOJNIKOV V, SONG X, SOUVOROV A, SOLOVYEV V, WEI Z, WHITTAKER CA, WORLEY K, DURBIN KJ, SHEN Y, FEDRIGO O, GARFIELD D, HAYGOOD R, PRIMUS A, SATIJA R, SEVERSON T, GONZALEZ-GARAY ML, JACKSON AR, MILOSAVLJEVIC A, TONG M, KILLIAN CE, LIVINGSTON BT, WILT FH, ADAMS N, BELLE R, CARBONNEAU S, CHEUNG R, CORMIER P, COSSON B, CROCE J, FERNANDEZ-GUERRA A, GENEVIERE AM, GOEL M, KELKAR H, MORALES J, MULNER-LORILLON O, ROBERTSON AJ, GOLDSTONE JV, COLE B, EPEL D, GOLD B, HAHN ME, HOWARD-ASHBY M, SCALLY M, STEGEMAN JJ, ALLGOOD EL, COOL J, JUDKINS KM, MCCAFFERTY SS, MUSANTE AM, OBAR RA, RAWSON AP, ROSSETTI BJ, GIBBONS IR, HOFFMAN MP, LEONE A, ISTRAIL S, MATERNA SC, SAMANTA MP, STOLC V, TONGPRASIT W, TU Q, BERGERON KF, BRANDHORST BP, WHITTLE J, BERNEY K, BOTTJER DJ, CALESTANI C, PETERSON K, CHOW E, YUAN QA, ELHAIK E, GRAUR D, REESE JT, BOSDET I, HEESUN S, MARRA MA, SCHEIN J, ANDERSON MK, BROCKTON V, BUCKLEY KM, COHEN AH, FUGMANN SD, HIBINO T, LOZA-COLL M, MAJESKE AJ, MESSIER C, NAIR SV, PANCER Z, TERWILLIGER DP, AGCA C, ARBOLEDA E, CHEN N, CHURCHER AM, HALLBOOK F, HUMPHREY GW, IDRIS MM, KIYAMA T, LIANG S, MELLOTT D, MU X, MURRAY G, OLINSKI RP, RAIBLE F, ROWE M, TAYLOR JS, TESSMAR-RAIBLE K, WANG D, WILSON KH, YAGUCHI S, GAASTERLAND T, GALINDO BE, GUNARATNE HJ, JULIANO C, KINUKAWA M, MOY GW, NEILL AT, NOMURA M, RAISCH M, READE A, ROUX MM, SONG JL, SU YH, TOWNLEY IK, VORONINA E, WONG JL, AMORE G, BRANNO M, BROWN ER, CAVALIERI, V, DUBOC V, DULOQUIN L, FLYTZANIS C, GACHE C, LAPRAZ F, LEPAGE T, LOCASCIO A, MART, University of California-University of California, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), University of California-University of California-School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), University of Manchester Institute of Science and Technology (UMIST), Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Baylor College of Medicine (BCM), Baylor University, Laboratoire de Traitement de l'Information Medicale (LaTIM), Université européenne de Bretagne - European University of Brittany (UEB)-Université de Brest (UBO)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Duke University [Durham], Instituto Andaluz de Geofísica y Prevención de Desastres Sísmicos [Granada] (IAGPDS), Universidad de Granada (UGR), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), University of New South Wales [Sydney] (UNSW), Celera Genomics (CRA), Celera Genomics, Paléobiodiversité et paléoenvironnements, Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma], Unité de recherches forestières (BORDX PIERR UR ), Institut National de la Recherche Agronomique (INRA), Deptartment of Neuroscience, Uppsala University, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology (NIGPAS-CAS), Chinese Academy of Sciences [Nanjing Branch]-Chinese Academy of Sciences [Nanjing Branch], Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Department of Physical and Environmental Sciences [Toronto], University of Toronto at Scarborough, inconnu temporaire UPEMLV, Inconnu, Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric Sciences [Seattle], University of Washington [Seattle], National Institute of Advanced Industrial Science and Technology (AIST), Department of Pharmacy, Università degli studi di Genova = University of Genoa (UniGe), Interdisciplinary Arts and Sciences Department, St. Vincent's Hospital, Sydney, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical Engineering (DEE-POSTECH), Pohang University of Science and Technology (POSTECH), Centre Suisse d'Electronique et de Microtechnique SA [Neuchatel] (CSEM), Centre Suisse d'Electronique et Microtechnique SA (CSEM), Human Genome Sequencing Center [Houston] (HGSC), Brookhaven National Laboratory, Meteorological Service of Canada, 4905 Dufferin Street, Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Mines-Télécom [Paris] (IMT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherches Forestières, Department of Physical and Environmental Sciences, University of Toronto [Scarborough, Canada], National Institute for Nuclear Physics (INFN), University of Genoa (UNIGE), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Laboratoire d'Energétique et de Mécanique Théorique Appliquée (LEMTA ), Technische Universität München [München] (TUM), Queen's University [Kingston], Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Grenoble Alpes (UGA), Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona [Barcelona] (UAB), École Polytechnique de Montréal (EPM)-Université de Sherbrooke [Sherbrooke]-Université de Montréal [Montréal]-McGill University-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal [Montréal], U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paul Cézanne - Aix-Marseille 3-Centre National de la Recherche Scientifique (CNRS)-Avignon Université (AU)-Université de Provence - Aix-Marseille 1, Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,MESH: Signal Transduction ,MESH: Sequence Analysis, DNA ,MESH : Transcription Factors ,MESH : Calcification, Physiologic ,Genome ,MESH : Proteins ,0302 clinical medicine ,MESH : Embryonic Development ,MESH: Gene Expression Regulation, Developmental ,Innate ,MESH: Embryonic Development ,Developmental ,Nervous System Physiological Phenomena ,MESH: Animals ,MESH: Proteins ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,MESH: Evolution, Molecular ,MESH : Strongylocentrotus purpuratus ,Genetics ,0303 health sciences ,MESH: Nervous System Physiological Phenomena ,Multidisciplinary ,biology ,Medicine (all) ,MESH: Immunologic Factors ,Gene Expression Regulation, Developmental ,Genome project ,MESH: Transcription Factors ,MESH : Immunity, Innate ,MESH : Complement Activation ,MESH: Genes ,Bacterial artificial chromosome (BAC)DeuterostomesStrongylocentrotus purpuratusVertebrate innovations ,Echinoderm ,MESH : Nervous System Physiological Phenomena ,embryonic structures ,MESH: Cell Adhesion Molecules ,MESH : Genes ,MESH: Immunity, Innate ,Sequence Analysis ,Signal Transduction ,MESH: Computational Biology ,Genome evolution ,MESH: Complement Activation ,Sequence analysis ,Evolution ,MESH: Strongylocentrotus purpuratus ,MESH : Male ,Embryonic Development ,MESH : Immunologic Factors ,Article ,MESH: Calcification, Physiologic ,Calcification ,MESH : Cell Adhesion Molecules ,Evolution, Molecular ,03 medical and health sciences ,Calcification, Physiologic ,Animals ,Immunologic Factors ,MESH: Genome ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,MESH : Evolution, Molecular ,Physiologic ,Gene ,Strongylocentrotus purpuratus ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,MESH : Signal Transduction ,Bacterial artificial chromosome ,Immunity ,Molecular ,Computational Biology ,Proteins ,Cell Adhesion Molecules ,Genes ,Immunity, Innate ,Transcription Factors ,Sequence Analysis, DNA ,DNA ,biology.organism_classification ,MESH: Male ,Gene Expression Regulation ,MESH : Animals ,MESH : Gene Expression Regulation, Developmental ,MESH : Genome ,030217 neurology & neurosurgery ,MESH : Computational Biology ,MESH : Sequence Analysis, DNA - Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
- Published
- 2006
12. A reference genome for the Harpy Eagle reveals steady demographic decline and chromosomal rearrangements in the origin of Accipitriformes.
- Author
-
Canesin LEC, Vilaça ST, Oliveira RRM, Al-Ajli F, Tracey A, Sims Y, Formenti G, Fedrigo O, Banhos A, Sanaiotti TM, Farias IP, Jarvis ED, Oliveira G, Hrbek T, Solferini V, and Aleixo A
- Subjects
- Animals, Female, DNA Transposable Elements genetics, Phylogeny, Evolution, Molecular, Retroelements genetics, Genomics methods, Genome, Eagles genetics
- Abstract
The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50
scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
13. Distinct patterns of genetic variation at low-recombining genomic regions represent haplotype structure.
- Author
-
Ishigohoka J, Bascón-Cardozo K, Bours A, Fuß J, Rhie A, Mountcastle J, Haase B, Chow W, Collins J, Howe K, Uliano-Silva M, Fedrigo O, Jarvis ED, Pérez-Tris J, Illera JC, and Liedvogel M
- Abstract
Genomic regions sometimes show patterns of genetic variation distinct from the genome-wide population structure. Such deviations have often been interpreted to represent effects of selection. However, systematic investigation of whether and how non-selective factors, such as recombination rates, can affect distinct patterns has been limited. Here, we associate distinct patterns of genetic variation with reduced recombination rates in a songbird, the Eurasian blackcap (Sylvia atricapilla), using a new reference genome assembly, whole-genome resequenc- ing data and recombination maps. We find that distinct patterns of genetic variation reflect haplotype structure at genomic regions with different prevalence of reduced recombination rate across populations. At low-recombining regions shared in most populations, distinct patterns reflect conspicuous haplotypes segregating in multiple populations. At low-recombining regions found only in a few populations, distinct patterns represent variance among cryptic haplotypes within the low-recombining populations. With simulations, we confirm that these distinct patterns evolve neutrally by reduced recombination rate, on which the effects of selection can be overlaid. Our results highlight that distinct patterns of genetic variation can emerge through evolutionary reduction of local recombination rate. The recombination landscape as an evolvable trait therefore plays an important role determining the heterogeneous distribution of genetic variation along the genome., (© The Author(s) 2024. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE).)
- Published
- 2024
- Full Text
- View/download PDF
14. Pronounced early differentiation underlies zebra finch gonadal germ cell development.
- Author
-
Biegler MT, Belay K, Wang W, Szialta C, Collier P, Luo JD, Haase B, Gedman GL, Sidhu AV, Harter E, Rivera-López C, Amoako-Boadu K, Fedrigo O, Tilgner HU, Carroll T, Jarvis ED, and Keyte AL
- Abstract
The diversity of germ cell developmental strategies has been well documented across many vertebrate clades. However, much of our understanding of avian primordial germ cell (PGC) specification and differentiation has derived from only one species, the chicken (Gallus gallus). Of the three major classes of birds, chickens belong to Galloanserae, representing less than 4% of species, while nearly 95% of extant bird species belong to Neoaves. This represents a significant gap in our knowledge of germ cell development across avian species, hampering efforts to adapt genome editing and reproductive technologies developed in chicken to other birds. We therefore applied single-cell RNA sequencing to investigate inter-species differences in germ cell development between chicken and zebra finch (Taeniopygia castanotis), a Neoaves songbird species and a common model of vocal learning. Analysis of early embryonic male and female gonads revealed the presence of two distinct early germ cell types in zebra finch and only one in chicken. Both germ cell types expressed zebra finch Germline Restricted Chromosome (GRC) genes, present only in songbirds among birds. One of the zebra finch germ cell types expressed the canonical PGC markers, as did chicken, but with expression differences in several signaling pathways and biological processes. The second zebra finch germ cell cluster was marked by proliferation and fate determination markers, indicating beginning of differentiation. Notably, these two zebra finch germ cell populations were present in both male and female zebra finch gonads as early as HH25. Using additional chicken developmental stages, similar germ cell heterogeneity was identified in the more developed gonads of females, but not males. Overall, our study demonstrates a substantial heterochrony in zebra finch germ cell development compared to chicken, indicating a richer diversity of avian germ cell developmental strategies than previously known., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain.
- Author
-
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Marrocco J, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, and Tilgner HU
- Subjects
- Animals, Humans, Mice, RNA Splicing genetics, RNA Isoforms genetics, Alternative Splicing genetics, Male, Mice, Inbred C57BL, Brain metabolism, Brain growth & development, Single-Cell Analysis methods
- Abstract
RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
16. A reference genome for the Andean cavefish Trichomycterus rosablanca (Siluriformes, Trichomycteridae): Building genomic resources to study evolution in cave environments.
- Author
-
Cadena CD, Pabón L, DoNascimiento C, Abueg L, Tilley T, O-Toole B, Absolon D, Sims Y, Formenti G, Fedrigo O, Jarvis ED, and Torres M
- Subjects
- Male, Animals, Sequence Analysis, DNA, Eye, Pigmentation, Chromosomes, Phenotype, Catfishes genetics, Genome, Caves, Biological Evolution
- Abstract
Animals living in caves are of broad relevance to evolutionary biologists interested in understanding the mechanisms underpinning convergent evolution. In the Eastern Andes of Colombia, populations from at least two distinct clades of Trichomycterus catfishes (Siluriformes) independently colonized cave environments and converged in phenotype by losing their eyes and pigmentation. We are pursuing several research questions using genomics to understand the evolutionary forces and molecular mechanisms responsible for repeated morphological changes in this system. As a foundation for such studies, here we describe a diploid, chromosome-scale, long-read reference genome for Trichomycterus rosablanca, a blind, depigmented species endemic to the karstic system of the department of Santander. The nuclear genome comprises 1 Gb in 27 chromosomes, with a 40.0× HiFi long-read genome coverage having an N50 scaffold of 40.4 Mb and N50 contig of 13.1 Mb, with 96.9% (Eukaryota) and 95.4% (Actinopterygii) universal single-copy orthologs (BUSCO). This assembly provides the first reference genome for the speciose genus Trichomycterus, serving as a key resource for research on the genomics of phenotypic evolution., (© The Author(s) 2024. Published by Oxford University Press on behalf of The American Genetic Association. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
17. Evolution and genetic architecture of sex-limited polymorphism in cuckoos.
- Author
-
Merondun J, Marques CI, Andrade P, Meshcheryagina S, Galván I, Afonso S, Alves JM, Araújo PM, Bachurin G, Balacco J, Bán M, Fedrigo O, Formenti G, Fossøy F, Fülöp A, Golovatin M, Granja S, Hewson C, Honza M, Howe K, Larson G, Marton A, Moskát C, Mountcastle J, Procházka P, Red'kin Y, Sims Y, Šulc M, Tracey A, Wood JMD, Jarvis ED, Hauber ME, Carneiro M, and Wolf JBW
- Subjects
- Animals, Female, Male, Birds genetics, Phenotype, Biological Evolution, Pigmentation genetics, Sex Characteristics, Evolution, Molecular, Polymorphism, Genetic
- Abstract
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo ( Cuculus canorus ) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo ( Cuculus optatus ). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.
- Published
- 2024
- Full Text
- View/download PDF
18. A genomic basis of vocal rhythm in birds.
- Author
-
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, and Kirschel ANG
- Subjects
- Animals, Male, Genomics, Genome genetics, Female, Songbirds genetics, Songbirds physiology, Birds genetics, Birds physiology, Vocalization, Animal physiology
- Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
19. A region of suppressed recombination misleads neoavian phylogenomics.
- Author
-
Mirarab S, Rivas-González I, Feng S, Stiller J, Fang Q, Mai U, Hickey G, Chen G, Brajuka N, Fedrigo O, Formenti G, Wolf JBW, Howe K, Antunes A, Schierup MH, Paten B, Jarvis ED, Zhang G, and Braun EL
- Subjects
- Animals, Phylogeny, Birds, Recombination, Genetic, Biological Evolution, Genome genetics
- Abstract
Genomes are typically mosaics of regions with different evolutionary histories. When speciation events are closely spaced in time, recombination makes the regions sharing the same history small, and the evolutionary history changes rapidly as we move along the genome. When examining rapid radiations such as the early diversification of Neoaves 66 Mya, typically no consistent history is observed across segments exceeding kilobases of the genome. Here, we report an exception. We found that a 21-Mb region in avian genomes, mapped to chicken chromosome 4, shows an extremely strong and discordance-free signal for a history different from that of the inferred species tree. Such a strong discordance-free signal, indicative of suppressed recombination across many millions of base pairs, is not observed elsewhere in the genome for any deep avian relationships. Although long regions with suppressed recombination have been documented in recently diverged species, our results pertain to relationships dating circa 65 Mya. We provide evidence that this strong signal may be due to an ancient rearrangement that blocked recombination and remained polymorphic for several million years prior to fixation. We show that the presence of this region has misled previous phylogenomic efforts with lower taxon sampling, showing the interplay between taxon and locus sampling. We predict that similar ancient rearrangements may confound phylogenetic analyses in other clades, pointing to a need for new analytical models that incorporate the possibility of such events., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2024
- Full Text
- View/download PDF
20. A chromosome-level genome assembly for the dugong (Dugong dugon).
- Author
-
Baker DN, Abueg L, Escalona M, Farquharson KA, Lanyon JM, Le Duc D, Schöneberg T, Absolon D, Sims Y, Fedrigo O, Jarvis ED, Belov K, Hogg CJ, and Shapiro B
- Subjects
- Animals, Australia, Ecosystem, Indian Ocean, Cetacea, Chromosomes, Dugong, Caniformia
- Abstract
The dugong (Dugong dugon) is a marine mammal widely distributed throughout the Indo-Pacific and the Red Sea, with a Vulnerable conservation status, and little is known about many of the more peripheral populations, some of which are thought to be close to extinction. We present a de novo high-quality genome assembly for the dugong from an individual belonging to the well-monitored Moreton Bay population in Queensland, Australia. Our assembly uses long-read PacBio HiFi sequencing and Omni-C data following the Vertebrate Genome Project pipeline to reach chromosome-level contiguity (24 chromosome-level scaffolds; 3.16 Gbp) and high completeness (97.9% complete BUSCOs). We observed relatively high genome-wide heterozygosity, which likely reflects historical population abundance before the last interglacial period, approximately 125,000 yr ago. Demographic inference suggests that dugong populations began declining as sea levels fell after the last interglacial period, likely a result of population fragmentation and habitat loss due to the exposure of seagrass meadows. We find no evidence for ongoing recent inbreeding in this individual. However, runs of homozygosity indicate some past inbreeding. Our draft genome assembly will enable range-wide assessments of genetic diversity and adaptation, facilitate effective management of dugong populations, and allow comparative genomics analyses including with other sirenians, the oldest marine mammal lineage., (© The American Genetic Association. 2024.)
- Published
- 2024
- Full Text
- View/download PDF
21. Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy.
- Author
-
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Antunes A, Balacco JR, Chaisson MJP, Cheng H, Collins J, Couture M, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Horan K, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Williams RW, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, and Formenti G
- Subjects
- Computational Biology, Software
- Published
- 2024
- Full Text
- View/download PDF
22. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography.
- Author
-
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, and Stewart R
- Subjects
- Animals, Segmental Duplications, Genomic, Genome, Demography, Balaenoptera genetics, Neoplasms genetics
- Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
23. Chromosome level genome assembly of the Etruscan shrew Suncus etruscus.
- Author
-
Bukhman YV, Meyer S, Chu LF, Abueg L, Antosiewicz-Bourget J, Balacco J, Brecht M, Dinatale E, Fedrigo O, Formenti G, Fungtammasan A, Giri SJ, Hiller M, Howe K, Kihara D, Mamott D, Mountcastle J, Pelan S, Rabbani K, Sims Y, Tracey A, Wood JMD, Jarvis ED, Thomson JA, Chaisson MJP, and Stewart R
- Subjects
- Animals, Mice, Genome, Genomics, Molecular Sequence Annotation, Chromosomes genetics, Shrews genetics
- Abstract
Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
24. Chromosome-level genome assembly of chub mackerel (Scomber japonicus) from the Indo-Pacific Ocean.
- Author
-
Lee YH, Abueg L, Kim JK, Kim YW, Fedrigo O, Balacco J, Formenti G, Howe K, Tracey A, Wood J, Thibaud-Nissen F, Nam BH, No ES, Kim HR, Lee C, Jarvis ED, and Kim H
- Subjects
- Animals, Chromosomes, Pacific Ocean, Cyprinidae genetics, Genome, Perciformes genetics
- Abstract
Chub mackerels (Scomber japonicus) are a migratory marine fish widely distributed in the Indo-Pacific Ocean. They are globally consumed for their high Omega-3 content, but their population is declining due to global warming. Here, we generated the first chromosome-level genome assembly of chub mackerel (fScoJap1) using the Vertebrate Genomes Project assembly pipeline with PacBio HiFi genomic sequencing and Arima Hi-C chromosome contact data. The final assembly is 828.68 Mb with 24 chromosomes, nearly all containing telomeric repeats at their ends. We annotated 31,656 genes and discovered that approximately 2.19% of the genome contained DNA transposon elements repressed within duplicated genes. Analyzing 5-methylcytosine (5mC) modifications using HiFi reads, we observed open/close chromatin patterns at gene promoters, including the FADS2 gene involved in Omega-3 production. This chromosome-level reference genome provides unprecedented opportunities for advancing our knowledge of chub mackerels in biology, industry, and conservation., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
25. A pangenome graph reference of 30 chicken genomes allows genotyping of large and complex structural variants.
- Author
-
Rice ES, Alberdi A, Alfieri J, Athrey G, Balacco JR, Bardou P, Blackmon H, Charles M, Cheng HH, Fedrigo O, Fiddaman SR, Formenti G, Frantz LAF, Gilbert MTP, Hearn CJ, Jarvis ED, Klopp C, Marcos S, Mason AS, Velez-Irizarry D, Xu L, and Warren WC
- Subjects
- Animals, Genotype, Sequence Analysis, DNA, Genomics, Chickens genetics, Genome
- Abstract
Background: The red junglefowl, the wild outgroup of domestic chickens, has historically served as a reference for genomic studies of domestic chickens. These studies have provided insight into the etiology of traits of commercial importance. However, the use of a single reference genome does not capture diversity present among modern breeds, many of which have accumulated molecular changes due to drift and selection. While reference-based resequencing is well-suited to cataloging simple variants such as single-nucleotide changes and short insertions and deletions, it is mostly inadequate to discover more complex structural variation in the genome., Methods: We present a pangenome for the domestic chicken consisting of thirty assemblies of chickens from different breeds and research lines., Results: We demonstrate how this pangenome can be used to catalog structural variants present in modern breeds and untangle complex nested variation. We show that alignment of short reads from 100 diverse wild and domestic chickens to this pangenome reduces reference bias by 38%, which affects downstream genotyping results. This approach also allows for the accurate genotyping of a large and complex pair of structural variants at the K feathering locus using short reads, which would not be possible using a linear reference., Conclusions: We expect that this new paradigm of genomic reference will allow better pinpointing of exact mutations responsible for specific phenotypes, which will in turn be necessary for breeding chickens that meet new sustainability criteria and are resilient to quickly evolving pathogen threats., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
26. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks.
- Author
-
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, and Schartl M
- Subjects
- Animals, Ecosystem, Mutation Rate, Sharks genetics
- Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10
-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate., (© 2023. Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
27. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes.
- Author
-
Bond DM, Ortega-Recalde O, Laird MK, Hayakawa T, Richardson KS, Reese FCB, Kyle B, McIsaac-Williams BE, Robertson BC, van Heezik Y, Adams AL, Chang WS, Haase B, Mountcastle J, Driller M, Collins J, Howe K, Go Y, Thibaud-Nissen F, Lister NC, Waters PD, Fedrigo O, Jarvis ED, Gemmell NJ, Alexander A, and Hore TA
- Subjects
- Animals, Australia, New Zealand epidemiology, Marsupialia
- Abstract
Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
28. Prioritizing Endangered Species in Genome Sequencing: Conservation Genomics in Action with the First Platinum-Standard Reference-Quality Genome of the Critically Endangered European Mink Mustela lutreola L., 1761.
- Author
-
Skorupski J, Brandes F, Seebass C, Festl W, Śmietana P, Balacco J, Jain N, Tilley T, Abueg L, Wood J, Sims Y, Formenti G, Fedrigo O, and Jarvis ED
- Subjects
- Animals, Platinum, Conservation of Natural Resources, Genomics, Mink genetics, Endangered Species
- Abstract
The European mink Mustela lutreola (Mustelidae) ranks among the most endangered mammalian species globally, experiencing a rapid and severe decline in population size, density, and distribution. Given the critical need for effective conservation strategies, understanding its genomic characteristics becomes paramount. To address this challenge, the platinum-quality, chromosome-level reference genome assembly for the European mink was successfully generated under the project of the European Mink Centre consortium. Leveraging PacBio HiFi long reads, we obtained a 2586.3 Mbp genome comprising 25 scaffolds, with an N50 length of 154.1 Mbp. Through Hi-C data, we clustered and ordered the majority of the assembly (>99.9%) into 20 chromosomal pseudomolecules, including heterosomes, ranging from 6.8 to 290.1 Mbp. The newly sequenced genome displays a GC base content of 41.9%. Additionally, we successfully assembled the complete mitochondrial genome, spanning 16.6 kbp in length. The assembly achieved a BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness score of 98.2%. This high-quality reference genome serves as a valuable genomic resource for future population genomics studies concerning the European mink and related taxa. Furthermore, the newly assembled genome holds significant potential in addressing key conservation challenges faced by M. lutreola . Its applications encompass potential revision of management units, assessment of captive breeding impacts, resolution of phylogeographic questions, and facilitation of monitoring and evaluating the efficiency and effectiveness of dedicated conservation strategies for the European mink. This species serves as an example that highlights the paramount importance of prioritizing endangered species in genome sequencing projects due to the race against time, which necessitates the comprehensive exploration and characterization of their genomic resources before their populations face extinction.
- Published
- 2023
- Full Text
- View/download PDF
29. Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy.
- Author
-
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Balacco JR, Chaisson M, Cheng H, Collins J, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, and Formenti G
- Abstract
Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).
- Published
- 2023
- Full Text
- View/download PDF
30. A high-quality reference genome for the critically endangered Aeolian wall lizard, Podarcis raffonei.
- Author
-
Gabrielli M, Benazzo A, Biello R, Ancona L, Fuselli S, Iannucci A, Balacco J, Mountcastle J, Tracey A, Ficetola GF, Salvi D, Sollitto M, Fedrigo O, Formenti G, Jarvis ED, Gerdol M, Ciofi C, Trucchi E, and Bertorelle G
- Subjects
- Animals, Chromosomes genetics, Genomics, Molecular Sequence Annotation, Sex Chromosomes, Genome, Lizards genetics
- Abstract
The Aeolian wall lizard, Podarcis raffonei, is an endangered species endemic to the Aeolian archipelago, Italy, where it is present only in 3 tiny islets and a narrow promontory of a larger island. Because of the extremely limited area of occupancy, severe population fragmentation and observed decline, it has been classified as Critically Endangered by the International Union for the Conservation of Nature (IUCN). Using Pacific Biosciences (PacBio) High Fidelity (HiFi) long-read sequencing, Bionano optical mapping and Arima chromatin conformation capture sequencing (Hi-C), we produced a high-quality, chromosome-scale reference genome for the Aeolian wall lizard, including Z and W sexual chromosomes. The final assembly spans 1.51 Gb across 28 scaffolds with a contig N50 of 61.4 Mb, a scaffold N50 of 93.6 Mb, and a BUSCO completeness score of 97.3%. This genome constitutes a valuable resource for the species to guide potential conservation efforts and more generally for the squamate reptiles that are underrepresented in terms of available high-quality genomic resources., (© The Author(s) 2023. Published by Oxford University Press on behalf of The American Genetic Association. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
31. A draft human pangenome reference.
- Author
-
Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, Lu S, Lucas JK, Monlong J, Abel HJ, Buonaiuto S, Chang XH, Cheng H, Chu J, Colonna V, Eizenga JM, Feng X, Fischer C, Fulton RS, Garg S, Groza C, Guarracino A, Harvey WT, Heumos S, Howe K, Jain M, Lu TY, Markello C, Martin FJ, Mitchell MW, Munson KM, Mwaniki MN, Novak AM, Olsen HE, Pesout T, Porubsky D, Prins P, Sibbesen JA, Sirén J, Tomlinson C, Villani F, Vollger MR, Antonacci-Fulton LL, Baid G, Baker CA, Belyaeva A, Billis K, Carroll A, Chang PC, Cody S, Cook DE, Cook-Deegan RM, Cornejo OE, Diekhans M, Ebert P, Fairley S, Fedrigo O, Felsenfeld AL, Formenti G, Frankish A, Gao Y, Garrison NA, Giron CG, Green RE, Haggerty L, Hoekzema K, Hourlier T, Ji HP, Kenny EE, Koenig BA, Kolesnikov A, Korbel JO, Kordosky J, Koren S, Lee H, Lewis AP, Magalhães H, Marco-Sola S, Marijon P, McCartney A, McDaniel J, Mountcastle J, Nattestad M, Nurk S, Olson ND, Popejoy AB, Puiu D, Rautiainen M, Regier AA, Rhie A, Sacco S, Sanders AD, Schneider VA, Schultz BI, Shafin K, Smith MW, Sofia HJ, Abou Tayoun AN, Thibaud-Nissen F, Tricomi FF, Wagner J, Walenz B, Wood JMD, Zimin AV, Bourque G, Chaisson MJP, Flicek P, Phillippy AM, Zook JM, Eichler EE, Haussler D, Wang T, Jarvis ED, Miga KH, Garrison E, Marschall T, Hall IM, Li H, and Paten B
- Subjects
- Humans, Diploidy, Haplotypes genetics, Sequence Analysis, DNA, Reference Standards, Cohort Studies, Alleles, Genetic Variation, Genome, Human genetics, Genomics standards
- Abstract
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals
1 . These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
32. Single-cell long-read mRNA isoform regulation is pervasive across mammalian brain regions, cell types, and development.
- Author
-
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, and Tilgner HU
- Abstract
RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56). For 75% of genes, full-length isoform expression varies along one or more axes of phenotypic origin, underscoring the pervasiveness of isoform regulation across multiple scales. As expected, splicing varies strongly between cell types. However, certain gene classes including neurotransmitter release and reuptake as well as synapse turnover, harbor significant variability in the same cell type across anatomical regions, suggesting differences in network activity may influence cell-type identity. Glial brain-region specificity in isoform expression includes strong poly(A)-site regulation, whereas neurons have stronger TSS regulation. Furthermore, developmental patterns of cell-type specific splicing are especially pronounced in the murine adolescent transition from P21 to P28. The same cell type traced across development shows more isoform variability than across adult anatomical regions, indicating a coordinated modulation of functional programs dictating neural development. As most cell-type specific exons in P56 mouse hippocampus behave similarly in newly generated data from human hippocampi, these principles may be extrapolated to human brain. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms. Taken together, we present a detailed single-cell atlas of full-length brain isoform regulation across development and anatomical regions, providing a previously unappreciated degree of isoform variability across multiple scales of the brain., Competing Interests: Competing Interests statement L.C.N. has served as a scientific advisor for Abbvie, ViiV and Cytodyn for work unrelated to this project. The remaining authors declare no competing interests.
- Published
- 2023
- Full Text
- View/download PDF
33. An improved germline genome assembly for the sea lamprey Petromyzon marinus illuminates the evolution of germline-specific chromosomes.
- Author
-
Timoshevskaya N, Eşkut KI, Timoshevskiy VA, Robb SMC, Holt C, Hess JE, Parker HJ, Baker CF, Miller AK, Saraceno C, Yandell M, Krumlauf R, Narum SR, Lampman RT, Gemmell NJ, Mountcastle J, Haase B, Balacco JR, Formenti G, Pelan S, Sims Y, Howe K, Fedrigo O, Jarvis ED, and Smith JJ
- Subjects
- Animals, Chromosomes genetics, DNA genetics, Genome, Vertebrates genetics, Germ Cells, Evolution, Molecular, Phylogeny, Petromyzon genetics
- Abstract
Programmed DNA loss is a gene silencing mechanism that is employed by several vertebrate and nonvertebrate lineages, including all living jawless vertebrates and songbirds. Reconstructing the evolution of somatically eliminated (germline-specific) sequences in these species has proven challenging due to a high content of repeats and gene duplications in eliminated sequences and a corresponding lack of highly accurate and contiguous assemblies for these regions. Here, we present an improved assembly of the sea lamprey (Petromyzon marinus) genome that was generated using recently standardized methods that increase the contiguity and accuracy of vertebrate genome assemblies. This assembly resolves highly contiguous, somatically retained chromosomes and at least one germline-specific chromosome, permitting new analyses that reconstruct the timing, mode, and repercussions of recruitment of genes to the germline-specific fraction. These analyses reveal major roles of interchromosomal segmental duplication, intrachromosomal duplication, and positive selection for germline functions in the long-term evolution of germline-specific chromosomes., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
34. Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories.
- Author
-
Bentley BP, Carrasco-Valenzuela T, Ramos EKS, Pawar H, Souza Arantes L, Alexander A, Banerjee SM, Masterson P, Kuhlwilm M, Pippel M, Mountcastle J, Haase B, Uliano-Silva M, Formenti G, Howe K, Chow W, Tracey A, Sims Y, Pelan S, Wood J, Yetsko K, Perrault JR, Stewart K, Benson SR, Levy Y, Todd EV, Shaffer HB, Scott P, Henen BT, Murphy RW, Mohr DW, Scott AF, Duffy DJ, Gemmell NJ, Suh A, Winkler S, Thibaud-Nissen F, Nery MF, Marques-Bonet T, Antunes A, Tikochinski Y, Dutton PH, Fedrigo O, Myers EW, Jarvis ED, Mazzoni CJ, and Komoroske LM
- Subjects
- Animals, Ecosystem, Population Dynamics, Turtles
- Abstract
Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback ( Dermochelys coriacea ) and green ( Chelonia mydas ) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
- Published
- 2023
- Full Text
- View/download PDF
35. A chromosome-level reference genome and pangenome for barn swallow population genomics.
- Author
-
Secomandi S, Gallo GR, Sozzoni M, Iannucci A, Galati E, Abueg L, Balacco J, Caprioli M, Chow W, Ciofi C, Collins J, Fedrigo O, Ferretti L, Fungtammasan A, Haase B, Howe K, Kwak W, Lombardo G, Masterson P, Messina G, Møller AP, Mountcastle J, Mousseau TA, Ferrer Obiol J, Olivieri A, Rhie A, Rubolini D, Saclier M, Stanyon R, Stucki D, Thibaud-Nissen F, Torrance J, Torroni A, Weber K, Ambrosini R, Bonisoli-Alquati A, Jarvis ED, Gianfranceschi L, and Formenti G
- Subjects
- Animals, Metagenomics, Genome genetics, Genomics, Chromosomes, Swallows genetics
- Abstract
Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome., Competing Interests: Declaration of interests D.S. and K.W. are full-time employees at Pacific Biosciences, a company commercializing single-molecule sequencing technologies., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
36. The swan genome and transcriptome, it is not all black and white.
- Author
-
Karawita AC, Cheng Y, Chew KY, Challagulla A, Kraus R, Mueller RC, Tong MZW, Hulme KD, Bielefeldt-Ohmann H, Steele LE, Wu M, Sng J, Noye E, Bruxner TJ, Au GG, Lowther S, Blommaert J, Suh A, McCauley AJ, Kaur P, Dudchenko O, Aiden E, Fedrigo O, Formenti G, Mountcastle J, Chow W, Martin FJ, Ogeh DN, Thiaud-Nissen F, Howe K, Tracey A, Smith J, Kuo RI, Renfree MB, Kimura T, Sakoda Y, McDougall M, Spencer HG, Pyne M, Tolf C, Waldenström J, Jarvis ED, Baker ML, Burt DW, and Short KR
- Subjects
- Animals, Transcriptome, Endothelial Cells, Australia, Influenza in Birds, Anseriformes
- Abstract
Background: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information., Results: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan., Conclusion: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
37. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer.
- Author
-
Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, White RR, Goldfarb A, Hadi K, Edwards MM, Donovan FX, Hoogenboezem RM, Jung M, Sridhar S, Wiley TF, Fedrigo O, Tian H, Rosiene J, Heineman T, Kennedy JA, Bean L, Rosti RO, Tryon R, Gonzalez AM, Rosenberg A, Luo JD, Carroll TS, Shroff S, Beaumont M, Velleuer E, Rastatter JC, Wells SI, Surrallés J, Bagby G, MacMillan ML, Wagner JE, Cancio M, Boulad F, Scognamiglio T, Vaughan R, Beaumont KG, Koren A, Imielinski M, Chandrasekharappa SC, Auerbach AD, Singh B, Kutler DI, Campbell PJ, and Smogorzewska A
- Subjects
- Humans, Aldehydes adverse effects, Aldehydes metabolism, Papillomavirus Infections, Squamous Cell Carcinoma of Head and Neck chemically induced, Squamous Cell Carcinoma of Head and Neck genetics, Squamous Cell Carcinoma of Head and Neck metabolism, Squamous Cell Carcinoma of Head and Neck pathology, DNA Damage drug effects, DNA Repair genetics, Fanconi Anemia genetics, Fanconi Anemia metabolism, Fanconi Anemia pathology, Genomics, Head and Neck Neoplasms chemically induced, Head and Neck Neoplasms genetics, Head and Neck Neoplasms metabolism, Head and Neck Neoplasms pathology
- Abstract
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage
1-3 . The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7 . Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
38. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes.
- Author
-
Toh H, Yang C, Formenti G, Raja K, Yan L, Tracey A, Chow W, Howe K, Bergeron LA, Zhang G, Haase B, Mountcastle J, Fedrigo O, Fogg J, Kirilenko B, Munegowda C, Hiller M, Jain A, Kihara D, Rhie A, Phillippy AM, Swanson SA, Jiang P, Clegg DO, Jarvis ED, Thomson JA, Stewart R, Chaisson MJP, and Bukhman YV
- Subjects
- Humans, Animals, Haplotypes, Murinae, Genome, Genomics, Diabetes Mellitus, Type 2 genetics
- Abstract
Background: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic., Results: We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse., Conclusions: Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
39. Semi-automated assembly of high-quality diploid human reference genomes.
- Author
-
Jarvis ED, Formenti G, Rhie A, Guarracino A, Yang C, Wood J, Tracey A, Thibaud-Nissen F, Vollger MR, Porubsky D, Cheng H, Asri M, Logsdon GA, Carnevali P, Chaisson MJP, Chin CS, Cody S, Collins J, Ebert P, Escalona M, Fedrigo O, Fulton RS, Fulton LL, Garg S, Gerton JL, Ghurye J, Granat A, Green RE, Harvey W, Hasenfeld P, Hastie A, Haukness M, Jaeger EB, Jain M, Kirsche M, Kolmogorov M, Korbel JO, Koren S, Korlach J, Lee J, Li D, Lindsay T, Lucas J, Luo F, Marschall T, Mitchell MW, McDaniel J, Nie F, Olsen HE, Olson ND, Pesout T, Potapova T, Puiu D, Regier A, Ruan J, Salzberg SL, Sanders AD, Schatz MC, Schmitt A, Schneider VA, Selvaraj S, Shafin K, Shumate A, Stitziel NO, Stober C, Torrance J, Wagner J, Wang J, Wenger A, Xiao C, Zimin AV, Zhang G, Wang T, Li H, Garrison E, Haussler D, Hall I, Zook JM, Eichler EE, Phillippy AM, Paten B, Howe K, and Miga KH
- Subjects
- Humans, Haplotypes genetics, High-Throughput Nucleotide Sequencing methods, High-Throughput Nucleotide Sequencing standards, Sequence Analysis, DNA methods, Sequence Analysis, DNA standards, Reference Standards, Chromosomes, Human genetics, Genetic Variation genetics, Chromosome Mapping standards, Diploidy, Genome, Human genetics, Genomics methods, Genomics standards
- Abstract
The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society
1,2 . However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4 . Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5 . To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6 . Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
40. False gene and chromosome losses in genome assemblies caused by GC content variation and repeats.
- Author
-
Kim J, Lee C, Ko BJ, Yoo DA, Won S, Phillippy AM, Fedrigo O, Zhang G, Howe K, Wood J, Durbin R, Formenti G, Brown S, Cantin L, Mello CV, Cho S, Rhie A, Kim H, and Jarvis ED
- Subjects
- Animals, Base Composition genetics, Chromosomes, Sequence Analysis, DNA, Genome genetics, Vertebrates genetics
- Abstract
Background: Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements., Results: Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies., Conclusions: Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
41. Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs.
- Author
-
Formenti G, Abueg L, Brajuka A, Brajuka N, Gallardo-Alba C, Giani A, Fedrigo O, and Jarvis ED
- Subjects
- Algorithms, Workflow, Licensure, Genome, Software
- Abstract
Motivation: With the current pace at which reference genomes are being produced, the availability of tools that can reliably and efficiently generate genome assembly summary statistics has become critical. Additionally, with the emergence of new algorithms and data types, tools that can improve the quality of existing assemblies through automated and manual curation are required., Results: We sought to address both these needs by developing gfastats, as part of the Vertebrate Genomes Project (VGP) effort to generate high-quality reference genomes at scale. Gfastats is a standalone tool to compute assembly summary statistics and manipulate assembly sequences in FASTA, FASTQ or GFA [.gz] format. Gfastats stores assembly sequences internally in a GFA-like format. This feature allows gfastats to seamlessly convert FAST* to and from GFA [.gz] files. Gfastats can also build an assembly graph that can in turn be used to manipulate the underlying sequences following instructions provided by the user, while simultaneously generating key metrics for the new sequences., Availability and Implementation: Gfastats is implemented in C++. Precompiled releases (Linux, MacOS, Windows) and commented source code for gfastats are available under MIT licence at https://github.com/vgl-hub/gfastats. Examples of how to run gfastats are provided in the GitHub. Gfastats is also available in Bioconda, in Galaxy (https://assembly.usegalaxy.eu) and as a MultiQC module (https://github.com/ewels/MultiQC). An automated test workflow is available to ensure consistency of software updates., Supplementary Information: Supplementary data are available at Bioinformatics online., (© The Author(s) 2022. Published by Oxford University Press.)
- Published
- 2022
- Full Text
- View/download PDF
42. Haplotype-resolved assembly of diploid genomes without parental data.
- Author
-
Cheng H, Jarvis ED, Fedrigo O, Koepfli KP, Urban L, Gemmell NJ, and Li H
- Subjects
- Haplotypes genetics, High-Throughput Nucleotide Sequencing, Humans, Parents, Sequence Analysis, DNA, Diploidy, Genome
- Abstract
Routine haplotype-resolved genome assembly from single samples remains an unresolved problem. Here we describe an algorithm that combines PacBio HiFi reads and Hi-C chromatin interaction data to produce a haplotype-resolved assembly without the sequencing of parents. Applied to human and other vertebrate samples, our algorithm consistently outperforms existing single-sample assembly pipelines and generates assemblies of similar quality to the best pedigree-based assemblies., (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
43. Benchmarking ultra-high molecular weight DNA preservation methods for long-read and long-range sequencing.
- Author
-
Dahn HA, Mountcastle J, Balacco J, Winkler S, Bista I, Schmitt AD, Pettersson OV, Formenti G, Oliver K, Smith M, Tan W, Kraus A, Mac S, Komoroske LM, Lama T, Crawford AJ, Murphy RW, Brown S, Scott AF, Morin PA, Jarvis ED, and Fedrigo O
- Subjects
- Animals, DNA genetics, Edetic Acid, High-Throughput Nucleotide Sequencing methods, Molecular Weight, Sequence Analysis, DNA methods, Benchmarking, Dimethyl Sulfoxide
- Abstract
Background: Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types., Results: We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20-25% DMSO-EDTA showed little fragment length degradation when stored at 4°C for 6 hours. Samples in 95% EtOH or 20-25% DMSO-EDTA kept at 4°C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield., Conclusion: We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all ∼70,000 extant vertebrate species., (© The Author(s) 2022. Published by Oxford University Press GigaScience.)
- Published
- 2022
- Full Text
- View/download PDF
44. Reference genomes for conservation.
- Author
-
Paez S, Kraus RHS, Shapiro B, Gilbert MTP, Jarvis ED, Al-Ajli FO, Ceballos G, Crawford AJ, Fedrigo O, Johnson RN, Johnson WE, Marques-Bonet T, Morin PA, Mueller RC, Ryder OA, Teeling EC, and Venkatesh B
- Abstract
High-quality reference genomes for non-model species can benefit conservation.
- Published
- 2022
- Full Text
- View/download PDF
45. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue.
- Author
-
Hardwick SA, Hu W, Joglekar A, Fan L, Collier PG, Foord C, Balacco J, Lanjewar S, Sampson MM, Koopmans F, Prjibelski AD, Mikheenko A, Belchikov N, Jarroux J, Lucas AB, Palkovits M, Luo W, Milner TA, Ndhlovu LC, Smit AB, Trojanowski JQ, Lee VMY, Fedrigo O, Sloan SA, Tombácz D, Ross ME, Jarvis E, Boldogkői Z, Gan L, and Tilgner HU
- Subjects
- Alternative Splicing genetics, Exons genetics, Humans, Protein Isoforms genetics, Sequence Analysis, RNA, Brain metabolism, RNA genetics
- Abstract
Single-nuclei RNA sequencing characterizes cell types at the gene level. However, compared to single-cell approaches, many single-nuclei cDNAs are purely intronic, lack barcodes and hinder the study of isoforms. Here we present single-nuclei isoform RNA sequencing (SnISOr-Seq). Using microfluidics, PCR-based artifact removal, target enrichment and long-read sequencing, SnISOr-Seq increased barcoded, exon-spanning long reads 7.5-fold compared to naive long-read single-nuclei sequencing. We applied SnISOr-Seq to adult human frontal cortex and found that exons associated with autism exhibit coordinated and highly cell-type-specific inclusion. We found two distinct combination patterns: those distinguishing neural cell types, enriched in TSS-exon, exon-polyadenylation-site and non-adjacent exon pairs, and those with multiple configurations within one cell type, enriched in adjacent exon pairs. Finally, we observed that human-specific exons are almost as tightly coordinated as conserved exons, implying that coordination can be rapidly established during evolution. SnISOr-Seq enables cell-type-specific long-read isoform analysis in human brain and in any frozen or hard-to-dissociate sample., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
46. A high-quality, long-read genome assembly of the endangered ring-tailed lemur (Lemur catta).
- Author
-
Palmada-Flores M, Orkin JD, Haase B, Mountcastle J, Bertelsen MF, Fedrigo O, Kuderna LFK, Jarvis ED, and Marques-Bonet T
- Subjects
- Animals, Endangered Species, Genome, Genomics, Madagascar, Lemur genetics
- Abstract
Background: The ring-tailed lemur (Lemur catta) is a charismatic strepsirrhine primate endemic to Madagascar. These lemurs are of particular interest, given their status as a flagship species and widespread publicity in the popular media. Unfortunately, a recent population decline has resulted in the census population decreasing to <2,500 individuals in the wild, and the species's classification as an endangered species by the IUCN. As is the case for most strepsirrhine primates, only a limited amount of genomic research has been conducted on L. catta, in part owing to the lack of genomic resources., Results: We generated a new high-quality reference genome assembly for L. catta (mLemCat1) that conforms to the standards of the Vertebrate Genomes Project. This new long-read assembly is composed of Pacific Biosciences continuous long reads (CLR data), Optical Mapping Bionano reads, Arima HiC data, and 10X linked reads. The contiguity and completeness of the assembly are extremely high, with scaffold and contig N50 values of 90.982 and 10.570 Mb, respectively. Additionally, when compared to other high-quality primate assemblies, L. catta has the lowest reported number of Alu elements, which results predominantly from a lack of AluS and AluY elements., Conclusions: mLemCat1 is an excellent genomic resource not only for the ring-tailed lemur community, but also for other members of the Lemuridae family, and is the first very long read assembly for a strepsirrhine., (© The Author(s) 2022. Published by Oxford University Press GigaScience.)
- Published
- 2022
- Full Text
- View/download PDF
47. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9.
- Author
-
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, and Jarvis ED
- Subjects
- Animals, CRISPR-Cas Systems, Cell Line, Genome, Genomics, Finches genetics
- Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
48. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19.
- Author
-
Sahajpal NS, Jill Lai CY, Hastie A, Mondal AK, Dehkordi SR, van der Made CI, Fedrigo O, Al-Ajli F, Jalnapurkar S, Byrska-Bishop M, Kanagal-Shamanna R, Levy B, Schieck M, Illig T, Bacanu SA, Chou JS, Randolph AG, Rojiani AM, Zody MC, Brownstein CA, Beggs AH, Bafna V, Jarvis ED, Hoischen A, Chaubey A, and Kolhe R
- Abstract
Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes., Competing Interests: J.L., A.H., and A.C. are salaried employees of Bionano Genomics Inc. R.K. has received honoraria, travel funding, and research support from Illumina, Asuragen, QIAGEN, Perkin Elmer Inc, Bionano Genomics, and BMS. A.H.B. has received funding from the NIH, MDA (USA), AFM Telethon, Alexion Pharmaceuticals Inc., Audentes Therapeutics Inc., Dynacure SAS, and Pfizer Inc. He has consulted and received compensation or honoraria from Asklepios BioPharmaceutical Inc, Audentes Therapeutics, Biogen, F. Hoffman-La Roche AG, GLG Inc, Guidepoint Global, and Kate Therapeutics, and holds equity in Ballard Biologics and Kate Therapeutics., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
49. The Earth BioGenome Project 2020: Starting the clock.
- Author
-
Lewin HA, Richards S, Lieberman Aiden E, Allende ML, Archibald JM, Bálint M, Barker KB, Baumgartner B, Belov K, Bertorelle G, Blaxter ML, Cai J, Caperello ND, Carlson K, Castilla-Rubio JC, Chaw SM, Chen L, Childers AK, Coddington JA, Conde DA, Corominas M, Crandall KA, Crawford AJ, DiPalma F, Durbin R, Ebenezer TE, Edwards SV, Fedrigo O, Flicek P, Formenti G, Gibbs RA, Gilbert MTP, Goldstein MM, Graves JM, Greely HT, Grigoriev IV, Hackett KJ, Hall N, Haussler D, Helgen KM, Hogg CJ, Isobe S, Jakobsen KS, Janke A, Jarvis ED, Johnson WE, Jones SJM, Karlsson EK, Kersey PJ, Kim JH, Kress WJ, Kuraku S, Lawniczak MKN, Leebens-Mack JH, Li X, Lindblad-Toh K, Liu X, Lopez JV, Marques-Bonet T, Mazard S, Mazet JAK, Mazzoni CJ, Myers EW, O'Neill RJ, Paez S, Park H, Robinson GE, Roquet C, Ryder OA, Sabir JSM, Shaffer HB, Shank TM, Sherkow JS, Soltis PS, Tang B, Tedersoo L, Uliano-Silva M, Wang K, Wei X, Wetzer R, Wilson JL, Xu X, Yang H, Yoder AD, and Zhang G
- Subjects
- Animals, Biodiversity, Genomics, Humans, Base Sequence genetics, Eukaryota genetics
- Abstract
Competing Interests: The authors declare no competing interest.
- Published
- 2022
- Full Text
- View/download PDF
50. Fourth Report on Chicken Genes and Chromosomes 2022.
- Author
-
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LAF, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JAM, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, and Zhou H
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.