1. Calorimetric evidence for two phase transitions in Ba1−x K x Fe2As2 with fermion pairing and quadrupling states
- Author
-
Ilya Shipulin, Nadia Stegani, Ilaria Maccari, Kunihiro Kihou, Chul-Ho Lee, Quanxin Hu, Yu Zheng, Fazhi Yang, Yongwei Li, Chi-Ming Yim, Ruben Hühne, Hans-Henning Klauss, Marina Putti, Federico Caglieris, Egor Babaev, and Vadim Grinenko
- Subjects
Science - Abstract
Abstract Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (T c). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z 2 time-reversal symmetry was reported in Ba1−xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z 2 time-reversal symmetry is broken ( $${T}_{{{{{{{{\rm{c}}}}}}}}}^{{{{{{{{\rm{Z2}}}}}}}}} \, > \, {T}_{{{{{{{{\rm{c}}}}}}}}}$$ T c Z2 > T c ). Here, we report on detecting two anomalies in the specific heat of Ba1−xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z 2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.
- Published
- 2023
- Full Text
- View/download PDF