There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy., {"references":["N. A. Belova, and V. V. Lednev, \"Dependence of the gravitropic response\nin flax stem segments on the frequency and amplitude of a weak combined\nmagnetic field\", Biophysics, vol. 45, pp. 1108-1111, 2000.","V. V. Lednev, \"Possible mechanism for the influence of weak magnetic\nfields on biological systems\", Bioelectromagnetics, vol. 12, pp. 71-75,\n1991.","M. N. Halgamuge, C. D. Abeyrathne and P. Mendis, \"Effect of Cyclotron\nResonance Frequencies in Particles Due to AC and DC Electromagnetic\nFields\", World Academy of Science, Engineering and Technology, vol. 52,\npp 416-419, 2009.","R. K. Adair, \"Constraints on biological effects of weak extremely\nlow frequency electromagnetic fields\", Physical Review A, vol. 43, pp.\n1039-1048, 1991.","M. N. Halgamuge, B. R. R. Persson, L. G. Salford, P. Mendis\nand J. L. Eberhardt, \"Comparison between Two Models for Interactions\nbetween Electric and Magnetic Fields and Proteins in Cell Membranes\",\nEnvironmental Engineering Science, vol 26, no. 10, pp. 1473-1480, 2009.","R. J. Gegear, A. Casselman, S. Waddell, and S. M. Reppert, \"Cryptochrome\nmediates light-dependent magnetosensitivity in Drosophila\",\nNature, vol. 454, pp. 1014-1018, 2008.","W. Wiltschko, and R. Wiltschko, \"Magnetoreception in birds: two receptors\nfor two different tasks\", Journal of Ornithology, vol. 148, pp.\nS61-S76, 2007.","K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell\net al., \"Chemical compass model of avian magnetoreception\", Nature,\nvol. 453, 2008.","K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, and A. L. Buchachenko,\n\"Spin polarization and magnetic effects in radical reactions\", vol. 22,\nHungary: Elsevier Science Publishers, 1984.\n[10] M. Ahmad, P. Galland, T. Ritz, R. Wiltschko, and W. Wiltschko, \"Magnetic\nintensity affects cryptochrome-dependent responses in Arabidopsis\nthaliana\", Planta, vol. 225, pp. 615-624, 2007.\n[11] T. Yoshii, M. Ahmad, and C. Helfrich-Forster, \"Cryptochrome Mediates\nLight-Dependent Magnetosensitivity of Drosophila-s Circadian Clock\",\nPLoS Biology, vol. 7, no. 4, pp. 0813-0819, 2009.\n[12] N. Mostafaie, E. K. llay, E. Sauerzapf, E. Bonner, S. Kriwanek,\nH. S. Cross, et al., \"Correlated Downregulation of Estrogen Receptor\nBeta and the Circadian Clock Gene Per1 in Human Colorectal Cancer\",\nMolecular Carcinogenesis, vol. 48, pp. 642-647, 2009.\n[13] D. Velissaris, V. Karamouzos, P. Polychronopoulos, and M. Karanikolas,\n\"Chronotypology and melatonin alterations in minimal hepatic encephalopathy\",\nJournal of Circadian Rhythms, vol. 7, pp. 6, 2009.\n[14] O. Hiwaki, \"Influence of 50 Hz magnetic fields on circadian rhythm\nof the suprachiasmatic nucleus activity\", Paper presented at the 20th\nAnnual International Conference of the IEEE Engineering in Medicine\nand Biology Society, 1998.\n[15] T. Elvitigala, J. Stckel, B. K. Ghosh, and H. B. Pakrasi, \"Effect of\ncontinuous light on diurnal rhythms in Cyanothece sp. ATCC 51142\".\nBMC Genomics, vol. 10, pp. 226, 2009.\n[16] H. Shimada, K. Numazawa, T. Sasaki, N. Kato, and T. Ebisawa,\n\"Introduction of tau Mutation into Cultured Rat1-R12 Cells by Gene\nTargeting, Using Recombinant Adeno-Associated Virus Vector\". Cell Mol\nNeurobiol, 29, 699-705.\n[17] E. Rieper, E. Gauger, J. J. L. Morton, S. C. Benjamin, and V. Vedral,\n\"Quantum coherence and entanglement in the avian compass\", 2009.\n[18] J. Aguzzi, P. Puig, and J. B. Company, \"Hydrodynamic, non-photic\nmodulation of biorhythms in the Norway lobster Nephrops norvegicus\n(L.)\", Deep-Sea Research I, vol. 56, pp. 366-373, 2009.\n[19] S. Liu, Y. Cai, R. B. Sothern, Y. Guan, and P. Chan, \"Chronobiological\nanalysis of circadian patterns in transcription of seven key clock genes\nin six peripheral tissues in mice\", Chronobiology International, vol. 24,\nno. 5, pp. 793-820, 2007.\n[20] F. Weber, \"Remodeling the clock: coactivators and signal transduction\nin the circadian clockworks\", Naturwissenschaften, vol. 96, pp. 321-337,\n2009.\n[21] M. Yamato, N. Ishida, H. Iwatani, M. Yamato, H. Rakugi, and T. Ito,\n\"Kid-1 participates in regulating ERK phosphorylation as a part of the\ncircadian clock output in rat kidney\", Journal of Receptors and Signal\nTransduction, vol. 29, no. 2, pp. 94-99, 2009.\n[22] A. Mehra, C. I. Hong, M. Shi, J. J. Loros, J. C. Dunlap, and P. Ruoff,\n\"Circadian Rhythmicity by Autocatalysis\", PLoS Computational Biology,\n2(7), 0816-0823.\n[23] T. M. Fitzgerald, and P. D. Taylor, \"Migratory orientation of juvenile\nyellow-rumped warblers (Dendroica coronata) following stopover:\nsources of variation and the importance of geographic origins\", Behav\nEcol Sociobiol, vol. 62, pp. 1499-1508, 2008.\n[24] W. Wiltschko, and R. Wiltschko, \"Magnetic Compass of European\nRobins\", Science, vol. 176, pp. 62-64, 2009.\n[25] P. Galland, A. Pazur, \"Magnetoreception in plants\", Journal of Plant\nResearch, vol. 118, no. 6, pp. 371-389, 2005.\n[26] T. Ritz, P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko,\n\"Resonance effects indicate a radical-pair mechanism for avian magnetic\ncompass\", Nature, vol. 429, 2004.\n[27] C. B. Anea, M. Zhang, D. W. Stepp, G. B. Simkins, G. Reed,\nD. J. Fulton, et al, \"Vascular Disease in Mice With a Dysfunctional\nCircadian Clock\", Journal of the American Heart Association, vol. 119,\npp. 1510-1517, 2009.\n[28] H. J.Werner, Z. Schulten, and K. Schulten, \"Theory of the magnetic field\nmodulated geminate recombination of radical ion pairs in polar solvents\n: Application to the pyrene-N,N-dimethylaniline system\", The Journal of\nChemical Physics, vol. 67, no. 2, pp. 646-663, 1977.\n[29] K. Schulten, \"Biological effects of static and extremely low frequency\nmagnetic fields\", BGA Schriften, vol. 86, no. 3, pp. 133-140, 1986.\n[30] T. Miura, K. Maeda, and T. Arai, \"The Spin Mixing Process of a Radical\nPair in Low Magnetic Field Observed by Transient Absorption Detected\nNanosecond Pulsed Magnetic Field Effect\", J. Phys. Chem. A, vol. 110,\npp. 4151-4156, 2006.\n[31] C. R. Timmel, and K. B. Henbest, \"A Study of Spin Chemistry in Weak\nMagnetic Fields\", The Royal Society, vol. 362, pp. 2573-2589, 2004.\n[32] M. B. Plenio, and S. F. Huelga, \"Dephasing-assisted transport: quantum\nnetworks and biomolecules\", New Journal of Physics, vol. 10, 2008.\n[33] K. Wang, and T. Ritz, \"Zeeman resonances for radical-pair reactions in\nweak static magnetic fields\", Molecular Physics, vol. 104, pp. 1649-1658,\n2006.\n[34] S. Engstrom, \"Magnetic field effects on free radical reactions in biology\",\nIn: Taylor and Francis Group, LLC, 2006.\n[35] I. R. Gould, N. J. Turro, and M. B. Zimmt, \"Magnetic field and magnetic\nisotope effects on the products of organic reactions\", In V. Gold and D.\nBethell (Eds.), Advances In Physical Organic Chemistry (Vol. 20, pp. 1\n- 51). London: Academic Press Inc Ltd, 1984.\n[36] T. Ritz, S. Adem, and K. Schulten, \"A Model for Photoreceptor-Based\nMagnetoreception in Birds\", Biophysical Journal, vol. 78, pp. 707-718,\n2000.\n[37] K. B. Henbes, K. Maeda, P. J. Hore, M. Joshi, A. Bacher, R. Bittl, et\nal, \"Magnetic-field effect on the photoactivation reaction of Escherichia\ncoli DNA photolyase\", Proceedings of the National Academy of Sciences,\nvol. 105, no. 38, pp. 14395-14399, 2008.\n[38] I. A. Solovyov, and W. Greiner, \"Theoretical Analysis of an Iron\nMineral-Based Magnetoreceptor Model in Birds\", Biophysical Journal,\nvol. 93, pp. 1493-1509, 2007.\n[39] C. Eichwald, and J. Walleczek, \"Model for magnetic field effects on\nradical pair recombination in enzyme kinetics\", Biophysical Journal, vol.\n71, pp. 623-631, 1996.\n[40] C. Eichwald, and J. Walleczek, \"Magnetic field perturbations as a tool\nfor controlling enzyme-regulated and oscillatory biochemical reactions\",\nBiophysical Chemistry, vol. 74, pp. 209-224, 1998.\n[41] R. K. Adair, \"Effects of very weak magnetic fields on radical pair\nreformation\", Bioelectromagnetics, vol. 20, pp. 255-263, 1999.\n[42] M. Zmyslony, E. Rajkowska, P. Mamrot, P. Politanski, & J. Jajte, \"The\neffect of weak 50 Hz magnetic fields on the number of free oxygen\nradicals in rat lymphocytes in vitro\", Bioelectromagnetics, vol. 25, pp.\n607-612, 2004.\n[43] F. Regoli, S. Gorbi, N. Machella, S. Tedesco, M. Benedetti, R. Bocchetti,\net al, \"Pro-oxidant effects of extremely low frequency electromagnetic\nfields in the land snail Helix aspersa\", Free Radical Biology & Medicine,\nvol. 39, pp. 1620-1628, 2005.\n[44] J. D. MacArthur, \"Cell phones and the brain The Townsend Letter for\nDoctors and Patients\", pp. 1-13, 2002."]}