1. Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method
- Author
-
Rahmatollah Emadi, Fariborz Tavangarian, Fateme Shamoradi, and Sorour Sadeghzade
- Subjects
Ceramics ,Materials science ,Biocompatibility ,Scanning electron microscope ,Simulated body fluid ,Biomedical Engineering ,02 engineering and technology ,Bioceramic ,010402 general chemistry ,01 natural sciences ,Biomaterials ,Ceramic ,Composite material ,Fourier transform infrared spectroscopy ,Porosity ,Tissue Engineering ,Tissue Scaffolds ,Silicates ,021001 nanoscience & nanotechnology ,Nanostructures ,0104 chemical sciences ,Compressive strength ,Mechanics of Materials ,visual_art ,Microscopy, Electron, Scanning ,visual_art.visual_art_medium ,0210 nano-technology - Abstract
Porous baghdadite scaffold has received great attention as a candidate for bone tissue engineering application due to its remarkable bioactivity, biocompatibility, and good bone formation ability. A few studies have been focused on improving the mechanical properties of baghdadite scaffolds. Recently, space holder method has been introduced as a new and viable technique to prepare bioceramic scaffolds with interconnected pores and suitable mechanical properties. In this study, for the first time, 3D baghdadite scaffolds with interconnected porosity were produced using space holder method. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were utilized to characterize various specimens. The baghdadite scaffolds were sintered at various temperatures in the range of 1250-1350°C for 3h. The compressive strength and compressive modulus measured to be in the range of 0.05-0.52MPa and 2.1-121.5MPa, respectively. The results showed that nanostructured baghdadite scaffolds with a crystallite size of about 32nm, 75% porosity and pores size in the range of 200-500µm can be successfully fabricated after sintering at 1350°C for 3h. Simulated body fluid (SBF) was used to evaluate the apatite formation ability of the scaffolds. The results showed the formation of an apatite layer on the scaffold surface which can be considered as a bioactivity criterion.
- Published
- 2017
- Full Text
- View/download PDF