11 results on '"Fahrner JE"'
Search Results
2. Correction: Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers.
- Author
-
Danlos FX, Grajeda-Iglesias C, Durand S, Sauvat A, Roumier M, Cantin D, Colomba E, Rohmer J, Pommeret F, Baciarello G, Willekens C, Vasse M, Griscelli F, Fahrner JE, Goubet AG, Dubuisson A, Derosa L, Nirmalathasan N, Bredel D, Mouraud S, Pradon C, Stoclin A, Rozenberg F, Duchemin J, Jourdi G, Ellouze S, Levavasseur F, Albigès L, Soria JC, Barlesi F, Solary E, André F, Pène F, Ackerman F, Mouthon L, Zitvogel L, Marabelle A, Michot JM, Fontenay M, and Kroemer G
- Published
- 2024
- Full Text
- View/download PDF
3. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers.
- Author
-
Fidelle M, Rauber C, Alves Costa Silva C, Tian AL, Lahmar I, de La Varende AM, Zhao L, Thelemaque C, Lebhar I, Messaoudene M, Pizzato E, Birebent R, Mbogning Fonkou MD, Zoppi S, Reni A, Dalban C, Leduc M, Ferrere G, Durand S, Ly P, Silvin A, Mulder K, Dutertre CA, Ginhoux F, Yonekura S, Roberti MP, Tidjani-Alou M, Terrisse S, Chen J, Kepp O, Schippers A, Wagner N, Suárez-Gosálvez J, Kobold S, Fahrner JE, Richard C, Bosq J, Lordello L, Vitali G, Galleron N, Quinquis B, Le Chatelier E, Blanchard L, Girard JP, Jarry A, Gervois N, Godefroy E, Labarrière N, Koschny R, Daillère R, Besse B, Truntzer C, Ghiringhelli F, Coatnoan N, Mhanna V, Klatzmann D, Drubay D, Albiges L, Thomas AM, Segata N, Danlos FX, Marabelle A, Routy B, Derosa L, Kroemer G, and Zitvogel L
- Subjects
- Animals, Humans, Mice, Bacteria immunology, Cell Movement, Fecal Microbiota Transplantation, Interleukin-17 metabolism, Th17 Cells immunology, Gastrointestinal Tract immunology, Gastrointestinal Tract microbiology, Anti-Bacterial Agents adverse effects, Cell Adhesion Molecules metabolism, Drug Resistance, Neoplasm, Gastrointestinal Microbiome immunology, Immune Checkpoint Inhibitors therapeutic use, Immune Tolerance drug effects, Immunologic Surveillance, Integrins metabolism, Mucoproteins metabolism, Neoplasms immunology, Neoplasms therapy
- Abstract
Antibiotics (ABX) compromise the efficacy of programmed cell death protein 1 (PD-1) blockade in cancer patients, but the mechanisms underlying their immunosuppressive effects remain unknown. By inducing the down-regulation of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in the ileum, post-ABX gut recolonization by Enterocloster species drove the emigration of enterotropic α4β7
+ CD4+ regulatory T 17 cells into the tumor. These deleterious ABX effects were mimicked by oral gavage of Enterocloster species, by genetic deficiency, or by antibody-mediated neutralization of MAdCAM-1 and its receptor, α4β7 integrin. By contrast, fecal microbiota transplantation or interleukin-17A neutralization prevented ABX-induced immunosuppression. In independent lung, kidney, and bladder cancer patient cohorts, low serum levels of soluble MAdCAM-1 had a negative prognostic impact. Thus, the MAdCAM-1-α4β7 axis constitutes an actionable gut immune checkpoint in cancer immunosurveillance.- Published
- 2023
- Full Text
- View/download PDF
4. Genomic Instability and Protumoral Inflammation Are Associated with Primary Resistance to Anti-PD-1 + Antiangiogenesis in Malignant Pleural Mesothelioma.
- Author
-
Danlos FX, Texier M, Job B, Mouraud S, Cassard L, Baldini C, Varga A, Yurchenko AA, Rabeau A, Champiat S, Letourneur D, Bredel D, Susini S, Blum Y, Parpaleix A, Parlavecchio C, Tselikas L, Fahrner JE, Goubet AG, Rouanne M, Rafie S, Abbassi A, Kasraoui I, Breckler M, Farhane S, Ammari S, Laghouati S, Gazzah A, Lacroix L, Besse B, Droin N, Deloger M, Cotteret S, Adam J, Zitvogel L, Nikolaev SI, Chaput N, Massard C, Soria JC, Gomez-Roca C, Zalcman G, Planchard D, and Marabelle A
- Subjects
- Humans, Interleukin-6, Vascular Endothelial Growth Factor A, Immunotherapy, Genomic Instability, Inflammation drug therapy, Inflammation genetics, Mesothelioma, Malignant, Lung Neoplasms genetics, Mesothelioma drug therapy, Mesothelioma genetics, Pleural Neoplasms drug therapy, Pleural Neoplasms genetics
- Abstract
Cancer immunotherapy combinations have recently been shown to improve the overall survival of advanced mesotheliomas, especially for patients responding to those treatments. We aimed to characterize the biological correlates of malignant pleural mesotheliomas' primary resistance to immunotherapy and antiangiogenics by testing the combination of pembrolizumab, an anti-PD-1 antibody, and nintedanib, a pan-antiangiogenic tyrosine kinase inhibitor, in the multicenter PEMBIB trial (NCT02856425). Thirty patients with advanced malignant pleural mesothelioma were treated and explored. Unexpectedly, we found that refractory patients were actively recruiting CD3+CD8+ cytotoxic T cells in their tumors through CXCL9 tumor release upon treatment. However, these patients displayed high levels of somatic copy-number alterations in their tumors that correlated with high blood and tumor levels of IL6 and CXCL8. Those proinflammatory cytokines resulted in higher tumor secretion of VEGF and tumor enrichment in regulatory T cells. Advanced mesothelioma should further benefit from stratified combination therapies adapted to their tumor biology., Significance: Sequential explorations of fresh tumor biopsies demonstrated that mesothelioma resistance to anti-PD-1 + antiangiogenics is not due to a lack of tumor T-cell infiltration but rather due to adaptive immunosuppressive pathways by tumors, involving molecules (e.g., IL6, CXCL8, VEGF, and CTLA4) that are amenable to targeted therapies. This article is highlighted in the In This Issue feature, p. 799., (©2023 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2023
- Full Text
- View/download PDF
5. Cancer Induces a Stress Ileopathy Depending on β-Adrenergic Receptors and Promoting Dysbiosis that Contributes to Carcinogenesis.
- Author
-
Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet AG, Fahrner JE, Lahmar I, Ueda K, Mansouri G, Pizzato E, Ly P, Mazzenga M, Thelemaque C, Fidelle M, Jaulin F, Cartry J, Deloger M, Aglave M, Droin N, Opolon P, Puget A, Mann F, Neunlist M, Bessard A, Aymeric L, Matysiak-Budnik T, Bosq J, Hofman P, Duong CPM, Ugolini S, Quiniou V, Berrard S, Ryffel B, Kepp O, Kroemer G, Routy B, Lordello L, Bani MA, Segata N, Yengej FY, Clevers H, Scoazec JY, Pasolli E, Derosa L, and Zitvogel L
- Subjects
- Carcinogenesis pathology, Humans, Intestinal Mucosa pathology, Signal Transduction, Dysbiosis chemically induced, Dysbiosis complications, Dysbiosis pathology, Receptors, Adrenergic, beta
- Abstract
Gut dysbiosis has been associated with intestinal and extraintestinal malignancies, but whether and how carcinogenesis drives compositional shifts of the microbiome to its own benefit remains an open conundrum. Here, we show that malignant processes can cause ileal mucosa atrophy, with villous microvascular constriction associated with dominance of sympathetic over cholinergic signaling. The rapid onset of tumorigenesis induced a burst of REG3γ release by ileal cells, and transient epithelial barrier permeability that culminated in overt and long-lasting dysbiosis dominated by Gram-positive Clostridium species. Pharmacologic blockade of β-adrenergic receptors or genetic deficiency in Adrb2 gene, vancomycin, or cohousing of tumor bearers with tumor-free littermates prevented cancer-induced ileopathy, eventually slowing tumor growth kinetics. Patients with cancer harbor distinct hallmarks of this stress ileopathy dominated by Clostridium species. Hence, stress ileopathy is a corollary disease of extraintestinal malignancies requiring specific therapies., Significance: Whether gut dysbiosis promotes tumorigenesis and how it controls tumor progression remain open questions. We show that 50% of transplantable extraintestinal malignancies triggered a β-adrenergic receptor-dependent ileal mucosa atrophy, associated with increased gut permeability, sustained Clostridium spp.-related dysbiosis, and cancer growth. Vancomycin or propranolol prevented cancer-associated stress ileopathy. This article is highlighted in the In This Issue feature, p. 873., (©2021 American Association for Cancer Research.)
- Published
- 2022
- Full Text
- View/download PDF
6. The Polarity and Specificity of Antiviral T Lymphocyte Responses Determine Susceptibility to SARS-CoV-2 Infection in Patients with Cancer and Healthy Individuals.
- Author
-
Fahrner JE, Lahmar I, Goubet AG, Haddad Y, Carrier A, Mazzenga M, Drubay D, Alves Costa Silva C, de Sousa E, Thelemaque C, Melenotte C, Dubuisson A, Geraud A, Ferrere G, Birebent R, Bigenwald C, Picard M, Cerbone L, Lérias JR, Laparra A, Bernard-Tessier A, Kloeckner B, Gazzano M, Danlos FX, Terrisse S, Pizzato E, Flament C, Ly P, Tartour E, Benhamouda N, Meziani L, Ahmed-Belkacem A, Miyara M, Gorochov G, Barlesi F, Trubert A, Ungar B, Estrada Y, Pradon C, Gallois E, Pommeret F, Colomba E, Lavaud P, Deloger M, Droin N, Deutsch E, Gachot B, Spano JP, Merad M, Scotté F, Marabelle A, Griscelli F, Blay JY, Soria JC, Merad M, André F, Villemonteix J, Chevalier MF, Caillat-Zucman S, Fenollar F, Guttman-Yassky E, Launay O, Kroemer G, La Scola B, Maeurer M, Derosa L, and Zitvogel L
- Subjects
- Antibodies, Neutralizing, Humans, SARS-CoV-2, Spike Glycoprotein, Coronavirus chemistry, Spike Glycoprotein, Coronavirus genetics, Antiviral Restriction Factors immunology, COVID-19 immunology, Neoplasms complications, T-Lymphocytes immunology
- Abstract
Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants., Significance: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873., (©2022 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2022
- Full Text
- View/download PDF
7. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer.
- Author
-
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, and Zitvogel L
- Subjects
- Androgen Antagonists pharmacology, Androgen Antagonists therapeutic use, Androgens therapeutic use, Animals, Humans, Immune System, Male, Mice, Gastrointestinal Microbiome, Prostatic Neoplasms, Castration-Resistant drug therapy
- Abstract
Background: Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT., Methods: Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens., Results: In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so., Conclusions: These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients., Competing Interests: Competing interests: LZ and GK are scientific cofounders of everImmune, a company that develops bacteria for the treatment of cancer. GK is a scientific cofounder of Samsara Therapeutics and Therafast Bio. Acknowledgments: LZ laboratory was supported by the Germano-French ANR Ileobiome—19-CE15-0029-01 and H2020 ONCOBIOME N°825410, RHU Torino Lumière ANR-16-RHUS-0008; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE). GK is supported by Agence Nationale de la Recherche (ANR)—Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association 'Ruban Rose'; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); the Leducq Foundation; the and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. AMT and EC are supported by the French Government’s Investissement d’Avenir Program, Laboratoire d’Excellence 'Milieu Intérieur' Grant ANR-10-LABX-69-01. INSERM U.1160 is a member of OPALE Carnot Institute, The Organization for Partnerships in Leukemia. MG-H and DGM are supported by the grant funding NIH/NCI P01 CA250927., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
8. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers.
- Author
-
Danlos FX, Grajeda-Iglesias C, Durand S, Sauvat A, Roumier M, Cantin D, Colomba E, Rohmer J, Pommeret F, Baciarello G, Willekens C, Vasse M, Griscelli F, Fahrner JE, Goubet AG, Dubuisson A, Derosa L, Nirmalathasan N, Bredel D, Mouraud S, Pradon C, Stoclin A, Rozenberg F, Duchemin J, Jourdi G, Ellouze S, Levavasseur F, Albigès L, Soria JC, Barlesi F, Solary E, André F, Pène F, Ackerman F, Mouthon L, Zitvogel L, Marabelle A, Michot JM, Fontenay M, and Kroemer G
- Subjects
- Antibodies, Monoclonal, Humanized administration & dosage, Biomarkers blood, COVID-19 diagnosis, Female, Humans, Male, Metabolomics, Prognosis, COVID-19 Drug Treatment, COVID-19 blood, Metabolome, SARS-CoV-2 metabolism
- Abstract
The circulating metabolome provides a snapshot of the physiological state of the organism responding to pathogenic challenges. Here we report alterations in the plasma metabolome reflecting the clinical presentation of COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, hospitalization and oxygen therapy), and critical disease (in intensive care). This analysis revealed major disease- and stage-associated shifts in the metabolome, meaning that at least 77 metabolites including amino acids, lipids, polyamines and sugars, as well as their derivatives, were altered in critical COVID-19 patient's plasma as compared to mild COVID-19 patients. Among a uniformly moderate cohort of patients who received tocilizumab, only 10 metabolites were different among individuals with a favorable evolution as compared to those who required transfer into the intensive care unit. The elevation of one single metabolite, anthranilic acid, had a poor prognostic value, correlating with the maintenance of high interleukin-10 and -18 levels. Given that products of the kynurenine pathway including anthranilic acid have immunosuppressive properties, we speculate on the therapeutic utility to inhibit the rate-limiting enzymes of this pathway including indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase.
- Published
- 2021
- Full Text
- View/download PDF
9. Immunodynamics of explanted human tumors for immuno-oncology.
- Author
-
Dubuisson A, Fahrner JE, Goubet AG, Terrisse S, Voisin N, Bayard C, Lofek S, Drubay D, Bredel D, Mouraud S, Susini S, Cogdill A, Rebuffet L, Ballot E, Jacquelot N, Thomas de Montpreville V, Casiraghi O, Radulescu C, Ferlicot S, Figueroa DJ, Yadavilli S, Waight JD, Ballas M, Hoos A, Condamine T, Parier B, Gaudillat C, Routy B, Ghiringhelli F, Derosa L, Breuskin I, Rouanne M, André F, Lebacle C, Baumert H, Wislez M, Fadel E, Cremer I, Albiges L, Geoerger B, Scoazec JY, Loriot Y, Kroemer G, Marabelle A, Bonvalet M, and Zitvogel L
- Subjects
- Humans, Medical Oncology, Prospective Studies, Tumor Microenvironment, Immunotherapy, Neoplasms therapy
- Abstract
Decision making in immuno-oncology is pivotal to adapt therapy to the tumor microenvironment (TME) of the patient among the numerous options of monoclonal antibodies or small molecules. Predicting the best combinatorial regimen remains an unmet medical need. Here, we report a multiplex functional and dynamic immuno-assay based on the capacity of the TME to respond to ex vivo stimulation with twelve immunomodulators including immune checkpoint inhibitors (ICI) in 43 human primary tumors. This "in sitro" (in situ/in vitro) assay has the potential to predict unresponsiveness to anti-PD-1 mAbs, and to detect the most appropriate and personalized combinatorial regimen. Prospective clinical trials are awaited to validate this in sitro assay., (© 2020 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2021
- Full Text
- View/download PDF
10. Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients.
- Author
-
Derosa L, Routy B, Fidelle M, Iebba V, Alla L, Pasolli E, Segata N, Desnoyer A, Pietrantonio F, Ferrere G, Fahrner JE, Le Chatellier E, Pons N, Galleron N, Roume H, Duong CPM, Mondragón L, Iribarren K, Bonvalet M, Terrisse S, Rauber C, Goubet AG, Daillère R, Lemaitre F, Reni A, Casu B, Alou MT, Alves Costa Silva C, Raoult D, Fizazi K, Escudier B, Kroemer G, Albiges L, and Zitvogel L
- Subjects
- Animals, Humans, Mice, Predictive Value of Tests, Prospective Studies, Carcinoma, Renal Cell drug therapy, Carcinoma, Renal Cell microbiology, Drug Resistance, Neoplasm, Feces microbiology, Gastrointestinal Microbiome, Immune Checkpoint Inhibitors therapeutic use, Kidney Neoplasms drug therapy, Kidney Neoplasms microbiology, Nivolumab therapeutic use
- Abstract
Background: The development of immune checkpoint blockade (ICB) has revolutionized the clinical outcome of renal cell carcinoma (RCC). Nevertheless, improvement of durability and prediction of responses remain unmet medical needs. While it has been recognized that antibiotics (ATBs) decrease the clinical activity of ICB across various malignancies, little is known about the direct impact of distinct intestinal nonpathogenic bacteria (commensals) on therapeutic outcomes of ICB in RCC., Objective: To evaluate the predictive value of stool bacteria composition for ICB efficacy in a cohort of advanced RCC patients., Design, Setting, and Participants: We prospectively collected fecal samples from 69 advanced RCC patients treated with nivolumab and enrolled in the GETUG-AFU 26 NIVOREN microbiota translational substudy phase 2 trial (NCT03013335) at Gustave Roussy. We recorded patient characteristics including ATB use, prior systemic therapies, and response criteria. We analyzed 2994 samples of feces from healthy volunteers (HVs). In parallel, preclinical studies performed in RCC-bearing mice that received fecal transplant (FMT) from RCC patients resistant to ICB (NR-FMT) allowed us to draw a cause-effect relationship between gut bacteria composition and clinical outcomes for ICB. The influence of tyrosine kinase inhibitors (TKIs) taken before starting nivolumab on the microbiota composition has also been assessed., Outcome Measurements and Statistical Analysis: Metagenomic data (MG) from whole genome sequencing (WGS) were analyzed by multivariate and pairwise comparisons/fold ratio to identify bacterial fingerprints related to ATB or prior TKI exposure and patients' therapeutic response (overall response and progression-free survival), and compared with the data from cancer-free donors., Results and Limitations: Recent ATB use (n = 11; 16%) reduced objective response rates (from 28% to 9%, p < 0.03) and markedly affected the composition of the microbiota, facilitating the dominance of distinct species such as Clostridium hathewayi, which were also preferentially over-represented in stools from RCC patients compared with HVs. Importantly, TKIs taken prior to nivolumab had implications in shifting the microbiota composition. To establish a cause-effect relationship between gut bacteria composition and ICB efficacy, NR-FMT mice were successfully compensated with either FMT from responding RCC patients or beneficial commensals identified by WGS-MG (Akkermansia muciniphila and Bacteroides salyersiae)., Conclusions: The composition of the microbiota is influenced by TKIs and ATBs, and impacts the success of immunotherapy. Future studies will help sharpen the role of these specific bacteria and their potential as new biomarkers., Patient Summary: We used quantitative shotgun DNA sequencing of fecal microbes as well as preclinical models of fecal or bacterial transfer to study the association between stool composition and (pre)clinical outcome to immune checkpoint blockade. Novel insights into the pathophysiological relevance of intestinal dysbiosis in the prognosis of kidney cancer may lead to innovative therapeutic solutions, such as supplementation with probiotics to prevent primary resistance to therapy., (Copyright © 2020. Published by Elsevier B.V.)
- Published
- 2020
- Full Text
- View/download PDF
11. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors.
- Author
-
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, and Galluzzi L
- Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.