1. Euclid preparation. 3-dimensional galaxy clustering in configuration space. Part I. 2-point correlation function estimation
- Author
-
Euclid Collaboration, de la Torre, S., Marulli, F., Keihänen, E., Viitanen, A., Viel, M., Veropalumbo, A., Branchini, E., Tavagnacco, D., Rizzo, F., Valiviita, J., Lindholm, V., Allevato, V., Parimbelli, G., Sarpa, E., Ghaffari, Z., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Basset, A., Bonino, D., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Crocce, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Granett, B. R., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Morin, B., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sefusatti, E., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tsyganov, A., Tutusaus, I., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Finelli, F., Gabarra, L., Gracia-Carpio, J., Matthew, S., Mauri, N., Mora, A., Pezzotta, A., Pöntinen, M., Scottez, V., Simon, P., Mancini, A. Spurio, Tenti, M., Wiesmann, M., Akrami, Y., Andika, I. T., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Brown, M. L., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Cogato, F., Contarini, S., Cooray, A. R., Cucciati, O., Davini, S., De Paolis, F., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Finoguenov, A., Fontana, A., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gregorio, A., Guidi, M., Gutierrez, C. M., Hall, A., Hemmati, S., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kang, Y., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Kruk, S., Lattanzi, M., Brun, A. M. C. Le, Lee, S., Graet, J. Le, Legrand, L., Lembo, M., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Moretti, C., Morgante, G., Murray, C., Nadathur, S., Naidoo, K., Navarro-Alsina, A., Nesseris, S., Paterson, K., Patrizii, L., Pisani, A., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sciotti, D., Sellentin, E., Sereno, M., Silvestri, A., Smith, L. C., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Vergani, D., Verza, G., Vielzeuf, P., and Walton, N. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The 2-point correlation function of the galaxy spatial distribution is a major cosmological observable that enables constraints on the dynamics and geometry of the Universe. The Euclid mission aims at performing an extensive spectroscopic survey of approximately 20--30 million H$\alpha$-emitting galaxies up to about redshift two. This ambitious project seeks to elucidate the nature of dark energy by mapping the 3-dimensional clustering of galaxies over a significant portion of the sky. This paper presents the methodology and software developed for estimating the 3-dimensional 2-point correlation function within the Euclid Science Ground Segment. The software is designed to overcome the significant challenges posed by the large and complex Euclid data set, which involves millions of galaxies. Key challenges include efficient pair counting, managing computational resources, and ensuring the accuracy of the correlation function estimation. The software leverages advanced algorithms, including kd-tree, octree, and linked-list data partitioning strategies, to optimise the pair-counting process. The implementation also includes parallel processing capabilities using shared-memory open multi-processing to further enhance performance and reduce computation times. Extensive validation and performance testing of the software are presented. The results indicate that the software is robust and can reliably estimate the 2-point correlation function, which is essential for deriving cosmological parameters with high precision. Furthermore, the paper discusses the expected performance of the software during different stages of the Euclid Wide Survey observations and forecasts how the precision of the correlation function measurements will improve over the mission's timeline, highlighting the software's capability to handle large data sets efficiently., Comment: 17 pages, 13 figures, submitted to A&A
- Published
- 2025