413 results on '"Farley, K. A."'
Search Results
2. Highest terrestrial 3He/4He credibly from the core
- Author
-
Horton, F., Asimow, P. D., Farley, K. A., Curtice, J., Kurz, M. D., Blusztajn, J., Biasi, J. A., and Boyes, X. M.
- Published
- 2023
- Full Text
- View/download PDF
3. High-precision measurements of krypton and xenon isotopes with a new static-mode Quadrupole Ion Trap Mass Spectrometer
- Author
-
Avice, G., Belousov, A., Farley, K. A., Madzunkov, S. M., Simcic, J., Nikolić, D., Darrach, M. R., and Sotin, C.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Measuring the abundance and isotopic composition of noble gases in planetary atmospheres can answer fundamental questions in cosmochemistry and comparative planetology. However, noble gases are rare elements, a feature making their measurement challenging even on Earth. Furthermore, in space applications, power consumption, volume and mass constraints on spacecraft instrument accommodations require the development of compact innovative instruments able to meet the engineering requirements of the mission while still meeting the science requirements. Here we demonstrate the ability of the quadrupole ion trap mass spectrometer (QITMS) developed at the Jet Propulsion Laboratory (Caltech, Pasadena) to measure low quantities of heavy noble gases (Kr, Xe) in static operating mode and in the absence of a buffer gas such as helium. The sensitivity reaches 1E13 cps Torr-1 (about 1011 cps/Pa) of gas (Kr or Xe). The instrument is able to measure gas in static mode for extended periods of time (up to 48 h) enabling the acquisition of thousands of isotope ratios per measurement. Errors on isotope ratios follow predictions of the counting statistics and the instrument provides reproducible results over several days of measurements. For example, 1.7E-10 Torr (2.3E-8 Pa) of Kr measured continuously for 7 hours yielded a 0.6 permil precision on the 86Kr/84Kr ratio. Measurements of terrestrial and extraterrestrial samples reproduce values from the literature. A compact instrument based upon the QITMS design would have a sensitivity high enough to reach the precision on isotope ratios (e.g. better than 1 percent for 129,131-136Xe/130Xe ratios) necessary for a scientific payload measuring noble gases collected in the Venus atmosphere., Comment: 42 pages, 9 figures, 4 tables
- Published
- 2020
- Full Text
- View/download PDF
4. Application of Fast 2D NMR Methods in the Pharmaceutical Industry
- Author
-
Farley, K. A., primary, Horst, R., additional, Koos, M. R. M., additional, and Walker, G. S., additional
- Published
- 2023
- Full Text
- View/download PDF
5. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
6. Depositional Facies and Sequence Stratigraphy of Kodiak Butte, Western Delta of Jezero Crater, Mars
- Author
-
Caravaca, G., primary, Dromart, G., additional, Mangold, N., additional, Gupta, S., additional, Kah, L. C., additional, Tate, C., additional, Williams, R. M. E., additional, Le Mouélic, S., additional, Gasnault, O., additional, Bell, J., additional, Beyssac, O., additional, Nuñez, J. I., additional, Randazzo, N., additional, Rice, J., additional, Crumpler, L. S., additional, Williams, A., additional, Russel, P., additional, Stack, K. M., additional, Farley, K. A., additional, Maurice, S., additional, and Wiens, R. C., additional
- Published
- 2024
- Full Text
- View/download PDF
7. Opportunities and constraints of implementing the 3-30-300 rule for urban greening
- Author
-
Owen, D., Fitch, A., Fletcher, D., Knopp, Julius, Levin, G., Farley, K., Banzhaf, Ellen, Zandersen, M., Grandin, G., Jones, L., Owen, D., Fitch, A., Fletcher, D., Knopp, Julius, Levin, G., Farley, K., Banzhaf, Ellen, Zandersen, M., Grandin, G., and Jones, L.
- Abstract
Urbanisation and climate change have increased the need for equitable access and visibility of urban green and blue spaces (GBS), to promote the sustainability and resilience of cities and to improve the well-being of their inhabitants. In this paper, we test an implementation of the newly proposed guideline to achieve equitable greening, the 3-30-300 rule, in three European cities: Paris Region (France), Aarhus Municipality (Denmark), and Grad Velika Gorica (Croatia). In this analysis, every residential building should have at least three viewable trees, 30% neighbourhood GBS cover, and a GBS of at least 1 hectare within 300 m. Our results show that none of the cities currently meet any of these three components, and the three cities differed in which rules were most closely met. In our implementation, substantial changes were needed in all cities to meet the guidelines: 12.6% of Paris, 10% of Aarhus, and 18.4% of Velika Gorica’s urban footprint were converted to grass or tree cover, with implications for >100,000 buildings and >900,000 inhabitants. Our study discusses how existing conditions in each city impacted the viability of meeting the rule and proposes key considerations for future implementations of such guidelines, drawing on examples of innovative GBS already implemented globally.
- Published
- 2024
8. Astrobiological Potential of Rocks Acquired by the Perseverance Rover at a Sedimentary Fan Front in Jezero Crater, Mars.
- Author
-
Bosak, T., Shuster, D. L., Scheller, E. L., Siljeström, S., Zawaski, M. J., Mandon, L., Simon, J. I., Weiss, B. P., Stack, K. M., Mansbach, E. N., Treiman, A. H., Benison, K. C., Brown, A. J., Czaja, A. D., Farley, K. A., Hausrath, E. M., Hickman‐Lewis, K., Herd, C. D. K., Johnson, J. R., and Mayhew, L. E.
- Published
- 2024
- Full Text
- View/download PDF
9. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
10. Cosmogenic ³He anomaly K1 vs. the early Campanian isotopic event (ECE) as recorded in pelagic limestones of the Umbria-Marche succession (Italy).
- Author
-
Montanari, A., Farley, K., Coccioni, R., Sabatino, N., Bice, D., Yesko, M., Sinnesael, M., and de Winter, N.
- Subjects
- *
LIMESTONE , *MILANKOVITCH cycles , *INTERPLANETARY dust , *MAGNETIC susceptibility , *STABLE isotopes , *METEORITES - Abstract
In this paper, we report on a biostratigraphic, magnetostratigraphic, and stable isotope (δ13C and 3He) analysis across three pelagic limestone sections of the Campanian Scaglia Rossa Formation exposed in the classic Bottaccione Gorge at Gubbio (Umbria region), near the village of Furlo, and near the town of Apiro (both in the Marche region), all located in the Umbria-Marche basin of the northeastern Apennines of central Italy. These sections record the coincidental occurrence of an extraterrestrial 3He (3HeET) anomaly known as K1 and a negative shift in the δ13C record known as the early Campanian event. Cyclostratigraphic spectral analysis of the Furlo section based on a highresolution magnetic susceptibility record in these pelagic limestones revealed that the regular orbitally forced Milankovitch cycles are somewhat disturbed or blurred through the interval of the coincident 3HeET K1 anomaly and the early Campanian event isotopic anomaly, suggesting a causal effect resulting from the enhanced influx of extraterrestrial material (i.e., interplanetary dust particles and a myriad of small meteorite impacts). This would have altered the transparency of the atmosphere, causing a short-lived climate change event. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
11. 637 Increasing accuracy of patient summary reports from CFSmartReports: A quality improvement project
- Author
-
McCrabb, T., primary, Farley, K., additional, Sanders, A., additional, Mehdi, N., additional, and Dorris, J., additional
- Published
- 2023
- Full Text
- View/download PDF
12. Sampling interplanetary dust from Antarctic air
- Author
-
Taylor, S., primary, Lever, J., additional, Burgess, K., additional, Stroud, R., additional, Brownlee, D., additional, Nittler, L., additional, Bardyn, A., additional, Alexander, C., additional, Farley, K., additional, Treffkorn, J., additional, Messenger, S., additional, and Wozniakiewicz, P., additional
- Published
- 2022
- Full Text
- View/download PDF
13. Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., primary, Hickman‐Lewis, K., additional, Cohen, B. A., additional, Mayhew, L. E., additional, Shuster, D. L., additional, Debaille, V., additional, Hausrath, E. M., additional, Weiss, B. P., additional, Bosak, T., additional, Zorzano, M.‐P., additional, Amundsen, H. E. F., additional, Beegle, L. W., additional, Bell, J. F., additional, Benison, K. C., additional, Berger, E. L., additional, Beyssac, O., additional, Brown, A. J., additional, Calef, F., additional, Casademont, T. M., additional, Clark, B., additional, Clavé, E., additional, Crumpler, L., additional, Czaja, A. D., additional, Fairén, A. G., additional, Farley, K. A., additional, Flannery, D. T., additional, Fornaro, T., additional, Forni, O., additional, Gómez, F., additional, Goreva, Y., additional, Gorin, A., additional, Hand, K. P., additional, Hamran, S.‐E., additional, Henneke, J., additional, Herd, C. D. K., additional, Horgan, B. H. N., additional, Johnson, J. R., additional, Joseph, J., additional, Kronyak, R. E., additional, Madariaga, J. M., additional, Maki, J. N., additional, Mandon, L., additional, McCubbin, F. M., additional, McLennan, S. M., additional, Moeller, R. C., additional, Newman, C. E., additional, Núñez, J. I., additional, Pascuzzo, A. C., additional, Pedersen, D. A., additional, Poggiali, G., additional, Pinet, P., additional, Quantin‐Nataf, C., additional, Rice, M., additional, Rice, J. W., additional, Royer, C., additional, Schmidt, M., additional, Sephton, M., additional, Sharma, S., additional, Siljeström, S., additional, Stack, K. M., additional, Steele, A., additional, Sun, V. Z., additional, Udry, A., additional, VanBommel, S., additional, Wadhwa, M., additional, Wiens, R. C., additional, Williams, A. J., additional, and Williford, K. H., additional
- Published
- 2023
- Full Text
- View/download PDF
14. A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3
- Author
-
Mukhopadhyay, S., Farley, K. A., and Montanari, A.
- Published
- 2001
15. Geochemical Evidence for a Comet Shower in the Late Eocene
- Author
-
Farley, K. A., Montanari, A., Shoemaker, E. M., and Shoemaker, C. S.
- Published
- 1998
16. Co-designed Peer Support to Improve Critical Care Recovery: ICU RESOLVE Pilot Randomised Controlled Trial
- Author
-
Haines, K.J., primary, Hibbert, E., additional, Leggett, N., additional, Ali Abdelhamid, Y., additional, Bates, S., additional, Bicknell, E., additional, Booth, S., additional, Carmody, J., additional, Deane, A., additional, Emery, K., additional, Farley, K., additional, French, C., additional, Holdsworth, C., additional, MacLeod-Smith, B., additional, Skinner, E.H., additional, and Iwashyna, T.J., additional
- Published
- 2023
- Full Text
- View/download PDF
17. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., Williford, K. H., Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., and Williford, K. H.
- Abstract
The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet’s interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
- Published
- 2023
18. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations
- Author
-
Lund, D. C., Asimow, P. D., Farley, K. A., Rooney, T. O., Seeley, E., Jackson, E. W., and Durham, Z. M.
- Published
- 2016
19. Performance Comparison Between All-Pass and IQ Optical Modulation
- Author
-
Saxena, B., Farley, K., Reimer, M. A., Hubbard, M., O'Sullivan, M., and Khandani, A. K.
- Abstract
We report a reduced complexity single polarization all-pass modulation scheme that uses overlap and discard to implement continuous transmission. We find that transmitter NSRs of −25 dB and −21 dB can be achieved with 1/3 and 1/6 the complexity, respectively, of reported solutions. We compare this modulation scheme with a conventional Mach-Zehnder modulator solution by measures of throughput, spectral efficiency, DSP and hardware complexity as well as back-to-back modem margin.
- Published
- 2024
- Full Text
- View/download PDF
20. Highest terrestrial 3He/4He credibly from the core.
- Author
-
Horton, F., Asimow, P. D., Farley, K. A., Curtice, J., Kurz, M. D., Blusztajn, J., Biasi, J. A., and Boyes, X. M.
- Abstract
The observation that many lavas associated with mantle plumes have higher
3 He/4 He ratios than the upper convecting mantle underpins geophysical, geodynamic and geochemical models of Earth’s deep interior. High3 He/4 He ratios are thought to derive from the solar nebula or from solar-wind-irradiated material that became incorporated into Earth during early planetary accretion. Traditionally, this high-3 He/4 He component has been considered intrinsic to the mantle, having avoided outgassing caused by giant impacts and billions of years of mantle convection1–4. Here we report the highest magmatic3 He/4 He ratio(67.2 ± 1.8 times the atmospheric ratio) yet measured in terrestrial igneous rocks, in olivines from Baffin Island lavas. We argue that the extremely high-3 He/4 He helium in these lavas might derive from Earth’s core5–9. The viability of the core hypothesis relaxes the long-standing constraint—based on noble gases in lavas associated with mantle plumes globally—that volatile elements from the solar nebula have survived in the mantle since the early stages of accretion.Olivines from Baffin Island lavas have the highest magmatic3 He/4 He ratio measured so far in terrestrial igneous rocks, indicating that the helium in these lavas might derive from Earth’s core. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
21. Performance Comparison Between All-Pass and IQ Optical Modulation
- Author
-
Saxena, B., primary, Farley, K., additional, Reimer, M. A., additional, Hubbard, M., additional, O'Sullivan, M., additional, and Khandani, A. K., additional
- Published
- 2023
- Full Text
- View/download PDF
22. Non-invasive, self-administered, electrical vagus nerve stimulation to reduce ileus after colorectal surgery: Feasibility randomised controlled trial
- Author
-
Chapman, S.J., primary, Farley, K., additional, Stocken, D.D., additional, and Jayne, D.G., additional
- Published
- 2022
- Full Text
- View/download PDF
23. An olivine cumulate outcrop on the floor of Jezero crater, Mars
- Author
-
Liu, Y., primary, Tice, M. M., additional, Schmidt, M. E., additional, Treiman, A. H., additional, Kizovski, T. V., additional, Hurowitz, J. A., additional, Allwood, A. C., additional, Henneke, J., additional, Pedersen, D. A. K., additional, VanBommel, S. J., additional, Jones, M. W. M., additional, Knight, A. L., additional, Orenstein, B. J., additional, Clark, B. C., additional, Elam, W. T., additional, Heirwegh, C. M., additional, Barber, T., additional, Beegle, L. W., additional, Benzerara, K., additional, Bernard, S., additional, Beyssac, O., additional, Bosak, T., additional, Brown, A. J., additional, Cardarelli, E. L., additional, Catling, D. C., additional, Christian, J. R., additional, Cloutis, E. A., additional, Cohen, B. A., additional, Davidoff, S., additional, Fairén, A. G., additional, Farley, K. A., additional, Flannery, D. T., additional, Galvin, A., additional, Grotzinger, J. P., additional, Gupta, S., additional, Hall, J., additional, Herd, C. D. K., additional, Hickman-Lewis, K., additional, Hodyss, R. P., additional, Horgan, B. H. N., additional, Johnson, J. R., additional, Jørgensen, J. L., additional, Kah, L. C., additional, Maki, J. N., additional, Mandon, L., additional, Mangold, N., additional, McCubbin, F. M., additional, McLennan, S. M., additional, Moore, K., additional, Nachon, M., additional, Nemere, P., additional, Nothdurft, L. D., additional, Núñez, J. I., additional, O’Neil, L., additional, Quantin-Nataf, C. M., additional, Sautter, V., additional, Shuster, D. L., additional, Siebach, K. L., additional, Simon, J. I., additional, Sinclair, K. P., additional, Stack, K. M., additional, Steele, A., additional, Tarnas, J. D., additional, Tosca, N. J., additional, Uckert, K., additional, Udry, A., additional, Wade, L. A., additional, Weiss, B. P., additional, Wiens, R. C., additional, Williford, K. H., additional, and Zorzano, M.-P., additional
- Published
- 2022
- Full Text
- View/download PDF
24. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., primary, Stack, K. M., additional, Shuster, D. L., additional, Horgan, B. H. N., additional, Hurowitz, J. A., additional, Tarnas, J. D., additional, Simon, J. I., additional, Sun, V. Z., additional, Scheller, E. L., additional, Moore, K. R., additional, McLennan, S. M., additional, Vasconcelos, P. M., additional, Wiens, R. C., additional, Treiman, A. H., additional, Mayhew, L. E., additional, Beyssac, O., additional, Kizovski, T. V., additional, Tosca, N. J., additional, Williford, K. H., additional, Crumpler, L. S., additional, Beegle, L. W., additional, Bell, J. F., additional, Ehlmann, B. L., additional, Liu, Y., additional, Maki, J. N., additional, Schmidt, M. E., additional, Allwood, A. C., additional, Amundsen, H. E. F., additional, Bhartia, R., additional, Bosak, T., additional, Brown, A. J., additional, Clark, B. C., additional, Cousin, A., additional, Forni, O., additional, Gabriel, T. S. J., additional, Goreva, Y., additional, Gupta, S., additional, Hamran, S.-E., additional, Herd, C. D. K., additional, Hickman-Lewis, K., additional, Johnson, J. R., additional, Kah, L. C., additional, Kelemen, P. B., additional, Kinch, K. B., additional, Mandon, L., additional, Mangold, N., additional, Quantin-Nataf, C., additional, Rice, M. S., additional, Russell, P. S., additional, Sharma, S., additional, Siljeström, S., additional, Steele, A., additional, Sullivan, R., additional, Wadhwa, M., additional, Weiss, B. P., additional, Williams, A. J., additional, Wogsland, B. V., additional, Willis, P. A., additional, Acosta-Maeda, T. A., additional, Beck, P., additional, Benzerara, K., additional, Bernard, S., additional, Burton, A. S., additional, Cardarelli, E. L., additional, Chide, B., additional, Clavé, E., additional, Cloutis, E. A., additional, Cohen, B. A., additional, Czaja, A. D., additional, Debaille, V., additional, Dehouck, E., additional, Fairén, A. G., additional, Flannery, D. T., additional, Fleron, S. Z., additional, Fouchet, T., additional, Frydenvang, J., additional, Garczynski, B. J., additional, Gibbons, E. F., additional, Hausrath, E. M., additional, Hayes, A. G., additional, Henneke, J., additional, Jørgensen, J. L., additional, Kelly, E. M., additional, Lasue, J., additional, Le Mouélic, S., additional, Madariaga, J. M., additional, Maurice, S., additional, Merusi, M., additional, Meslin, P.-Y., additional, Milkovich, S. M., additional, Million, C. C., additional, Moeller, R. C., additional, Núñez, J. I., additional, Ollila, A. M., additional, Paar, G., additional, Paige, D. A., additional, Pedersen, D. A. K., additional, Pilleri, P., additional, Pilorget, C., additional, Pinet, P. C., additional, Rice, J. W., additional, Royer, C., additional, Sautter, V., additional, Schulte, M., additional, Sephton, M. A., additional, Sharma, S. K., additional, Sholes, S. F., additional, Spanovich, N., additional, St. Clair, M., additional, Tate, C. D., additional, Uckert, K., additional, VanBommel, S. J., additional, Yanchilina, A. G., additional, and Zorzano, M.-P., additional
- Published
- 2022
- Full Text
- View/download PDF
25. In Situ Radiometric and Exposure Age Dating of the Martian Surface
- Author
-
MSL Science Team, Farley, K. A., Malespin, C., Mahaffy, P., Grotzinger, J. P., Vasconcelos, P. M., Milliken, R. E., Malin, M., Edgett, K. S., Pavlov, A. A., Hurowitz, J. A., Grant, J. A., Miller, H. B., Arvidson, R., Beegle, L., Calef, F., Conrad, P. G., Dietrich, W. E., Eigenbrode, J., Gellert, R., Gupta, S., Hamilton, V., Hassler, D. M., Lewis, K. W., McLennan, S. M., Ming, D., Navarro-González, R., Schwenzer, S. P., Steele, A., Stolper, E. M., Sumner, D. Y., Vaniman, D., Vasavada, A., Williford, K., and Wimmer-Schweingruber, R. F.
- Published
- 2014
26. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, Ming, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., McAdam, A. C., Mahaffy, P. R., Cabane, M., Coll, P., Campbell, J. L., Atreya, S. K., Niles, P. B., Bell, J. F., Bish, D. L., Brinckerhoff, W. B., Buch, A., Conrad, P. G., Des Marais, D. J., Ehlmann, B. L., Fairén, A. G., Farley, K., Flesch, G. J., Francois, P., Gellert, R., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., Leshin, L. A., Lewis, K. W., McLennan, S. M., Miller, K. E., Moersch, J., Morris, R. V., Navarro-González, R., Pavlov, A. A., Perrett, G. M., Pradler, I., Squyres, S. W., Summons, R. E., Steele, A., Stolper, E. M., Sumner, D. Y., Szopa, C., Teinturier, S., Trainer, M. G., Treiman, A. H., Vaniman, D. T., Vasavada, A. R., Webster, C. R., Wray, J. J., and Yingst, R. A.
- Published
- 2014
27. Grassland afforestation: towards an integrative perspective of its ecological oportunities and costs
- Author
-
Jobbágy, E. G., primary, Vasallo, M., additional, Farley, K. A., additional, Piñeiro, G., additional, Garbulsky, M. F., additional, Nosetto, M. D., additional, Jackson, R. B., additional, and Paruelo, J. M., additional
- Published
- 2022
- Full Text
- View/download PDF
28. Composition and density stratification observed by supercam in the first 300 sols in Jezero crater
- Author
-
Wiens, R.C., Udry, A., Mangold, N., Beyssac, O., Quantin, C., Sautter, V., Cousin, A., Brown, A., Bosak, T., Mandon, L., Forni, O., Johnson, J.R., Mclennan, S., Legett, C., Maurice, S., Mayhew, L., Crumpler, L., Anderson, R.B., Clegg, S.M., Ollila, A.M., Hall, J., Meslin, P.-Y., Kah, L.C., Gabriel, T.S.J., Gasda, P., Simon, J.I., Hausrath, E.M., Horgan, B., Poulet, F., Beck, P., Gupta, S., Chide, B., Clavé, E., Connell, S., Dehouck, E., Dromart, G., Fouchet, T., Royer, C., Frydenvang, J., Gasnault, Olivier, Gibbons, E., Kalucha, H., Lanza, N., Lasue, J., Mouelic, S. Le, Leveillé, R., Cloutis, E., Reyes, G. Lopez, Arana, G., Castro, K., Madariaga, J.M., Manrique, J.-A., Pilorget, C., Pinet, P., Laserna, J., Sharma, S.K., Acosta-Maeda, T., Kelly, E., Montmessin, Franck, Fischer, W., Francis, R., Stack, K., Farley, K., Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], Plancius Research LLC, Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Colorado [Boulder], New Mexico Museum of Natural History and Science (NMMNHS), United States Geological Survey (USGS), The University of Tennessee [Knoxville], NASA Johnson Space Center (JSC), NASA, University of Nevada [Las Vegas] (WGU Nevada), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Grenoble Alpes (UGA), Imperial College London, Université de Bordeaux (UB), University of Winnipeg, Université de Lyon, Observatoire de Paris, Université Paris sciences et lettres (PSL), McGill University = Université McGill [Montréal, Canada], California Institute of Technology (CALTECH), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Hawaii, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and pinet, patrick
- Subjects
[SDU] Sciences of the Universe [physics] ,jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,perseverance in situ exploration ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,supercam ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,mars geology ,mineralogy ,petrology - Abstract
International audience
- Published
- 2022
29. SIGNIFICANCE OF THE VARIATIONS IN FLUVIAL INPUT WITHIN JEZERO CRATER FROM PERSEVERANCE ROVER OBSERVATIONS
- Author
-
Nicolas Mangold, Sanjeev Gupta, Gwénaël CARAVACA, Olivier Gasnault, Gilles Dromart, Tarnas, J., Sholes, S., Horgan, B., Cathy Quantin-Nataf, Brown, A., Stéphane Le Mouélic, Yingst, R., Bell, J., Olivier Beyssac, Bosak, T., Calef, F., Ehlmann, B., Farley, K., Grotzinger, J., Hickman- Lewis, K., Holm-Alwmark, S., Kah, L., Martinez-Frias, J., Mclennan, S., Maurice, S., Nuñez, J., Ollila, A., Pilleri, P., Rice, J., Rice, M., Simon, J., Shuster, D., Stack, K., Sun, V., Treiman, A., Weiss, B., Wiens, R., Williams, A., Williams, N., Williford, K., Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Purdue University [West Lafayette], Plancius Research LLC, Planetary Science Institute [Tucson] (PSI), Arizona State University [Tempe] (ASU), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), California Institute of Technology (CALTECH), The Natural History Museum [London] (NHM), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Lund University [Lund], Natural History Museum of Denmark, Department of Earth and Planetary Sciences [Knoxville], The University of Tennessee [Knoxville], Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Department of Geosciences [Stony Brook], Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), JHUAPL, Los Alamos National Laboratory (LANL), College of Science & Engineering (College of Science & Engineering), University of Texas at Austin [Austin], Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, University of California [Berkeley] (UC Berkeley), University of California (UC), Lunar and Planetary Institute [Houston] (LPI), Department of Geological Sciences [Gainesville] (UF|Geological), University of Florida [Gainesville] (UF), and Lunar and Planetary Institute
- Subjects
Jezero crater ,delta ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,Mars 2020 ,Mars ,sedimentology ,stratigraphy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; The Perseverance rover landed on the floor of Jezero crater on 18 February 2021. The landing site, named “Octavia E. Butler” is located ~2.2 km from the SE-facing erosional scarp of the western fan deposits, which are of strong interest for the mission [1-2]. Images obtained using the Mastcam-Z camera and the Remote Micro-Imager (RMI) of the SuperCam instrument provided the first Mars ground-based observations of this western fan (Fig. 1). At the distance images were taken, the RMI images offer a pixel resolution of 2.2 cm, thus enabling identification of objects of typically 7-8 cm (3-4 pixels). Observations of the residual butte Kodiak confirmed the presence of a lake within Jezero crater, but also showed that the lake deduced from the deltaic architecture at Kodiak had a level ~100 m lower than expected (-2495/-2500 m), and was thus a closed system for a significant period [3]. In addition, the coarser deposits (boulder conglomerates and pebbly sandstones) observed near the top of all of the scarps are typical of fluvial floods with high energy, reflecting a change in hydrology of the fluvial system. Here, we focus on the hydrological characteristics of fluvial deposits observed within the scarps of the delta, both as topsets and as boulder conglomerates.
- Published
- 2022
30. Apatite 4 He/ 3 He and (U-Th)/He Evidence for an Ancient Grand Canyon
- Author
-
Flowers, R. M. and Farley, K. A.
- Published
- 2012
- Full Text
- View/download PDF
31. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, Zorzano, M-P, Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, and Zorzano, M-P
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
- Published
- 2022
32. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., Zorzano, M.-P., Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., and Zorzano, M.-P.
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
33. In situ recording of Mars soundscape
- Author
-
Farley, K., Williford, K., Farley, K., and Williford, K.
- Abstract
Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2–4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s−1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.
- Published
- 2022
34. Large Sulphur Isotope Fractionations in Martian Sediments at Gale Crater
- Author
-
Franz, H. B, McAdam, A. C, Ming, D. W, Freissinet, C, Mahaffy, Paul, Eldridge, D. L, Fischer, W. W, Grotzinger, J. P, House, C. H, Hurowitz, J. A, McLennan, S. M, Schwenzer, S. P, Vaniman, D. T, Archer, P. D. Jr, Atreya, S. K, Conrad, P. G, Dottin, J. W. III, Eigenbrode, J. L, Farley, K. A, Glavin, D. P, Johnson, S. S, Knudson, C. A, Morris, R. V, Navarro-Gonzalez, R, Pavlov, A. A, Plummer, R, Rampe, E. B, Stern, J. C, Steele, A, Summons, R. E, and Sutter, B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA's Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in S-34. Measured values of δS-34 range from -47 +/- 14% to 28 +/- 7%, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.
- Published
- 2017
- Full Text
- View/download PDF
35. Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover
- Author
-
Farley, K. A, Williford, K, Beaty, D W, McSween, H. Y, Czaja, A. D, Goreva, Y. S, Hausrath, E, Herd, C. D. K, Humayun, M, McCubbin, F. M, McLennan, S. M, Pratt, L. M, Sephton, M. A, Steele, A, Weiss, B. P, and Hays, L. E
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.
- Published
- 2017
36. Geochronology as a Framework for Planetary History through 2050
- Author
-
Cohen, Barbara, Arevalo, R., Jr, Bottke, W. F., Jr, Conrad, P. G, Farley, K. A, Fassett, C. I, Jolliff, B. L, Lawrence, S. J, Mahaffy, Paul, Malespin, C, Swindle, T. D, Wadhwa, M, and Anderson, F. S
- Subjects
Geosciences (General) - Abstract
Invest this decade in in situ instruments(including sample selection and handling can we choose using VR?) to TRL 6; put them on flight missions in the 2020s and 2030s to relevant destinations where in situ precision can provide meaningful constraints on geologic history.
- Published
- 2017
37. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume
- Author
-
Jackson, M. G., Hart, S. R., Konter, J. G., Kurz, M. D., Blusztajn, J., and Farley, K. A.
- Subjects
Volcanic hotspots -- Analysis ,Volcanic plumes -- Chemical properties -- Analysis ,Geochemistry -- Analysis ,Isotopes -- Chemical properties -- Analysis ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): M. G. Jackson (corresponding author) [1]; S. R. Hart [2]; J. G. Konter [3]; M. D. Kurz [4]; J. Blusztajn [2]; K. A. Farley [5] Hotspot lavas erupted at [...]
- Published
- 2014
- Full Text
- View/download PDF
38. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis
- Author
-
Martinod, K., Witsch, T., Farley, K., Gallant, M., Remold-OʼDonnell, E., and Wagner, D. D.
- Published
- 2016
- Full Text
- View/download PDF
39. OCEANOGRAPHY: Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations
- Author
-
Lund, D. C., Asimow, P. D., Farley, K. A., Rooney, T. O., E., Seeley, Jackson, E. W., and Durham, Z. M.
- Published
- 2016
- Full Text
- View/download PDF
40. Long-term vegetation-induced goethite and hematite dissolution-reprecipitation along the Brazilian Atlantic margin
- Author
-
Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., Mello, C. L., and Conceição, F. T.
- Subjects
Paleontology ,Oceanography ,Ecology, Evolution, Behavior and Systematics ,Earth-Surface Processes - Abstract
Distinctive sediments containing mostly quartz, kaolinite, and both detrital and authigenic hematite and goethite blanket ~5000 km of the Atlantic coast of Brazil from Rio de Janeiro all the way to the mouth of the Amazon River. The sediments represent a significant period of continental erosion followed by renewed weathering. Here we present (U-Th)/He ages of detrital and authigenic goethites and hematites collected from six weathering profiles in Espírito Santo, southeastern Brazil. Detrital goethites are as old as ~26 Ma and the oldest authigenic hematite is ~20 Ma, suggesting that erosion, transportation, and deposition of the sediments occurred in the 26–20 Ma period. Intense post-depositional weathering and ferruginization of the sediments suggest that precipitation-dissolution-reprecipitation of iron oxides and oxyhydroxides were strongly controlled by biologically driven weathering reactions. (U-Th)/He geochronology of 158 grains of authigenic goethite and hematite precipitated during biologically mediated water-rock interaction yield 137 results in the 5–0.6 Ma period, suggesting that tropical climate and abundant vegetation dominated the coast of Espírito Santo since the Pliocene.
- Published
- 2022
41. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds
- Author
-
Ehlmann, B. L, Anderson, F. S, Andrews-Hanna, J, Catling, D. C, Christensen, P. R, Cohen, B. A, Dressing, C. D, Edwards, C. S, Elkins-Tanton, L. T, Farley, K. A, Fassett, C. I, Mahaffy, Paul, McCubbin, F. M, Niles, P. B, and Zahnle, K. J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extra solar planets yet to be discovered.
- Published
- 2016
- Full Text
- View/download PDF
42. Discordant K-Ar and Young Exposure Dates for the Windjana Sandstone, Kimberley, Gale Crater, Mars
- Author
-
Vasconcelos, P. M, Farley, K. A, Malespin, C. A, Mahaffy, P, Ming, D, McLennan, S. M, Hurowitz, J. A, and Rice, Melissa S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
K-Ar and noble gas surface exposure age measurements were carried out on the Windjana sandstone, Kimberley region, Gale Crater, Mars, by using the Sample Analysis at Mars instrument on the Curiosity rover. The sandstone is unusually rich in sanidine, as determined by CheMin X-ray diffraction, contributing to the high K2O concentration of 3.09 +/- 0.20 wt % measured by Alpha-Particle X-ray Spectrometer analysis. A sandstone aliquot heated to approximately 915 C yielded a K-Ar age of 627 +/- 50 Ma. Reheating this aliquot yielded no additional Ar. A second aliquot heated in the same way yielded a much higher K-Ar age of 1710 +/- 110 Ma. These data suggest incomplete Ar extraction from a rock with a K-Ar age older than 1710 Ma. Incomplete extraction at approximately 900 C is not surprising for a rock with a large fraction of K carried by Ar-retentive K-feldspar. Likely, variability in the exact temperature achieved by the sample from run to run, uncertainties in sample mass estimation, and possible mineral fractionation during transport and storage prior to analysis may contribute to these discrepant data. Cosmic ray exposure ages from He-3 and Ne-21 in the two aliquots are minimum values given the possibility of incomplete extraction. However, the general similarity between the He-3 (57 +/- 49 and 18 +/- 32 Ma, mean 30 Ma) and Ne-21 (2 +/- 32 and 83 +/- 24 Ma, mean 54 Ma) exposure ages provides no evidence for underextraction. The implied erosion rate at the Kimberley location is similar to that reported at the nearby Yellowknife Bay outcrop.
- Published
- 2016
- Full Text
- View/download PDF
43. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
- Author
-
Mangold, N., primary, Gupta, S., additional, Gasnault, O., additional, Dromart, G., additional, Tarnas, J. D., additional, Sholes, S. F., additional, Horgan, B., additional, Quantin-Nataf, C., additional, Brown, A. J., additional, Le Mouélic, S., additional, Yingst, R. A., additional, Bell, J. F., additional, Beyssac, O., additional, Bosak, T., additional, Calef, F., additional, Ehlmann, B. L., additional, Farley, K. A., additional, Grotzinger, J. P., additional, Hickman-Lewis, K., additional, Holm-Alwmark, S., additional, Kah, L. C., additional, Martinez-Frias, J., additional, McLennan, S. M., additional, Maurice, S., additional, Nuñez, J. I., additional, Ollila, A. M., additional, Pilleri, P., additional, Rice, J. W., additional, Rice, M., additional, Simon, J. I., additional, Shuster, D. L., additional, Stack, K. M., additional, Sun, V. Z., additional, Treiman, A. H., additional, Weiss, B. P., additional, Wiens, R. C., additional, Williams, A. J., additional, Williams, N. R., additional, and Williford, K. H., additional
- Published
- 2021
- Full Text
- View/download PDF
44. Empirical evidence for cosmogenic ³He production by muons
- Author
-
Larsen, I. J., Farley, K. A., Lamb, M. P., and Pritchard, C. J.
- Abstract
Cosmic ray muons penetrate deeply into rock where they interact with atoms to produce cosmogenic nuclides. Incorporation of the muon contribution to the production rates of cosmogenic nuclides increases the accuracy of exposure dates, burial ages, and erosion rates inferred from measured nuclide concentrations. In the absence of empirical evidence, it is generally assumed that muons do not produce ³He, a cosmogenic nuclide commonly used for exposure dating. Here we assess whether muons produce ³He by measuring He isotope concentrations in pyroxene and ilmenite from a ∼300 m deep drill core and other subsurface samples of the mid-Miocene Columbia River Basalt in Washington, USA. ³He concentrations in our samples exhibit an exponential decline with depth with an e-folding length of 32.4 m, which corresponds to an attenuation length for ³He production of 8780 g cm⁻². The deeply penetrating exponential is diagnostic of ³He production by cosmic ray muons. Assuming no erosion, we constrain the minimum surface muonogenic production rate to be 0.23 atom g⁻¹ pyroxene yr⁻¹, whereas when incorporating erosion the production rate is 0.45 atom g⁻¹ pyroxene yr⁻¹. ³He concentrations in samples deeper than ∼100 meters are consistent with model-based estimates of depth-independent nucleogenic production from the capture by ⁶Li of neutrons produced by alpha particle reactions on light elements. Measurements in other subsurface samples indicate that muon-produced ³He is prevalent across the Columbia Plateau. The penetration depth of muonogenic ³He production is substantially deeper, and the ratio of muon- to spallation-produced ³He is substantially lower, than found for other cosmogenic nuclides. Our results provide the first definitive empirical evidence for ³He production by muons, which has several implications for quantifying the timing and rates of Earth surface change and interpreting He isotope ratios. Importantly, despite the low production rates, landforms in the Channeled Scablands, which were formed by incision of the Columbia River Basalt by the late-Pleistocene Missoula floods, have high concentrations of ³He inherited from post-Miocene muon exposure. Hence ³He production by muons must be considered, particularly when dating rapid erosional events in old bedrock. Our findings indicate samples with less than several tens of meters of shielding by overlying rock will contain cosmogenic ³He that elevates ³He/⁴He ratios. Hence caution should be used when using ³He/⁴He ratios from samples at shallower depths to infer mantle sources of basalt.
- Published
- 2021
45. A Rusty Record of Weathering and Groundwater Movement in the Hyperarid Central Andes
- Author
-
Shaw, J. M., primary, Evenstar, L., additional, Cooper, F. J., additional, Adams, B. A., additional, Boyce, A. J., additional, Hofmann, F., additional, and Farley, K. A., additional
- Published
- 2021
- Full Text
- View/download PDF
46. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars
- Author
-
Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., Horgan, B., Quantin-Nataf, C., Brown, A. J., Le Mouélic, S., Yingst, R., Bell, J. F., Beyssac, O., Bosak, T., Calef, F., III, Ehlmann, B. L., Farley, K. A., Grotzinger, J. P., Hickman-Lewis, K., Holm-Alwmark, S., Kah, L. C., Martínez-Frías, J., McLennan, S. M., Maurice, S., Nuñez, J. I., Ollila, A. M., Pilleri, P., Rice, J. W., Jr., Rice, M., Simon, J. I., Shuster, D. L., Stack, K. M., Sun, V. Z., Treiman, A. H., Weiss, B. P., Wiens, R. C., Williams, A. J., Williams, N. R., Williford, K. H., Mangold, N., Gupta, S., Gasnault, O., Dromart, G., Tarnas, J. D., Sholes, S. F., Horgan, B., Quantin-Nataf, C., Brown, A. J., Le Mouélic, S., Yingst, R., Bell, J. F., Beyssac, O., Bosak, T., Calef, F., III, Ehlmann, B. L., Farley, K. A., Grotzinger, J. P., Hickman-Lewis, K., Holm-Alwmark, S., Kah, L. C., Martínez-Frías, J., McLennan, S. M., Maurice, S., Nuñez, J. I., Ollila, A. M., Pilleri, P., Rice, J. W., Jr., Rice, M., Simon, J. I., Shuster, D. L., Stack, K. M., Sun, V. Z., Treiman, A. H., Weiss, B. P., Wiens, R. C., Williams, A. J., Williams, N. R., and Williford, K. H.
- Abstract
Observations from orbital spacecraft have shown that Jezero crater, Mars, contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the three months after landing. The fan has outcrop faces that were invisible from orbit, which record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition, from a sustained hydrologic activity in a persistent lake environment, to highly energetic short-duration fluvial flows.
- Published
- 2021
47. Sampling Mars: Notional Caches from Mars 2020 Strategic Planning
- Author
-
Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., Farley, K. A., Herd, Chris, Bosak, T., Stack, K. M., Sun, V. Z., Benison, Kathleen C., Cohen, Barbara A., Czaja, Andrew D., Debaille, V., Hausrath, Elisabeth M., Hickman-Lewis, K., Mayhew, L. E., Moynier, Frederic, Sephton, Mark A., Shuster, David L., Siljeström, Sandra, Simon, J. I., Weiss, Benjamin P., Flannery, David, Goreva, Y. S., Gupta, S., Kah, L. C., Minitti, Michelle, McLennan, S. M., Madariaga, J. M., Brown, A. J., Williford, K. H., and Farley, K. A.
- Abstract
A central objective of the NASA Mars 2020 Perseverance rover mission is to collect and document a suite of scientifically compelling samples for possible return to Earth by a subsequent mission [1]. Strategic planning by the Mars 2020 Science Team has thus far identified a set of notional sample caches. These arose from integrating the testable hypotheses that could be addressed by Mars 2020 within the framework of the geology of Jezero crater and its surroundings [2], identifying specific locations of high scientific interest by analysis of remotely sensed data, and traversability considerations [1]. Here we describe the general characteristics of the identified notional caches and compare them to the types of samples previously prioritized by the wider Mars science community [3]. While strategic planning will guide and streamline the decision-making processes once the rover lands at Jezero crater, the actual samples collected will depend on the landing location, the traverse taken, and decisions made by the Mars 2020 Science Team.
- Published
- 2021
48. A Tour of Ancient Habitable Environments In and Around Jezero Crater, Mars
- Author
-
Williford, K. H., Farley, K. A., Stack, K. M., Bosak, T., Flannery, David, Gupta, S., Sun, V., Brown, A. J., Williford, K. H., Farley, K. A., Stack, K. M., Bosak, T., Flannery, David, Gupta, S., Sun, V., and Brown, A. J.
- Abstract
The Mars 2020 team plans to explore and collect samples from diverse ancient environments preserved in the rocks in and around Jezero Crater. Here, we offer a tour of diverse, ancient habitable environments planned for exploration and sampling.
- Published
- 2021
49. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
Ming, D. W., Archer, P. D., Jr., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., McAdam, A. C., Mahaffy, P. R., Cabane, M., Coll, P., Campbell, J. L., Atreya, S. K., Niles, P. B., Bell, J. F., III, Bish, D. L., Brinckerhoff, W. B., Buch, A., Conrad, P. G., Des Marais, D. J., Ehlmann, B. L., Fairén, A. G., Farley, K., Flesch, G. J., Francois, P., Gellert, R., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., Leshin, L. A., Lewis, K. W., McLennan, S. M., Miller, K. E., Moersch, J., Morris, R. V., Navarro-González, R., Pavlov, A. A., Perrett, G. M., Pradler, I., Squyres, S. W., Summons, R. E., Steele, A., Stolper, E. M., Sumner, D. Y., Szopa, C., Teinturier, S., Trainer, M. G., Treiman, A. H., Vaniman, D. T., Vasavada, A. R., Webster, C. R., Wray, J. J., and Yingst, R. A.
- Published
- 2014
50. In Situ Radiometric and Exposure Age Dating of the Martian Surface
- Author
-
Farley, K. A., Malespin, C., Mahaffy, P., Grotzinger, J. P., Vasconcelos, P. M., Milliken, R. E., Malin, M., Edgett, K. S., Pavlov, A. A., Hurowitz, J. A., Grant, J. A., Miller, H. B., Arvidson, R., Beegle, L., Calef, F., Conrad, P. G., Dietrich, W. E., Eigenbrode, J., Gellert, R., Gupta, S., Hamilton, V., Hassler, D. M., Lewis, K. W., McLennan, S. M., Ming, D., Navarro-González, R., Schwenzer, S. P., Steele, A., Stolper, E. M., Sumner, D. Y., Vaniman, D., Vasavada, A., Williford, K., and Wimmer-Schweingruber, R. F.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.