23 results on '"Farhat, Rayan"'
Search Results
2. Inducers of the NF-κB pathways impair hepatitis delta virus replication and strongly decrease progeny infectivity in vitro
- Author
-
Michelet, Maud, Alfaiate, Dulce, Chardès, Brieux, Pons, Caroline, Faure-Dupuy, Suzanne, Engleitner, Thomas, Farhat, Rayan, Riedl, Tobias, Legrand, Anne-Flore, Rad, Roland, Rivoire, Michel, Zoulim, Fabien, Heikenwälder, Mathias, Salvetti, Anna, Durantel, David, and Lucifora, Julie
- Published
- 2022
- Full Text
- View/download PDF
3. The first-in-class pro-apoptotic peptide PEP-010 is effective in monotherapy and in combination with paclitaxel on resistant ovarian adenocarcinoma cell models.
- Author
-
Lacroix, Aline, Farhat, Rayan, Robert, Aude, Brenner, Catherine, Wiels, Joëlle, and Germini, Diego
- Subjects
PHOSPHOPROTEIN phosphatases ,PEPTIDES ,CLINICAL indications ,DISEASE relapse ,CELL death ,PACLITAXEL - Abstract
Ovarian adenocarcinoma is the gynecological malignancy with the worst prognosis and the highest mortality rate. In the first stages of treatment, chemotherapy results effective, but its prolonged use and high doses lead to the appearance of resistance to treatments and relapse in most patients, representing a major challenge for clinicians. We developed PEP-010, a cell penetrating proapoptotic peptide disrupting the protein-protein interaction between caspase-9 and protein phosphatase 2A, thereby leading to the recovery of their activity in the apoptotic pathway. MTT assay or Annexin-V/Propidium Iodide staining and flow cytometry analysis were used to assess sensitivity to chemotherapies and apoptosis after treatment with PEP-010 in monotherapy or in combination with paclitaxel in ovarian carcinoma cell lines. DNA damage was assessed by immunofluorescence using γH2AX marker. We show here that PEP-010 effectively induces cell death in monotherapy on in up to 55% of cells from ovarian adenocarcinoma cell models resistant to different chemotherapies. Moreover, when used in combination with paclitaxel, one of the therapeutic options for recurrent ovarian carcinoma, PEP-010 showed a beneficial effect leading to the reduction of the IC
50 of paclitaxel of 2.2 times and to apoptosis in 87% of cells. The described results suggest the potential therapeutic interest for PEP-010 and lead to the choice of ovarian adenocarcinoma as one of the major indications of the ongoing clinical trial. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
4. Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p
- Author
-
Faure-Dupuy, Suzanne, Riedl, Tobias, Rolland, Maude, Hizir, Zoheir, Reisinger, Florian, Neuhaus, Katharina, Schuehle, Svenja, Remouchamps, Caroline, Gillet, Nicolas, Schönung, Maximilian, Stadler, Mira, Wettengel, Jochen, Barnault, Romain, Parent, Romain, Schuster, Linda Christina, Farhat, Rayan, Prokosch, Sandra, Leuchtenberger, Corinna, Öllinger, Rupert, Engleitner, Thomas, Rippe, Karsten, Rad, Roland, Unger, Kristian, Tscharahganeh, Darjus, Lipka, Daniel B., Protzer, Ulrike, Durantel, David, Lucifora, Julie, Dejardin, Emmanuel, and Heikenwälder, Mathias
- Published
- 2021
- Full Text
- View/download PDF
5. Abstract 6129: The proapoptotic peptide PEP-010 is efficient on several models of different tumor origins and it can be monitored by pharmacodynamic biomarker candidates in clinical practice
- Author
-
Farhat, Rayan, primary, Dadon, Laura, additional, Nemati, F, additional, Rebollo, A, additional, Decaudin, D, additional, Wiels, Joelle, additional, Brenner, Catherine, additional, and Germini, Diego, additional
- Published
- 2023
- Full Text
- View/download PDF
6. New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle
- Author
-
Ankavay, Maliki, Montpellier, Claire, Sayed, Ibrahim M., Saliou, Jean-Michel, Wychowski, Czeslaw, Saas, Laure, Duvet, Sandrine, Aliouat-Denis, Cécile-Marie, Farhat, Rayan, de Masson d’Autume, Valentin, Meuleman, Philip, Dubuisson, Jean, and Cocquerel, Laurence
- Published
- 2019
- Full Text
- View/download PDF
7. A dual role for hepatocyte-intrinsic canonical NF-κB signaling in virus control
- Author
-
Namineni, Sukumar, primary, O'Connor, Tracy, additional, Faure-Dupuy, Suzanne, additional, Johansen, Pål, additional, Riedl, Tobias, additional, Liu, Kaijing, additional, Xu, Haifeng, additional, Singh, Indrabahadur, additional, Shinde, Prashant, additional, Li, Fanghui, additional, Pandyra, Aleksandra, additional, Sharma, Piyush, additional, Ringelhan, Marc, additional, Muschaweckh, Andreas, additional, Borst, Katharina, additional, Blank, Patrick, additional, Lampl, Sandra, additional, Neuhaus, Katharina, additional, Durantel, David, additional, Farhat, Rayan, additional, Weber, Achim, additional, Lenggenhager, Daniela, additional, Kündig, Thomas M., additional, Staeheli, Peter, additional, Protzer, Ulrike, additional, Wohlleber, Dirk, additional, Holzmann, Bernhard, additional, Binder, Marco, additional, Breuhahn, Kai, additional, Assmus, Lisa Mareike, additional, Nattermann, Jacob, additional, Abdullah, Zeinab, additional, Rolland, Maude, additional, Dejardin, Emmanuel, additional, Lang, Philipp A., additional, Lang, Karl S., additional, Karin, Michael, additional, Lucifora, Julie, additional, Kalinke, Ulrich, additional, Knolle, Percy A., additional, and Heikenwalder, Mathias, additional
- Published
- 2020
- Full Text
- View/download PDF
8. Identification de GBF1, un facteur cellulaire nécessaire à la réplication du virus de l'hépatite E
- Author
-
Farhat, Rayan, Ankavay, Maliki, Lebsir, Nadjet, Gouttenoire, Jérôme, Jackson, Catherine, Wychowski, Czeslaw, Moradpour, Darius, Dubuisson, Jean, Rouillé, Yves, Cocquerel, Laurence, Cocquerel, Laurence, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Université de Lausanne = University of Lausanne (UNIL), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de Lille - UMS 3702 (IBL), and Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,viruses ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,virus diseases - Abstract
International audience; The hepatitis E virus (HEV) genome is a single‐stranded, positive‐sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose‐dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA‐resistant GBF1 mutant rescuing HEV replication in BFA‐treated cells, confirmed that GBF1 is the only BFA‐sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1‐regulated mechanisms.
- Published
- 2018
9. Identification of GBF1 as a cellular factor required for Hepatitis E virus
- Author
-
Farhat, Rayan, Ankavay, Maliki, Lebsir, Nadjet, Gouttenoire, Jérôme, Jackson, Catherine, Wychowski, Czeslaw, Moradpour, Darius, Dubuisson, Jean, Rouillé, Yves, Cocquerel, Laurence, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Université de Lausanne (UNIL), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de Lille - UMS 3702 (IBL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), and Université de Lausanne = University of Lausanne (UNIL)
- Subjects
viruses ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,virus diseases - Abstract
International audience; The hepatitis E virus (HEV) genome is a single‐stranded, positive‐sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose‐dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA‐resistant GBF1 mutant rescuing HEV replication in BFA‐treated cells, confirmed that GBF1 is the only BFA‐sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1‐regulated mechanisms.
- Published
- 2018
10. Functional and Physical Interaction between the Arf Activator GBF1 and Hepatitis C Virus NS3 Protein
- Author
-
Lebsir, Nadjet, primary, Goueslain, Lucie, additional, Farhat, Rayan, additional, Callens, Nathalie, additional, Dubuisson, Jean, additional, Jackson, Catherine L., additional, and Rouillé, Yves, additional
- Published
- 2019
- Full Text
- View/download PDF
11. Cycle infectieux du virus de l'hépatite E et identification de 3 formes de la protéine de capside ORF2
- Author
-
Montpellier, Claire, Wychowski, Czeslaw, Sayed, Ibrahim, Meunier, Jean-Christophe, Saliou, Michel, Ankavay, Maliki, Bull, Anne, Pillez, André, Legrand-Abravanel, Florence, Helle, Francois, Brochot, Etienne, Drobecq, Hervé, Farhat, Rayan, Aliouat-Denis, Cécile-Marie, Haddad, Juliano, Izopet, Jacques, Meuleman, Philip, Goffard, Anne, Dubuisson, Jean, Cocquerel, Laurence, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Universiteit Gent = Ghent University [Belgium] (UGENT), Assiut University, Morphogénèse et antigénicité du VIH et du virus des Hépatites (MAVIVH - U1259 Inserm - CHRU Tours ), Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Laboratoire de Virologie [CHU Purpan, Toulouse], Institut Fédératif de Biologie (IFB) - Hôpital Purpan, Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Unité de Virologie clinique et fondamentale (UVCF), Université de Picardie Jules Verne (UPJV)-CHU Amiens-Picardie, Mécanismes de la Tumorigénèse et Thérapies Ciblées - UMR 8161 (M3T), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Virologie [Toulouse], CHU Toulouse [Toulouse], This work was supported by the French 'Agence Nationale de la Recherche sur le Sida et les hépatites virales' (ANRS) and the University of Lille. M.A. was supported by a fellowship from the ANRS. P.M. was supported by grants from the Research Foundation Flanders (FWO Vlaanderen), Ghent University (BOF GOA and IRO), and the Belgian State (BELSPO IAP HEPRO-2). I.M.S. was supported with PhD fellowships from the Egyptian Government and Ghent University. J.G.H. was supported by a fellowship from the Lebanese Association for Development., We thank Sandrine Belouzard, Karin Seron, and Sophana Ung for their technical contribution. We thank Suzanne U. Emerson (National Institutes of Health) and Shoshana Levy (Stanford University) for providing us with reagents. We thank Lydia Linna for proofreading the manuscript., Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Universiteit Gent = Ghent University (UGENT), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Virologie [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), and CHU Amiens-Picardie-Université de Picardie Jules Verne (UPJV)
- Subjects
MESH: Cell Culture Techniques ,MESH: Humans ,MESH: Viral Proteins/isolation & purification ,MESH: Hepatitis E/pathology ,viruses ,ORF2 Products ,MESH: Capsid Proteins/isolation & purification ,virus diseases ,Hepatitis E ,MESH: Hepatocytes ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Infectious Particles ,PLC/PRF/5 Cells ,MESH: Hepatitis E/metabolism ,MESH: Animals ,MESH: Disease Models, Animal ,MESH: Mice ,MESH: Hepatitis E/etiology ,MESH: Hepatitis E virus/physiology - Abstract
Comment in : New Models to Study Hepatitis E Virus Replication and Particular Characteristics of Infection: The Needle Hides in the Hay Stack. [Gastroenterology. 2018]; International audience; BACKGROUND & AIMS: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. Approximately 2 billion people live in areas endemic for HEV and are at risk of infection. The HEV genome encodes 3 proteins, including the ORF2 capsid protein. Detailed analyses of the HEV life cycle has been hampered by the lack of an efficient viral culture system.METHODS: We performed studies with gt3 HEV cell culture-produced particles and patient blood and stool samples. Samples were fractionated on iodixanol gradients and cushions. Infectivity assays were performed in vitro and in human liver chimeric mice. Proteins were analyzed by biochemical and proteomic approaches. Infectious particles were analyzed by transmission electron microscopy. HEV antigen levels were measured with the Wantaï enzyme-linked immunosorbent assay.RESULTS: We developed an efficient cell culture system and isolated HEV particles that were infectious in vitro and in vivo. Using transmission electron microscopy, we defined the ultrastructure of HEV cell culture-produced particles and particles from patient sera and stool samples. We also identified the precise sequence of the infectious particle-associated ORF2 capsid protein. In cultured cells and in samples from patients, HEV produced 3 forms of the ORF2 capsid protein: infectious/intracellular ORF2 (ORF2i), glycosylated ORF2 (ORF2g), and cleaved ORF2 (ORF2c). The ORF2i protein associated with infectious particles, whereas the ORF2g and ORF2c proteins were massively secreted glycoproteins not associated with infectious particles. ORF2g and ORF2c were the most abundant antigens detected in sera from patients.CONCLUSIONS: We developed a cell culture system and characterized HEV particles; we identified 3 ORF2 capsid proteins (ORF2i, ORF2g, and ORFc). These findings will advance our understanding of the HEV life cycle and improve diagnosis.
- Published
- 2017
12. New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle
- Author
-
Ankavay, Maliki, primary, Montpellier, Claire, additional, Sayed, Ibrahim M., additional, Saliou, Jean-Michel, additional, Wychowski, Czeslaw, additional, Saas, Laure, additional, Duvet, Sandrine, additional, Aliouat-Denis, Cécile-Marie, additional, Farhat, Rayan, additional, de Masson d’Autume, Valentin, additional, Meuleman, Philip, additional, Dubuisson, Jean, additional, and Cocquerel, Laurence, additional
- Published
- 2018
- Full Text
- View/download PDF
13. Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses
- Author
-
Ferlin, Juliette, primary, Farhat, Rayan, additional, Belouzard, Sandrine, additional, Cocquerel, Laurence, additional, Bertin, Antoine, additional, Hober, Didier, additional, Dubuisson, Jean, additional, and Rouillé, Yves, additional
- Published
- 2018
- Full Text
- View/download PDF
14. Hepatitis E Virus Lifecycle and Identification of 3 Forms of the ORF2 Capsid Protein
- Author
-
Montpellier, Claire, primary, Wychowski, Czeslaw, additional, Sayed, Ibrahim M., additional, Meunier, Jean-Christophe, additional, Saliou, Jean-Michel, additional, Ankavay, Maliki, additional, Bull, Anne, additional, Pillez, André, additional, Abravanel, Florence, additional, Helle, François, additional, Brochot, Etienne, additional, Drobecq, Hervé, additional, Farhat, Rayan, additional, Aliouat-Denis, Cécile-Marie, additional, Haddad, Juliano G., additional, Izopet, Jacques, additional, Meuleman, Philip, additional, Goffard, Anne, additional, Dubuisson, Jean, additional, and Cocquerel, Laurence, additional
- Published
- 2018
- Full Text
- View/download PDF
15. Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication
- Author
-
Farhat, Rayan, primary, Ankavay, Maliki, additional, Lebsir, Nadjet, additional, Gouttenoire, Jérôme, additional, Jackson, Catherine L., additional, Wychowski, Czeslaw, additional, Moradpour, Darius, additional, Dubuisson, Jean, additional, Rouillé, Yves, additional, and Cocquerel, Laurence, additional
- Published
- 2017
- Full Text
- View/download PDF
16. Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication
- Author
-
Farhat, Rayan, Séron, Karin, Ferlin, Juliette, Fénéant, Lucie, Belouzard, Sandrine, Goueslain, Lucie, Jackson, Catherine, Dubuisson, Jean, Rouillé, Yves, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), This work was supported by grants from the ‘Agence Nationale de la Recherche sur le SIDA et les hépatites virales’ (ANRS) and ‘Agence Nationale de la Recherche’ (ANR) through ERA‐NET Infect‐ERA program (ANR‐13‐IFEC‐0002‐01)., We thank B. Hoflack, C. M. Rice and T. Wakita for providing us with reagents. We are grateful to Sophana Ung for his assistance in the illustrations. Some data were generated with the help of the Imaging Core Facility of the campus Calmette (BICeL). The authors have no conflict of interest to declare., ANR-13-IFEC-0002,HCV-ASSEMBLY,Identification of host factors involved in Hepatitis C Virus assembly and characterization of their potential role in vivo(2013), Rouillé, Yves, ERA-NET Infect-ERA - Identification of host factors involved in Hepatitis C Virus assembly and characterization of their potential role in vivo - - HCV-ASSEMBLY2013 - ANR-13-IFEC-0002 - IFEC - VALID, Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, and Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)
- Subjects
[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Secretory Pathway ,Viruses (phages) ,Membrane ,Hepacivirus ,Lipid Droplets ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Virus Replication ,Hepatitis C ,Protein Transport ,Protein Domains ,Cell Line, Tumor ,Host-Pathogen Interactions ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Guanine Nucleotide Exchange Factors ,Humans ,ADP-Ribosylation Factor 1 ,Infection - Abstract
International audience; GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G‐proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf‐guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA‐mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins.
- Published
- 2016
17. Etude des mécanismes dépendants de GBF1 et impliqués dans la réplication du virus de l'hépatite C
- Author
-
Farhat, Rayan, Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Université du Droit et de la Santé - Lille II, Yves Rouillé, Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), and STAR, ABES
- Subjects
[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Intéraction virus-hôte ,Hepatitis C virus ,GBF1 inhibition ,GBF1 ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
The hepatitis C virus (HCV) infection progresses in most of the cases into a chronic hepatitis and can lead to cirrhosis or hepatocellular carcinoma. Despite the recent improvement of hepatitis C treatments, which inhibit or even block the progress of this infection into a chronic stage, a vaccine still not available and the worldwide distribution of the disease makes the hepatitis C a major public health problem. Most of the available treatments target viral proteins. However many mechanisms of the HCV life cycle remain unclear.As for many positive RNA viruses, HCV replication occurs in reorganized cellular membranes. These membrane rearrangements are closely linked to the early secretory pathway of the cell. It has been shown that GBF1, an exchange factor of small G proteins of the Arf family that regulates the membrane dynamics in the secretory pathway, is required for HCV replication. GBF1 inhibition by brefeldin A (BFA) inhibits the secretion of newly synthesized proteins and also inhibits HCV replication. To investigate the role of GBF1 in HCV infection, we isolated cell lines resistant to BFA. Two of these cell lines were 100 times more resistant than the parental cells to BFA-induced apoptosis, inhibition of proteins secretion and inhibition of HCV infection. This resistance was due to a point mutation in the catalytic sec7 domain of GBF1 of these cells. Another group of resistant cells was showing a partial resistance to the inhibition of proteins secretion while maintaining their sensitivity to the inhibition of HCV infection in the same conditions. These results suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication. Using GBF1 deletion mutants we showed that the catalytic activity of the sec7 domain of GBF1 is required for HCV infection. This suggests that the function of GBF1 during HCV replication is mediated by Arf activation. The involvement of Arf was confirmed with the overexpression of restricted mutants of Arf1 and by the inhibition of ArfGAP1, another regulator of Arf function. We then tested the possible involvement of different Arfs (Arf1, 3, 4 and 5) in HCV infection. It has been reported that Arfs have redundant functions. The results confirm the involvement of Arf1 and indicate that all the other BFA-sensitive Arfs (Arf3, Arf4 and Arf5) are also involved in HCV infection. The combined knockdown of Arfs strongly inhibited HCV replication, showing that the Arf proteins are working together in HCV replication probably by activating several host factors required for the virus life cycle.The study of cellular factors required for HCV infection is crucial to better understand the interaction of the virus with the host cell and thus the whole HCV life cycle. This could help to develop new therapies targeting the host cell, regardless of viral genotypes and reducing the risk of emergence of new resistant forms., L’infection par le virus de l’hépatite C (HCV) évolue dans la plupart des cas en hépatite chronique et peut conduire à une cirrhose ou un carcinome hépatocellulaire. Malgré les grandes avancées dans le traitement de l’hépatite C qui permettent d’inhiber ou même de bloquer l’évolution de cette infection vers la chronicité, l’absence de vaccin ainsi que sa répartition sur la surface du globe nous permet de classer cette pathologie en problème majeur de santé publique. La majorité des traitements actuels ciblent les protéines virales et leur fonction. Cependant un grand nombre de mécanismes du cycle viral de HCV reste à élucider.Comme pour la grande majorité des virus à ARN de polarité positive, la réplication de HCV a lieu dans des membranes cellulaires modifiées. Le remaniement de ces membranes est en lien étroit avec la voie de sécrétion précoce de la cellule. Il a été montré que GBF1, un facteur d’échange nucléotidique des protéines G de la famille Arf qui régulent la dynamique membranaire, est un facteur nécessaire à la réplication de HCV. L’inhibition de GBF1 par la bréfeldine A (BFA) inhibe la voie de sécrétion des protéines cellulaires néosynthétisées et inhibe aussi la réplication de HCV. Pour étudier le rôle de GBF1 pendant l’infection nous avons établi des lignées résistantes à la BFA. Deux de ces lignées étaient 100 fois plus résistantes que les lignées parentales à l’apoptose induite par la BFA, à l’inhibition de la sécrétion des protéines et à l’inhibition de l’infection par HCV. Ce phénotype était dû à une mutation ponctuelle dans le domaine catalytique sec7 de GBF1 de ces lignées. Un autre groupe de lignées était partiellement résistantes à l’inhibition de la sécrétion des protéines par la BFA tout en conservant un niveau d’infection proche de celui des lignées parentales dans les mêmes conditions. Ces résultats suggèrent que la fonction de GBF1 pendant l’infection HCV ne serait pas réduite à la régulation de la voie de sécrétion, évoquant ainsi un rôle additionnel de GBF1 nécessaire pour la réplication de HCV.Par ailleurs, nous avons pu montrer à l’aide des mutants de délétion de la protéine GBF1, que l’activité catalytique du domaine sec7 était nécessaire. Ceci suggère l’implication d’une protéine de la famille Arf dans l’activation de l’infection HCV via GBF1. L’implication de Arf dans l’infection HCV a été confirmée par la surexpression de dominants négatifs de la protéine Arf1 et par l’inhibition de l’activité de l’ArfGAP1 (régulateur des Arf) par l’inhibiteur spécifique QS11.Nous avons ensuite testé l’implication des différents Arf sensibles à l’inhibition par la BFA (Arf1, 3 ,4 et 5), dans l’infection HCV à l’aide de si-RNA. Il a été montré que ces protéines Arf possèdent des fonctions redondantes. Nos résultats confirment l’implication de Arf1 et indiquent que les 3 autres protéines sont aussi impliquées dans l’infection HCV. D’une manière intéressante, la déplétion combinée des Arf inhibe fortement l’infection HCV suggérant ainsi un rôle essentiel de certaines protéines Arf, probablement en activant des facteurs cellulaires nécessaires à l’étape de réplication. L’étude des facteurs cellulaires impliqués dans l’infection HCV permet de mieux comprendre l’étape de réplication et par conséquent le cycle viral de HCV. Par ailleurs, l’étude de ces facteurs pourrait permettre le développement éventuel de stratégies antivirales ciblant des facteurs de la cellule hépatique indépendamment du génotype viral, limitant ainsi le risque d’émergence de variants résistants au traitement.
- Published
- 2014
18. Regulation of core expression during the hepatitis C virus life cycle
- Author
-
Afzal, Muhammad Sohail, primary, Alsaleh, Khaled, additional, Farhat, Rayan, additional, Belouzard, Sandrine, additional, Danneels, Adeline, additional, Descamps, Véronique, additional, Duverlie, Gilles, additional, Wychowski, Czeslaw, additional, Zaidi, Najam us Sahar Sadaf, additional, Dubuisson, Jean, additional, and Rouillé, Yves, additional
- Published
- 2015
- Full Text
- View/download PDF
19. Hepatitis C Virus Life Cycle and Lipid Metabolism
- Author
-
Popescu, Costin-Ioan, primary, Riva, Laura, additional, Vlaicu, Ovidiu, additional, Farhat, Rayan, additional, Rouillé, Yves, additional, and Dubuisson, Jean, additional
- Published
- 2014
- Full Text
- View/download PDF
20. Hepatitis C Virus Replication and Golgi Function in Brefeldin A-Resistant Hepatoma-Derived Cells
- Author
-
Farhat, Rayan, primary, Goueslain, Lucie, additional, Wychowski, Czeslaw, additional, Belouzard, Sandrine, additional, Fénéant, Lucie, additional, Jackson, Catherine L., additional, Dubuisson, Jean, additional, and Rouillé, Yves, additional
- Published
- 2013
- Full Text
- View/download PDF
21. Inducers of the NF-κB pathways impair hepatitis delta virus replication and strongly decrease progeny infectivity in vitro .
- Author
-
Michelet M, Alfaiate D, Chardès B, Pons C, Faure-Dupuy S, Engleitner T, Farhat R, Riedl T, Legrand AF, Rad R, Rivoire M, Zoulim F, Heikenwälder M, Salvetti A, Durantel D, and Lucifora J
- Abstract
Background & Aims: HDV superinfection of chronically HBV-infected patients is the most aggressive form of chronic viral hepatitis, with an accelerated progression towards fibrosis/cirrhosis and increased risk of liver failure, hepatocellular carcinoma, and death. While HDV infection is not susceptible to available direct anti-HBV drugs, suboptimal responses are obtained with interferon-α-based therapies, and the number of investigational drugs remains limited. We therefore analyzed the effect of several innate immune stimulators on HDV replication in infected hepatocytes., Methods: We used in vitro models of HDV and HBV infection based on primary human hepatocytes (PHHs) and the non-transformed HepaRG cell line that are relevant to explore new innate immune therapies., Results: We describe here, for the first time, anti-HDV effects of Pam3CSK4 and BS1, agonists of Toll-like receptor (TLR)-1/2, and the lymphotoxin-β receptor (LTβR), respectively. Both types of agonists induced dose-dependent reductions of total intracellular HDV genome and antigenome RNA and of HDV protein levels, without toxicity in cells monoinfected with HDV or co/superinfected with HBV. Moreover, both molecules negatively affected HDV progeny release and strongly decreased their specific infectivity. The latter effect is particularly important since HDV is thought to persist in humans through constant propagation., Conclusions: Immune-modulators inducing NF-κB pathways in hepatocytes can inhibit HDV replication and should be further evaluated as a possible therapeutic approach in chronically HBV/HDV-infected patients., Lay Summary: Hepatitis delta virus causes the most severe form of viral hepatitis. Despite positive recent developments, effective treatments remain a major clinical need. Herein, we show that immune-modulators that trigger the NF-κB pathways could be effective for the treatment of hepatitis delta infections., Competing Interests: The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details., (© 2021 The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
22. Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication.
- Author
-
Farhat R, Ankavay M, Lebsir N, Gouttenoire J, Jackson CL, Wychowski C, Moradpour D, Dubuisson J, Rouillé Y, and Cocquerel L
- Subjects
- Antiviral Agents pharmacology, Brefeldin A pharmacology, Cell Line, Tumor, Guanine Nucleotide Exchange Factors antagonists & inhibitors, Guanine Nucleotide Exchange Factors genetics, Hepatitis E pathology, Hepatitis E virology, Hepatitis E virus genetics, Humans, Pyridines pharmacology, Quinolines pharmacology, RNA Interference, RNA, Small Interfering genetics, Virus Replication drug effects, Guanine Nucleotide Exchange Factors metabolism, Hepatitis E virus growth & development, RNA, Viral biosynthesis, Virus Replication physiology
- Abstract
The hepatitis E virus (HEV) genome is a single-stranded, positive-sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose-dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA-resistant GBF1 mutant rescuing HEV replication in BFA-treated cells, confirmed that GBF1 is the only BFA-sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1-regulated mechanisms., (© 2017 John Wiley & Sons Ltd.)
- Published
- 2018
- Full Text
- View/download PDF
23. Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication.
- Author
-
Farhat R, Séron K, Ferlin J, Fénéant L, Belouzard S, Goueslain L, Jackson CL, Dubuisson J, and Rouillé Y
- Subjects
- Cell Line, Tumor, Hepatitis C enzymology, Host-Pathogen Interactions, Humans, Lipid Droplets, Protein Domains, Protein Transport, Secretory Pathway, ADP-Ribosylation Factor 1 physiology, Guanine Nucleotide Exchange Factors physiology, Hepacivirus physiology, Hepatitis C virology, Virus Replication
- Abstract
GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as a guanine nucleotide exchange factor for G-proteins of the Arf family, which regulate membrane dynamics in the early secretory pathway and the metabolism of cytoplasmic lipid droplets. Here we established that the Arf-guanine nucleotide exchange factor activity of GBF1 is critical for its function in HCV replication, indicating that it promotes viral replication by activating one or more Arf family members. Arf involvement was confirmed with the use of two dominant negative Arf1 mutants. However, siRNA-mediated depletion of Arf1, Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact on the activity of the secretory pathway and induced a compaction of the Golgi and an accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different metabolic pathways through the activation of different pairs of Arf proteins., (© 2016 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.