110 results on '"Fagerberg C"'
Search Results
2. Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men
- Author
-
Fedder, J, Fagerberg, C, Jørgensen, MW, Gravholt, CH, Berglund, A, Knudsen, UB, and Skakkebæk, A
- Published
- 2023
- Full Text
- View/download PDF
3. Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease–gene association
- Author
-
Cesana, M., Vaccaro, L., Larsen, M. J., Kibæk, M., Micale, L., Riccardo, S., Annunziata, P., Colantuono, C., Di Filippo, L., De Brasi, D., Castori, M., Fagerberg, C., Acquaviva, F., and Cacchiarelli, D.
- Published
- 2023
- Full Text
- View/download PDF
4. Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease–gene association
- Author
-
Cesana, M., primary, Vaccaro, L., additional, Larsen, M. J., additional, Kibæk, M., additional, Micale, L., additional, Riccardo, S., additional, Annunziata, P., additional, Colantuono, C., additional, Di Filippo, L., additional, De Brasi, D., additional, Castori, M., additional, Fagerberg, C., additional, Acquaviva, F., additional, and Cacchiarelli, D., additional
- Published
- 2022
- Full Text
- View/download PDF
5. Effects of eight neuropsychiatric copy number variants on human brain structure
- Author
-
Modenato, C., Kumar, K., Moreau, C., Martin-Brevet, S., Huguet, G., Schramm, C., Jean-Louis, M., Martin, C. -O., Younis, N., Tamer, P., Douard, E., Thebault-Dagher, F., Cote, V., Charlebois, A. -R., Deguire, F., Maillard, A. M., Rodriguez-Herreros, B., Pain, A., Richetin, S., Addor, M. -C., Andrieux, J., Arveiler, B., Baujat, G., Sloan-Bena, F., Belfiore, M., Bonneau, D., Bouquillon, S., Boute, O., Brusco, A., Busa, T., Caberg, J. -H., Campion, D., Colombert, V., Cordier, M. -P., David, A., Debray, F. -G., Delrue, M. -A., Doco-Fenzy, M., Dunkhase-Heinl, U., Edery, P., Fagerberg, C., Faivre, L., Forzano, F., Genevieve, D., Gerard, M., Giachino, D., Guichet, A., Guillin, O., Heron, D., Isidor, B., Jacquette, A., Jaillard, S., Journel, H., Keren, B., Lacombe, D., Lebon, S., Le Caignec, C., Lemaitre, M. -P., Lespinasse, J., Mathieu-Dramart, M., Mercier, S., Mignot, C., Missirian, C., Petit, F., Pilekaer Sorensen, K., Pinson, L., Plessis, G., Prieur, F., Raymond, A., Rooryck-Thambo, C., Rossi, M., Sanlaville, D., Schlott Kristiansen, B., Schluth-Bolard, C., Till, M., Van Haelst, M., Van Maldergem, L., Alupay, H., Aaronson, B., Ackerman, S., Ankenman, K., Anwar, A., Atwell, C., Bowe, A., Beaudet, A. L., Benedetti, M., Berg, J., Berman, J., Berry, L. N., Bibb, A. L., Blaskey, L., Brennan, J., Brewton, C. M., Buckner, R., Bukshpun, P., Burko, J., Cali, P., Cerban, B., Chang, Y., Cheong, M., Chow, V., Chu, Z., Chudnovskaya, D., Cornew, L., Dale, C., Dell, J., Dempsey, A. G., Deschamps, T., Earl, R., Edgar, J., Elgin, J., Olson, J. E., Evans, Y. L., Findlay, A., Fischbach, G. D., Fisk, C., Fregeau, B., Gaetz, B., Gaetz, L., Garza, S., Gerdts, J., Glenn, O., Gobuty, S. E., Golembski, R., Greenup, M., Heiken, K., Hines, K., Hinkley, L., Jackson, F. I., Jenkins, J., Jeremy, R. J., Johnson, K., Kanne, S. M., Kessler, S., Khan, S. Y., Ku, M., Kuschner, E., Laakman, A. L., Lam, P., Lasala, M. W., Lee, H., Laguerre, K., Levy, S., Cavanagh, A. L., Llorens, A. V., Campe, K. L., Luks, T. L., Marco, E. J., Martin, S., Martin, A. J., Marzano, G., Masson, C., Mcgovern, K. E., Keehn, R. M. N., Miller, D. T., Miller, F. K., Moss, T. J., Murray, R., Nagarajan, S. S., Nowell, K. P., Owen, J., Paal, A. M., Packer, A., Page, P. Z., Paul, B. M., Peters, A., Peterson, D., Poduri, A., Pojman, N. J., Porche, K., Proud, M. B., Qasmieh, S., Ramocki, M. B., Reilly, B., Roberts, T. P. L., Shaw, D., Sinha, T., Smith-Packard, B., Gallagher, A. S., Swarnakar, V., Thieu, T., Triantafallou, C., Vaughan, R., Wakahiro, M., Wallace, A., Ward, T., Wenegrat, J., Wolken, A., Melie-Garcia, L., Kushan, L., Silva, A. I., van den Bree, M. B. M., Linden, D. E. J., Owen, M. J., Hall, J., Lippe, S., Chakravarty, M., Bzdok, D., Bearden, C. E., Draganski, B., Jacquemont, S., Human genetics, Amsterdam Neuroscience - Complex Trait Genetics, Amsterdam Reproduction & Development (AR&D), 16p11.2 European Consortium, Simons Searchlight Consortium, Psychiatrie & Neuropsychologie, RS: MHeNs - R2 - Mental Health, RS: MHeNs - R1 - Cognitive Neuropsychiatry and Clinical Neuroscience, School for Mental Health & Neuroscience, RS: MHeNs - R3 - Neuroscience, Addor, M.C., Andrieux, J., Arveiler, B., Baujat, G., Sloan-Béna, F., Belfiore, M., Bonneau, D., Bouquillon, S., Boute, O., Brusco, A., Busa, T., Caberg, J.H., Campion, D., Colombert, V., Cordier, M.P., David, A., Debray, F.G., Delrue, M.A., Doco-Fenzy, M., Dunkhase-Heinl, U., Edery, P., Fagerberg, C., Faivre, L., Forzano, F., Genevieve, D., Gérard, M., Giachino, D., Guichet, A., Guillin, O., Héron, D., Isidor, B., Jacquette, A., Jaillard, S., Journel, H., Keren, B., Lacombe, D., Lebon, S., Le Caignec, C., Lemaître, M.P., Lespinasse, J., Mathieu-Dramart, M., Mercier, S., Mignot, C., Missirian, C., Petit, F., Pilekær Sørensen, K., Pinson, L., Plessis, G., Prieur, F., Raymond, A., Rooryck-Thambo, C., Rossi, M., Sanlaville, D., Schlott Kristiansen, B., Schluth-Bolard, C., Till, M., Van Haelst, M., Van Maldergem, L., Alupay, H., Aaronson, B., Ackerman, S., Ankenman, K., Anwar, A., Atwell, C., Bowe, A., Beaudet, A.L., Benedetti, M., Berg, J., Berman, J., Berry, L.N., Bibb, A.L., Blaskey, L., Brennan, J., Brewton, C.M., Buckner, R., Bukshpun, P., Burko, J., Cali, P., Cerban, B., Chang, Y., Cheong, M., Chow, V., Chu, Z., Chudnovskaya, D., Cornew, L., Dale, C., Dell, J., Dempsey, A.G., Deschamps, T., Earl, R., Edgar, J., Elgin, J., Olson, J.E., Evans, Y.L., Findlay, A., Fischbach, G.D., Fisk, C., Fregeau, B., Gaetz, B., Gaetz, L., Garza, S., Gerdts, J., Glenn, O., Gobuty, S.E., Golembski, R., Greenup, M., Heiken, K., Hines, K., Hinkley, L., Jackson, F.I., Jenkins, J., Jeremy, R.J., Johnson, K., Kanne, S.M., Kessler, S., Khan, S.Y., Ku, M., Kuschner, E., Laakman, A.L., Lam, P., Lasala, M.W., Lee, H., LaGuerre, K., Levy, S., Cavanagh, A.L., Llorens, A.V., Campe, K.L., Luks, T.L., Marco, E.J., Martin, S., Martin, A.J., Marzano, G., Masson, C., McGovern, K.E., Keehn, R.M., Miller, D.T., Miller, F.K., Moss, T.J., Murray, R., Nagarajan, S.S., Nowell, K.P., Owen, J., Paal, A.M., Packer, A., Page, P.Z., Paul, B.M., Peters, A., Peterson, D., Poduri, A., Pojman, N.J., Porche, K., Proud, M.B., Qasmieh, S., Ramocki, M.B., Reilly, B., Roberts, TPL, Shaw, D., Sinha, T., Smith-Packard, B., Gallagher, A.S., Swarnakar, V., Thieu, T., Triantafallou, C., Vaughan, R., Wakahiro, M., Wallace, A., Ward, T., Wenegrat, J., and Wolken, A.
- Subjects
0301 basic medicine ,Simons Searchlight Consortium ,Autism ,0302 clinical medicine ,Gyrus ,Gene duplication ,2.1 Biological and endogenous factors ,Psychology ,Copy-number variation ,Aetiology ,Genetics ,Brain ,Human brain ,Magnetic Resonance Imaging ,Psychiatry and Mental health ,Mental Health ,medicine.anatomical_structure ,Schizophrenia ,Neurological ,Public Health and Health Services ,RC321-571 ,DNA Copy Number Variations ,Intellectual and Developmental Disabilities (IDD) ,Clinical Sciences ,16p11.2 European Consortium ,Neurosciences. Biological psychiatry. Neuropsychiatry ,Neuroimaging ,Biology ,Basic Behavioral and Social Science ,Article ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,Clinical Research ,Behavioral and Social Science ,mental disorders ,medicine ,Humans ,22Q11.2 DELETION SYNDROME ,Clinical genetics ,AUTISM ,COMMON ,Biological Psychiatry ,Prevention ,Human Genome ,Brain morphometry ,Neurosciences ,medicine.disease ,DUPLICATION ,Brain Disorders ,030104 developmental biology ,030217 neurology & neurosurgery ,Neuroscience - Abstract
Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.
- Published
- 2021
6. Genotype-Phenotype Comparison in POGZ-Related Neurodevelopmental Disorders by Using Clinical Scoring
- Author
-
Nagy, D., Verheyen, S., Wigby, K.M., Borovikov, A., Sharkov, A., Slegesky, V., Larson, A., Fagerberg, C., Brasch-Andersen, C., Kibæk, M., Bader, I., Hernan, R., High, F.A., Chung, W.K., Schieving, J.H., Behunova, J., Smogavec, M., Laccone, F., Witsch-Baumgartner, M., Zobel, J., Duba, H.C., Weis, D., Nagy, D., Verheyen, S., Wigby, K.M., Borovikov, A., Sharkov, A., Slegesky, V., Larson, A., Fagerberg, C., Brasch-Andersen, C., Kibæk, M., Bader, I., Hernan, R., High, F.A., Chung, W.K., Schieving, J.H., Behunova, J., Smogavec, M., Laccone, F., Witsch-Baumgartner, M., Zobel, J., Duba, H.C., and Weis, D.
- Abstract
Contains fulltext : 248217.pdf (Publisher’s version ) (Open Access), POGZ-related disorders (also known as White-Sutton syndrome) encompass a wide range of neurocognitive abnormalities and other accompanying anomalies. Disease severity varies widely among POGZ patients and studies investigating genotype-phenotype association are scarce. Therefore, our aim was to collect data on previously unreported POGZ patients and perform a large-scale phenotype-genotype comparison from published data. Overall, 117 POGZ patients' genotype and phenotype data were included in the analysis, including 12 novel patients. A severity scoring system was developed for the comparison. Mild and severe phenotypes were compared with the types and location of the variants and the predicted presence or absence of nonsense-mediated RNA decay (NMD). Missense variants were more often associated with mild phenotypes (p = 0.0421) and truncating variants predicted to escape NMD presented with more severe phenotypes (p < 0.0001). Within this group, variants in the prolin-rich region of the POGZ protein were associated with the most severe phenotypes (p = 0.0004). Our study suggests that gain-of-function or dominant negative effect through escaping NMD and the location of the variants in the prolin-rich domain of the protein may play an important role in the severity of manifestations of POGZ-associated neurodevelopmental disorders.
- Published
- 2022
7. Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder
- Author
-
Melland, H, Bumbak, F, Kolesnik-Taylor, A, Ng-Cordell, E, John, A, Constantinou, P, Joss, S, Larsen, M, Fagerberg, C, Laulund, LW, Thies, J, Emslie, F, Willemsen, M, Kleefstra, T, Pfundt, R, Barrick, R, Chang, R, Loong, L, Alfadhel, M, van der Smagt, J, Nizon, M, Kurian, MA, Scott, DJ, Ziarek, JJ, Gordon, SL, Baker, K, Melland, H, Bumbak, F, Kolesnik-Taylor, A, Ng-Cordell, E, John, A, Constantinou, P, Joss, S, Larsen, M, Fagerberg, C, Laulund, LW, Thies, J, Emslie, F, Willemsen, M, Kleefstra, T, Pfundt, R, Barrick, R, Chang, R, Loong, L, Alfadhel, M, van der Smagt, J, Nizon, M, Kurian, MA, Scott, DJ, Ziarek, JJ, Gordon, SL, and Baker, K
- Abstract
PURPOSE: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder. METHODS: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders. RESULTS: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability. CONCLUSION: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function.
- Published
- 2022
8. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders
- Author
-
Gillentine, M.A., Wang, T., Hoekzema, K., Rosenfeld, J., Liu, P, Guo, H, Kim, C.N., Vries, B.B. de, Vissers, L.E.L.M., Nordenskjold, M., Kvarnung, M., Lindstrand, A., Nordgren, A., Gecz, J., Iascone, M., Cereda, A., Scatigno, A., Maitz, S., Zanni, G., Bertini, E., Zweier, C., Schuhmann, S., Wiesener, A., Pepper, M., Panjwani, H., Torti, E., Abid, F., Anselm, I., Srivastava, S., Atwal, P., Bacino, C.A., Bhat, G., Cobian, K., Bird, L.M., Friedman, J., Wright, M.S., Callewaert, B., Petit, F., Mathieu, S., Afenjar, A., Christensen, C.K., White, K.M., Elpeleg, O., Berger, I., Espineli, E.J., Fagerberg, C., Brasch-Andersen, C., Hansen, L.K., Feyma, T., Hughes, S., Thiffault, I., Sullivan, B., Yan, S., Keller, K., Keren, B., Mignot, C., Kooy, F., Meuwissen, M., Basinger, A., Kukolich, M., Philips, M., Ortega, L., Drummond-Borg, M., Lauridsen, M., Sorensen, K., Lehman, A., Lopez-Rangel, E., Levy, P., Lessel, D., Lotze, T., Madan-Khetarpal, S., Sebastian, J., Vento, J., Vats, D., Benman, L.M., McKee, S., Mirzaa, G.M., Muss, C., Pappas, J., Peeters, H, Romano, C, Elia, M., Galesi, O., Simon, M.E., Gassen, K.L.I. van, Simpson, K., Stratton, R., Syed, S., Thevenon, J., Palafoll, I.V., Vitobello, A., Bournez, M., Faivre, L., Xia, K., Earl, R.K., Nowakowski, T., Bernier, R.A., Eichler, E.E., Gillentine, M.A., Wang, T., Hoekzema, K., Rosenfeld, J., Liu, P, Guo, H, Kim, C.N., Vries, B.B. de, Vissers, L.E.L.M., Nordenskjold, M., Kvarnung, M., Lindstrand, A., Nordgren, A., Gecz, J., Iascone, M., Cereda, A., Scatigno, A., Maitz, S., Zanni, G., Bertini, E., Zweier, C., Schuhmann, S., Wiesener, A., Pepper, M., Panjwani, H., Torti, E., Abid, F., Anselm, I., Srivastava, S., Atwal, P., Bacino, C.A., Bhat, G., Cobian, K., Bird, L.M., Friedman, J., Wright, M.S., Callewaert, B., Petit, F., Mathieu, S., Afenjar, A., Christensen, C.K., White, K.M., Elpeleg, O., Berger, I., Espineli, E.J., Fagerberg, C., Brasch-Andersen, C., Hansen, L.K., Feyma, T., Hughes, S., Thiffault, I., Sullivan, B., Yan, S., Keller, K., Keren, B., Mignot, C., Kooy, F., Meuwissen, M., Basinger, A., Kukolich, M., Philips, M., Ortega, L., Drummond-Borg, M., Lauridsen, M., Sorensen, K., Lehman, A., Lopez-Rangel, E., Levy, P., Lessel, D., Lotze, T., Madan-Khetarpal, S., Sebastian, J., Vento, J., Vats, D., Benman, L.M., McKee, S., Mirzaa, G.M., Muss, C., Pappas, J., Peeters, H, Romano, C, Elia, M., Galesi, O., Simon, M.E., Gassen, K.L.I. van, Simpson, K., Stratton, R., Syed, S., Thevenon, J., Palafoll, I.V., Vitobello, A., Bournez, M., Faivre, L., Xia, K., Earl, R.K., Nowakowski, T., Bernier, R.A., and Eichler, E.E.
- Abstract
Contains fulltext : 245103.pdf (Publisher’s version ) (Open Access), BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare va
- Published
- 2021
9. Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients
- Author
-
Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), Bhoj, E.J. (Elizabeth J.), Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), and Bhoj, E.J. (Elizabeth J.)
- Abstract
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.
- Published
- 2020
- Full Text
- View/download PDF
10. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency
- Author
-
Bygum, A., Fagerberg, C. R., Ponard, D., Monnier, N., Lunardi, J., and Drouet, C.
- Published
- 2011
- Full Text
- View/download PDF
11. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome (vol 21, pg 1295, 2019)
- Author
-
Sluijs, P.J. van der, Jansen, S., Vergano, S.A., Adachi-Fukuda, M., Alanay, Y., AlKindy, A., Baban, A., Bayat, A., Beck-Wodl, S., Berry, K., Bijlsma, E.K., Bok, L.A., Brouwer, A.F.J., Burgt, I. van der, Campeau, P.M., Canham, N., Chrzanowska, K., Chu, Y.W.Y., Chung, B.H.Y., Dahan, K., Rademaeker, M. de, Destree, A., Dudding-Byth, T., Earl, R., Elcioglu, N., Elias, E.R., Fagerberg, C., Gardham, A., Gener, B., Gerkes, E.H., Grasshoff, U., Haeringen, A. van, Heitink, K.R., Herkert, J.C., Hollander, N.S. den, Horn, D., Hunt, D., Kant, S.G., Kato, M., Kayserili, H., Kersseboom, R., Kilic, E., Krajewska-Walasek, M., Lammers, K., Laulund, L.W., Lederer, D., Lees, M., Lopez-Gonzalez, V., Maas, S., Mancini, G.M.S., Marcelis, C., Martinez, F., Maystadt, I., McGuire, M., Mckee, S., Mehta, S., Metcalfe, K., Milunsky, J., Mizuno, S., Moeschler, J.B., Netzer, C., Ockeloen, C.W., Oehl-Jaschkowitz, B., Okamoto, N., Olminkhof, S.N.M., Orellana, C., Pasquier, L., Pottinger, C., Riehmer, V., Robertson, S.P., Roifman, M., Rooryck, C., Ropers, F.G., Rosello, M., Ruivenkamp, C.A.L., Sagiroglu, M.S., Sallevelt, S.C.E.H., Calvo, A.S., Simsek-Kiper, P.O., Soares, G., Solaeche, L., Sonmez, F.M., Splitt, M., Steenbeek, D., Stegmann, A.P.A., Stumpel, C.T.R.M., Tanabe, S., Uctepe, E., Utine, G.E., Veenstra-Knol, H.E., Venkateswaran, S., Vilain, C., Vincent-Delorme, C., Vulto-van Silfhout, A.T., Wheeler, P., Wilson, G.N., Wilson, L.C., Wollnik, B., Kosho, T., Wieczorek, D., Eichler, E., Pfundt, R., Vries, B.B.A. de, Clayton-Smith, J., Santen, G.W.E., and Acibadem University Dspace
- Abstract
The original version of this Article contained an error in the spelling of the author Pleuntje J. van der Sluijs, which was incorrectly given as Eline (P. J.) van der Sluijs. This has now been corrected in both the PDF and HTML versions of the Article.
- Published
- 2019
12. A non-pathogenic duplication of DMD exon 45-51, inserted in chromosome 17, in three Danish patients
- Author
-
Lauridsen, M. Faurholdt, Koldby, K. Magaard, Krogh, L. Nylansted, Graakjaer, J., Jensen, T. Dyrsoe, Fagerberg, C., and Hertz, J. M.
- Published
- 2019
13. Morbidity risk of chromosomal breakpoints in topological domains enriched in non-exonic conserved elements
- Author
-
Bak, M., Fonseca, A., Mehrjouy, M., Rasmussen, M., Halgren, C., Bache, I., Kroisel, P., Midyan, S., Vermeesch, J., Vienna-Morgante, A., Abe, K., Moretti-Ferreira, D., Angelova, L., Rajcan-Separovic, E., Sismani, C., Aristidou, C., Sedlacek, Z., Fagerberg, C., Brondum-Nielsen, K., Vogel, I., Bojesen, A., Ounap, K., Roht, L., Lespinasse, J., Beneteau, C., Kalscheuer, V., Ehmke, N., Daumer-Haas, C., Stefanou, E., Czako, M., Sheth, F., Bonaglia, C., Novelli, A., Fannemel, M., Engelen, J., Travessa, A., Kokalj-Vokac, N., Ramos-Arroyo, M., Martinez, L. R., Guitart, M., Schinzel, A., Silan, F., de Almeida, C., Akkari, Y., Batanian, J., Kim, H., Jacky, P., Tommerup, N., and Consortium, Int Breakpoint Mapping
- Published
- 2019
14. Deletions and loss-of-function variants in TP63 associated with orofacial clefting
- Author
-
Khandelwal, K., Boogaard, M. van den, Mehrem, S.L., Gebel, J., Fagerberg, C., Beusekom, E. van, Binsbergen, E. van, Topaloglu, O., Steehouwer, M., Gilissen, C., Ishorst, N., Rooij, I.A.L.M. van, Roeleveld, N., Christensen, K., Schoenaers, J., Berge, S.J., Murray, J.C., Hens, G., Devriendt, K., Ludwig, K.U., Mangold, E., Hoischen, A., Zhou, H., Dotsch, V., Carels, C.E.L., Bokhoven, H. van, Khandelwal, K., Boogaard, M. van den, Mehrem, S.L., Gebel, J., Fagerberg, C., Beusekom, E. van, Binsbergen, E. van, Topaloglu, O., Steehouwer, M., Gilissen, C., Ishorst, N., Rooij, I.A.L.M. van, Roeleveld, N., Christensen, K., Schoenaers, J., Berge, S.J., Murray, J.C., Hens, G., Devriendt, K., Ludwig, K.U., Mangold, E., Hoischen, A., Zhou, H., Dotsch, V., Carels, C.E.L., and Bokhoven, H. van
- Abstract
Contains fulltext : 204872.pdf (publisher's version ) (Closed access), We aimed to identify novel deletions and variants of TP63 associated with orofacial clefting (OFC). Copy number variants were assessed in three OFC families using microarray analysis. Subsequently, we analyzed TP63 in a cohort of 1072 individuals affected with OFC and 706 population-based controls using molecular inversion probes (MIPs). We identified partial deletions of TP63 in individuals from three families affected with OFC. In the OFC cohort, we identified several TP63 variants predicting to cause loss-of-function alleles, including a frameshift variant c.569_576del (p.(Ala190Aspfs*5)) and a nonsense variant c.997C>T (p.(Gln333*)) that introduces a premature stop codon in the DNA-binding domain. In addition, we identified the first missense variants in the oligomerization domain c.1213G>A (p.(Val405Met)), which occurred in individuals with OFC. This variant was shown to abrogate oligomerization of mutant p63 protein into oligomeric complexes, and therefore likely represents a loss-of-function allele rather than a dominant-negative. All of these variants were inherited from an unaffected parent, suggesting reduced penetrance of such loss-of-function alleles. Our data indicate that loss-of-function alleles in TP63 can also give rise to OFC as the main phenotype. We have uncovered the dosage-dependent functions of p63, which were previously rejected.
- Published
- 2019
15. Is MED13L-related intellectual disability a recognizable syndrome?
- Author
-
Torring, P. M., Larsen, M. J., Brasch-Andersen, C., Krogh, L. N., Kibaek, M., Laulund, L., Illum, N., Dunkhase-Heinl, U., Wiesener, A., Popp, B., Marangi, Giuseppe, Hjortshoj, T. D., Ek, J., Vogel, I., Becher, N., Roos, L., Zollino, Marcella, Fagerberg, C. R., Marangi G. (ORCID:0000-0002-6898-8882), Zollino M. (ORCID:0000-0003-4871-9519), Torring, P. M., Larsen, M. J., Brasch-Andersen, C., Krogh, L. N., Kibaek, M., Laulund, L., Illum, N., Dunkhase-Heinl, U., Wiesener, A., Popp, B., Marangi, Giuseppe, Hjortshoj, T. D., Ek, J., Vogel, I., Becher, N., Roos, L., Zollino, Marcella, Fagerberg, C. R., Marangi G. (ORCID:0000-0002-6898-8882), and Zollino M. (ORCID:0000-0003-4871-9519)
- Abstract
Introduction: MED13L-related intellectual disability is characterized by moderate intellectual disability (ID), speech impairment, and dysmorphic facial features. We present 8 patients with MED13L-related intellectual disability and review the literature for phenotypical and genetic aspects of previously described patients. Materials and methods: In the search for genetic aberrations in individuals with ID, two of the patients were identified by chromosomal microarray analysis, and five by exome sequencing. One of the individuals, suspected of MED13L-related intellectual disability, based on clinical features, was identified by Sanger sequencing. Results: All 8 individuals had de novo MED13L aberrations, including two intragenic microdeletions, two frameshift, three nonsense variants, and one missense variant. Phenotypically, they all had intellectual disability, speech and motor delay, and features of the mouth (open mouth appearance, macroglossia, and/or macrostomia). Two individuals were diagnosed with autism, and one had autistic features. One had complex congenital heart defect, and one had persistent foramen ovale. The literature was reviewed with respect to clinical and dysmorphic features, and genetic aberrations. Conclusions: Even if most clinical features of MED13L-related intellectual disability are rather non-specific, the syndrome may be suspected in some individuals based on the association of developmental delay, speech impairment, bulbous nasal tip, and macroglossia, macrostomia, or open mouth appearance.
- Published
- 2019
16. Identification of mutations in SDR9C7 in six families with autosomal recessive congenital ichthyosis
- Author
-
Hotz, A., Fagerberg, C., Vahlquist, Anders, Bygum, A., Törmä, Hans, Rauschendorf, M-A, Zhang, Hanqian, Heinz, L., Bourrat, E., Hausser, I., Vestergaard, V., Dragomir, Anca, Zimmer, A. D., Fischer, J., Hotz, A., Fagerberg, C., Vahlquist, Anders, Bygum, A., Törmä, Hans, Rauschendorf, M-A, Zhang, Hanqian, Heinz, L., Bourrat, E., Hausser, I., Vestergaard, V., Dragomir, Anca, Zimmer, A. D., and Fischer, J.
- Published
- 2018
- Full Text
- View/download PDF
17. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome
- Author
-
van der Sluijs, E.P.J. (Eline (P.J.)), Jansen, S. (Sandra), Vergano, S.A. (Samantha A.), Adachi-Fukuda, M. (Miho), Alanay, Y. (Yasemin), AlKindy, A. (Adila), Baban, A. (Anwar), Bayat, A. (Allan), Beck-Wödl, S. (Stefanie), Berry, K. (Katherine), Bijlsma, E.K. (Emilia), Bok, L.A. (Levinus), Brouwer, A.F.J. (Alwin F. J.), Burgt, I. (Ineke) van der, Campeau, P.M. (Philippe M.), Canham, N. (Natalie), Chrzanowska, K.H. (Krystyna), Chu, Y.W.Y. (Yoyo W. Y.), Chung, B.H.Y. (Brain H. Y.), Dahan, K. (Karin), De Rademaeker, M. (Marjan), Destrée, A. (Anne), Dudding-Byth, T. (Tracy), Earl, R. (Rachel), Elcioglu, N.H. (Nursel), Elias, E.R. (Ellen R.), Fagerberg, C. (Christina), Gardham, A. (Alice), Gener, B. (Blanca), Gerkes, E.H. (Erica H), Grasshoff, U. (Ute), Haeringen, A. (Arie) van, Heitink, K.R. (Karin R.), Herkert, J.C. (Johanna), Hollander, N.S. (Nicolette) den, Horn, D. (Denise), Hunt, D. (David), Kant, S.G. (Sarina), Kato, M. (Mitsuhiro), Kayserili, H. (Hülya), Kersseboom, R. (Rogier), Kilic, E. (Esra), Krajewska-Walasek, M. (Malgorzata), Lammers, K. (Kylin), Laulund, L.W. (Lone W.), Lederer, D. (Damien), Lees, M.M. (Melissa), López-González, V. (V.), Maas, S.M. (Saskia), Mancini, G.M.S. (Grazia), Marcelis, C.L.M. (Carlo), Martinez, F. (Francisco), Maystadt, I. (Isabelle), McGuire, M. (Marianne), McKee, S., Mehta, S. (Sarju), Metcalfe, K. (Kay), Milunsky, J.M. (Jeff), Mizuno, S. (Seiji), Moeschler, J.B. (John B.), Netzer, C. (Christian), Ockeloen, C. (Charlotte), Oehl-Jaschkowitz, B. (Barbara), Okamoto, N. (Nobuhiko), Olminkhof, S.N.M. (Sharon N. M.), Orellana, C. (Carmen), Pasquier, L. (Laurent), Pottinger, C. (Caroline), Riehmer, V. (Vera), Robertson, S.P. (Stephen), Roifman, M. (Maian), Rooryck, C. (Caroline), Ropers, F.G. (Fabienne G.), Rosello, M. (Monica), Ruivenkamp, C.A. (Claudia), Sagiroglu, M.S. (Mahmut S.), Sallevelt, S.C.E.H. (Suzanne), Sanchis Calvo, A. (Amparo), Simsek-Kiper, P.O. (P.), Soares, G. (Gabriela), Solaeche, L. (Lucia), Mujgan Sonmez, F. (Fatma), Splitt, M. (M.), Steenbeek, D. (Duco), Stegmann, A.P.A. (Alexander P. A.), Stumpel, C. (Connie), Tanabe, S. (Saori), Uctepe, E. (Eyyup), Utine, G.E. (G. Eda), Veenstra-Knol, H.E. (Hermine), Venkateswaran, S. (Sunita), Vilain, C. (Catheline), Vincent-Delorme, C. (Catherine), Vulto-van Silfhout, A.T. (Anneke), Wheeler, P. (Patricia), Wilson, G.N. (Golder N.), Wilson, L.C. (Louise), Wollnik, B. (Bernd), Kosho, T. (Tomoki), Wieczorek, D. (Dagmar), Eichler, E.E. (Evan), Pfundt, R. (Rolph), Vries, B. (Boukje) de, Clayton-Smith, J., Santen, G.W.E. (Gijs), van der Sluijs, E.P.J. (Eline (P.J.)), Jansen, S. (Sandra), Vergano, S.A. (Samantha A.), Adachi-Fukuda, M. (Miho), Alanay, Y. (Yasemin), AlKindy, A. (Adila), Baban, A. (Anwar), Bayat, A. (Allan), Beck-Wödl, S. (Stefanie), Berry, K. (Katherine), Bijlsma, E.K. (Emilia), Bok, L.A. (Levinus), Brouwer, A.F.J. (Alwin F. J.), Burgt, I. (Ineke) van der, Campeau, P.M. (Philippe M.), Canham, N. (Natalie), Chrzanowska, K.H. (Krystyna), Chu, Y.W.Y. (Yoyo W. Y.), Chung, B.H.Y. (Brain H. Y.), Dahan, K. (Karin), De Rademaeker, M. (Marjan), Destrée, A. (Anne), Dudding-Byth, T. (Tracy), Earl, R. (Rachel), Elcioglu, N.H. (Nursel), Elias, E.R. (Ellen R.), Fagerberg, C. (Christina), Gardham, A. (Alice), Gener, B. (Blanca), Gerkes, E.H. (Erica H), Grasshoff, U. (Ute), Haeringen, A. (Arie) van, Heitink, K.R. (Karin R.), Herkert, J.C. (Johanna), Hollander, N.S. (Nicolette) den, Horn, D. (Denise), Hunt, D. (David), Kant, S.G. (Sarina), Kato, M. (Mitsuhiro), Kayserili, H. (Hülya), Kersseboom, R. (Rogier), Kilic, E. (Esra), Krajewska-Walasek, M. (Malgorzata), Lammers, K. (Kylin), Laulund, L.W. (Lone W.), Lederer, D. (Damien), Lees, M.M. (Melissa), López-González, V. (V.), Maas, S.M. (Saskia), Mancini, G.M.S. (Grazia), Marcelis, C.L.M. (Carlo), Martinez, F. (Francisco), Maystadt, I. (Isabelle), McGuire, M. (Marianne), McKee, S., Mehta, S. (Sarju), Metcalfe, K. (Kay), Milunsky, J.M. (Jeff), Mizuno, S. (Seiji), Moeschler, J.B. (John B.), Netzer, C. (Christian), Ockeloen, C. (Charlotte), Oehl-Jaschkowitz, B. (Barbara), Okamoto, N. (Nobuhiko), Olminkhof, S.N.M. (Sharon N. M.), Orellana, C. (Carmen), Pasquier, L. (Laurent), Pottinger, C. (Caroline), Riehmer, V. (Vera), Robertson, S.P. (Stephen), Roifman, M. (Maian), Rooryck, C. (Caroline), Ropers, F.G. (Fabienne G.), Rosello, M. (Monica), Ruivenkamp, C.A. (Claudia), Sagiroglu, M.S. (Mahmut S.), Sallevelt, S.C.E.H. (Suzanne), Sanchis Calvo, A. (Amparo), Simsek-Kiper, P.O. (P.), Soares, G. (Gabriela), Solaeche, L. (Lucia), Mujgan Sonmez, F. (Fatma), Splitt, M. (M.), Steenbeek, D. (Duco), Stegmann, A.P.A. (Alexander P. A.), Stumpel, C. (Connie), Tanabe, S. (Saori), Uctepe, E. (Eyyup), Utine, G.E. (G. Eda), Veenstra-Knol, H.E. (Hermine), Venkateswaran, S. (Sunita), Vilain, C. (Catheline), Vincent-Delorme, C. (Catherine), Vulto-van Silfhout, A.T. (Anneke), Wheeler, P. (Patricia), Wilson, G.N. (Golder N.), Wilson, L.C. (Louise), Wollnik, B. (Bernd), Kosho, T. (Tomoki), Wieczorek, D. (Dagmar), Eichler, E.E. (Evan), Pfundt, R. (Rolph), Vries, B. (Boukje) de, Clayton-Smith, J., and Santen, G.W.E. (Gijs)
- Abstract
Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods: Clinicians entered clinical data in an extensive web-based survey. Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.
- Published
- 2018
- Full Text
- View/download PDF
18. Identification of mutations in SDR9C7 in six families with autosomal recessive congenital ichthyosis
- Author
-
Hotz, A., primary, Fagerberg, C., additional, Vahlquist, A., additional, Bygum, A., additional, Törmä, H., additional, Rauschendorf, M.-A., additional, Zhang, H., additional, Heinz, L., additional, Bourrat, E., additional, Hausser, I., additional, Vestergaard, V., additional, Dragomir, A., additional, Zimmer, A.D., additional, and Fischer, J., additional
- Published
- 2018
- Full Text
- View/download PDF
19. The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity
- Author
-
Maillard, Am, Ruef, A, Pizzagalli, F, Migliavacca, E, Hippolyte, L, Adaszewski, S, Dukart, J, Ferrari, C, Conus, P, Männik, K, Zazhytska, M, Siffredi, V, Maeder, P, Kutalik, Z, Kherif, F, Hadjikhani, N, Beckmann, Js, Reymond, A, Draganski, B, Jacquemont, S, 2 European Consortium including Addor MC, 1. 6. p. 1. 1., Andrieux, J, Arveiler, B, Baujat, G, Béna, F, Bouquillon, S, Boute, O, Brusco, Alfredo, Campion, D, David, A, Delrue, Ma, Doco Fenzy, M, Fagerberg, C, Faivre, L, Forzano, F, Giachino, Daniela Francesca, Guichet, A, Guillin, O, Héron, D, Isidor, B, Jacquette, A, Journel, H, Keren, B, Lacombe, D, Le Caignec, C, Lespinasse, J, Mandrile, Giorgia, Mathieu Dramard, M, Mignot, C, Petit, F, Plessis, G, Prieur, F, Sanlaville, D, Van Haelst, M, Van Maldergem, L., 16p11.2 European Consortium, and Other departments
- Subjects
Adult ,Male ,Adolescent ,DNA Copy Number Variations ,Gene Dosage ,Chromosomes ,Body Mass Index ,Young Adult ,Humans ,Anthropometry ,Arabidopsis Proteins ,Autistic Disorder ,Brain ,Brain Mapping ,Child ,Chromosomes, Human, Pair 16 ,Female ,Genetic Association Studies ,Intramolecular Transferases ,Middle Aged ,Obesity ,Phenotype ,Psychiatric Status Rating Scales ,Schizophrenia ,Pair 16 ,Original Article ,Human - Abstract
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
- Published
- 2015
20. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema
- Author
-
Mendola, A., Schlogel, M.J., Ghalamkarpour, A., Irrthum, A., Nguyen, H.L., Fastre, E., Bygum, A., Vleuten, C.J. van der, Fagerberg, C., Baselga, E., Quere, I., Mulliken, J.B., Boon, L.M., Brouillard, P., Vikkula, M., and Group, T.L.R.
- Subjects
Auto-immunity, transplantation and immunotherapy [N4i 4] - Abstract
Item does not contain fulltext
- Published
- 2013
21. Saturation of the Human Genome with Chromosomal Breakpoints
- Author
-
Rasmussen, Malene Bøgehus, Schlechter, C. L., Mehrjouy, M. M., Bache, I., Lind-Thomsen, A., Silahtaroglu, A., Kjærgaard, S., Brondum-Nielsen, K., Jensen, P K A, Fagerberg, C., Krogh, L. N., Fonseca, A. C. D., Morgante, A. M. V., Abe, K. T., Harding, Christina Halgren, Bak, M., Jacky, P., Tommerup, N., Rasmussen, Malene Bøgehus, Schlechter, C. L., Mehrjouy, M. M., Bache, I., Lind-Thomsen, A., Silahtaroglu, A., Kjærgaard, S., Brondum-Nielsen, K., Jensen, P K A, Fagerberg, C., Krogh, L. N., Fonseca, A. C. D., Morgante, A. M. V., Abe, K. T., Harding, Christina Halgren, Bak, M., Jacky, P., and Tommerup, N.
- Published
- 2014
22. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema.
- Author
-
UCL - (SLuc) Centre de génétique médicale UCL, UCL - (SLuc) Service de chirurgie plastique, UCL - SSS/DDUV - Institut de Duve, Mendola, Antonella, Schlögel, Matthieu J, Ghalamkarpour, Arash, Irrthum, A, Nguyen, H L, Fastré, Elodie, Bygum, A, van der Vleuten, C, Fagerberg, C, Baselga, E, Quere, I, Mulliken, J B, Boon, Laurence M., Brouillard, Pascal, Vikkula, Miikka, UCL - (SLuc) Centre de génétique médicale UCL, UCL - (SLuc) Service de chirurgie plastique, UCL - SSS/DDUV - Institut de Duve, Mendola, Antonella, Schlögel, Matthieu J, Ghalamkarpour, Arash, Irrthum, A, Nguyen, H L, Fastré, Elodie, Bygum, A, van der Vleuten, C, Fagerberg, C, Baselga, E, Quere, I, Mulliken, J B, Boon, Laurence M., Brouillard, Pascal, and Vikkula, Miikka
- Abstract
Lymphedema is caused by dysfunction of lymphatic vessels, leading to disabling swelling that occurs mostly on the extremities. Lymphedema can be either primary (congenital) or secondary (acquired). Familial primary lymphedema commonly segregates in an autosomal dominant or recessive manner. It can also occur in combination with other clinical features. Nine mutated genes have been identified in different isolated or syndromic forms of lymphedema. However, the prevalence of primary lymphedema that can be explained by these genetic alterations is unknown. In this study, we investigated 7 of these putative genes. We screened 78 index patients from families with inherited lymphedema for mutations in FLT4, GJC2, FOXC2, SOX18, GATA2, CCBE1, and PTPN14. Altogether, we discovered 28 mutations explaining 36% of the cases. Additionally, 149 patients with sporadic primary lymphedema were screened for FLT4, FOXC2, SOX18, CCBE1, and PTPN14. Twelve mutations were found that explain 8% of the cases. Still unidentified is the genetic cause of primary lymphedema in 64% of patients with a family history and 92% of sporadic cases. Identification of those genes is important for understanding of etiopathogenesis, stratification of treatments and generation of disease models. Interestingly, most of the proteins that are encoded by the genes mutated in primary lymphedema seem to act in a single functional pathway involving VEGFR3 signaling. This underscores the important role this pathway plays in lymphatic development and function and suggests that the unknown genes also have a role.
- Published
- 2013
23. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes
- Author
-
Lionel, A. C., primary, Tammimies, K., additional, Vaags, A. K., additional, Rosenfeld, J. A., additional, Ahn, J. W., additional, Merico, D., additional, Noor, A., additional, Runke, C. K., additional, Pillalamarri, V. K., additional, Carter, M. T., additional, Gazzellone, M. J., additional, Thiruvahindrapuram, B., additional, Fagerberg, C., additional, Laulund, L. W., additional, Pellecchia, G., additional, Lamoureux, S., additional, Deshpande, C., additional, Clayton-Smith, J., additional, White, A. C., additional, Leather, S., additional, Trounce, J., additional, Melanie Bedford, H., additional, Hatchwell, E., additional, Eis, P. S., additional, Yuen, R. K. C., additional, Walker, S., additional, Uddin, M., additional, Geraghty, M. T., additional, Nikkel, S. M., additional, Tomiak, E. M., additional, Fernandez, B. A., additional, Soreni, N., additional, Crosbie, J., additional, Arnold, P. D., additional, Schachar, R. J., additional, Roberts, W., additional, Paterson, A. D., additional, So, J., additional, Szatmari, P., additional, Chrysler, C., additional, Woodbury-Smith, M., additional, Brian Lowry, R., additional, Zwaigenbaum, L., additional, Mandyam, D., additional, Wei, J., additional, MacDonald, J. R., additional, Howe, J. L., additional, Nalpathamkalam, T., additional, Wang, Z., additional, Tolson, D., additional, Cobb, D. S., additional, Wilks, T. M., additional, Sorensen, M. J., additional, Bader, P. I., additional, An, Y., additional, Wu, B.-L., additional, Musumeci, S. A., additional, Romano, C., additional, Postorivo, D., additional, Nardone, A. M., additional, Monica, M. D., additional, Scarano, G., additional, Zoccante, L., additional, Novara, F., additional, Zuffardi, O., additional, Ciccone, R., additional, Antona, V., additional, Carella, M., additional, Zelante, L., additional, Cavalli, P., additional, Poggiani, C., additional, Cavallari, U., additional, Argiropoulos, B., additional, Chernos, J., additional, Brasch-Andersen, C., additional, Speevak, M., additional, Fichera, M., additional, Ogilvie, C. M., additional, Shen, Y., additional, Hodge, J. C., additional, Talkowski, M. E., additional, Stavropoulos, D. J., additional, Marshall, C. R., additional, and Scherer, S. W., additional
- Published
- 2013
- Full Text
- View/download PDF
24. A Novel Pseudo-Dicentric Variant of 16p11.2–q11.2 Contains Euchromatin from 16p11.2–p11.1 and Resembles Pathogenic Duplications of Proximal 16q
- Author
-
Barber, J.C.K., primary, Brasch-Andersen, C., additional, Maloney, V.K., additional, Huang, S., additional, Bateman, M.S., additional, Graakjaer, J., additional, Heinl, U.D., additional, and Fagerberg, C., additional
- Published
- 2012
- Full Text
- View/download PDF
25. Phylloid Hypermelanosis in a Child with Psychomotor Delay, Cicatricial Alopecia, Hearing Loss and Polythelia
- Author
-
Bygum, A, primary, Petkov, Y, additional, Graakjaer, J, additional, Jensen, UB, additional, and Fagerberg, C, additional
- Published
- 2012
- Full Text
- View/download PDF
26. Identification of mutations in <italic>SDR9C7</italic> in six families with autosomal recessive congenital ichthyosis.
- Author
-
Hotz, A., Fagerberg, C., Vahlquist, A., Bygum, A., Törmä, H., Rauschendorf, M.‐A., Zhang, H., Heinz, L., Bourrat, E., Hausser, I., Vestergaard, V., Dragomir, A., Zimmer, A. D., and Fischer, J.
- Subjects
- *
ICHTHYOSIS , *GENETIC mutation - Published
- 2018
- Full Text
- View/download PDF
27. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency
- Author
-
Bygum, A., primary, Fagerberg, C. R., additional, Ponard, D., additional, Monnier, N., additional, Lunardi, J., additional, and Drouet, C., additional
- Published
- 2010
- Full Text
- View/download PDF
28. How well do patient and general practitioner agree about the content of consultations?
- Author
-
Fagerberg, C R, Kragstrup, J, Støvring, H, Rasmussen, N K, Fagerberg, C R, Kragstrup, J, Støvring, H, and Rasmussen, N K
- Abstract
OBJECTIVE: To analyse agreement between patients' and general practitioners' perception of content of consultations.DESIGN: Cross-sectional study based on paired questionnaires answered by patients and general practitioners (GPs).SETTING: General practices in the County of Funen, Denmark.SUBJECTS: All 291 GPs in the County were invited to join the investigation, and 137 accepted. All patients who consulted the participating GPs in a 3 day period were included in the investigation. The GPs registered 6021 patients, of whom 3578 (59%) returned the completed questionnaire.MAIN OUTCOME MEASURES: GPs and patients were asked about the urgency of the consultation, number of problems presented, duration of consultation, and quality of communication. The GPs' and patients' answers were matched, and variables of agreement were made. Patients were furthermore asked about their satisfaction with the consultation.RESULTS AND CONCLUSION: Agreement for the four matched answers varied from 69% to 83%. Disagreement was observed more often in consultations where the patient's self-evaluated health was poor, the patient was female, had a chronic disease, expected a prescription or felt that the GP had little knowledge of his/her life circumstances. Agreement concerning urgency, number of problems and quality of communication was associated with a higher degree of patient satisfaction.
- Published
- 1999
29. [Array-comparative genomic hybridization is a new and promising method for prenatal chromosomal diagnosis]
- Author
-
Lone Nikoline Nørgaard, Ekelund C, Fagerberg C, Kjærgaard S, Lundstrøm M, Skibsted L, Sperling L, Sundberg K, Tabor A, Vogel I, and Ob, Petersen
30. Systemic epidermal nevus with involvement of the oral mucosa due to FGFR3 mutation
- Author
-
Clemmensen Ole J, Fagerberg Christina R, Bygum Anette, Fiebig Britta, and Hafner Christian
- Subjects
Internal medicine ,RC31-1245 ,Genetics ,QH426-470 - Abstract
Abstract Background Epidermal nevi (EN) represent benign congenital skin lesions following the lines of Blaschko. They result from genetic mosaicism, and activating FGFR3 and PIK3CA mutations have been implicated. Case presentation We report a female patient with a systemic keratinocytic nevus also involving the oral mucosa. Molecular genetic analysis revealed a mosaicism of the FGFR3 hotspot mutation R248C in the EN lesions of the skin and of the oral mucosa. The detection of the R248C mutation in a proportion of blood leukocytes and a slight scoliosis suggest an EN syndrome. Conclusions Our results show that activating FGFR3 mutations can also affect the oral mucosa and that extracutaneous manifestations of EN syndrome can be subtle. We highlight the theoretical risk of the patient having an offspring with thanatophoric dysplasia as gonadal mosaicism for the R248C mutation cannot be excluded.
- Published
- 2011
- Full Text
- View/download PDF
31. Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease-gene association
- Author
-
M. Cesana, L. Vaccaro, M. J. Larsen, M. Kibæk, L. Micale, S. Riccardo, P. Annunziata, C. Colantuono, L. Di Filippo, D. De Brasi, M. Castori, C. Fagerberg, F. Acquaviva, D. Cacchiarelli, Cesana, M, Vaccaro, L, Larsen, M J, Kibæk, M, Micale, L, Riccardo, S, Annunziata, P, Colantuono, C, Di Filippo, L, De Brasi, D, Castori, M, Fagerberg, C, Acquaviva, F, and Cacchiarelli, D
- Subjects
Genetics ,Genetics (clinical) - Abstract
The application of next-generation sequencing (NGS) to clinical practice is still hampered by the ability to interpret the clinical relevance of novel variants and the difficulty of evaluating their effect in specific tissues. Here, we applied integrated genomic approaches for interrogating blood samples of two unrelated individuals with neurodevelopmental disorders and identified a novel neuro-pathogenic role for the Mitogen-Activated Protein Kinase 4 gene (MAP4K4). In particular, we identified two novel frameshift variants in coding exons expressed in the blood and neuronal isoforms. Both variants were predicted to generate non-sense-mediated decay. By transcriptome analysis, we simultaneously demonstrated the deleterious effect of the identified variants on the splicing activity and stability of MAP4K4 mRNA. Therefore, we propose MAP4K4 as a novel causative gene for non-syndromic and syndromic neurodevelopmental disorders. Altogether, we prove the efficacy of an integrated approach of exome and transcriptome sequencing in the resolution of undiagnosed cases by leveraging the analysis of variants in genes expressed in peripheral blood.
- Published
- 2022
32. ZTTK syndrome: Clinical and molecular findings of 15 cases and a review of the literature
- Author
-
Kushary, S.T., Revah-Politi, A., Barua, S., Ganapathi, M., Accogli, A., Aggarwal, V., Brunetti-Pierri, N., Cappuccio, G., Capra, V., Fagerberg, C.R., Gazdagh, G., Guzman, E., Hadonou, M., Harrison, V., Havelund, K., Iancu, D., Kraus, A., Lippa, N.C., Mansukhani, M., McBrian, D., McEntagart, M., Pacio-Miguez, M., Palomares-Bralo, M., Pottinger, C., Ruivenkamp, C.A.L., Sacco, O., Santen, G.W.E., Santos-Simarro, F., Scala, M., Short, J., Sorensen, K.P., Woods, C.G., Yeboa, K.A., DDD Study, TUDP Consortium, Kushary, S. T., Revah-Politi, A., Barua, S., Ganapathi, M., Accogli, A., Aggarwal, V., Brunetti Pierri, N., Cappuccio, G., Capra, V., Fagerberg, C. R., Gazdagh, G., Guzman, E., Hadonou, M., Harrison, V., Havelund, K., Iancu, D., Kraus, A., Lippa, N. C., Mansukhani, M., Mcbrian, D., Mcentagart, M., Pacio-Miguez, M., Palomares-Bralo, M., Pottinger, C., Ruivenkamp, C. A. L., Sacco, O., Santen, G. W. E., Santos-Simarro, F., Scala, M., Short, J., Sorensen, K. P., Woods, C. G., and Anyane Yeboa, K.
- Subjects
Male ,Genotype ,Mutation, Missense ,genotype-phenotype correlation ,Article ,Congenital Abnormalities ,whole exome sequencing ,Minor Histocompatibility Antigens ,Neuroimaging ,Seizures ,Intellectual Disability ,Intellectual disability ,Exome Sequencing ,Genetics ,Medicine ,Missense mutation ,Humans ,Genetic Predisposition to Disease ,Gene ,Genetics (clinical) ,Exome sequencing ,Genetic Association Studies ,business.industry ,Brain ,genotype–phenotype correlation ,medicine.disease ,SON ,DNA-Binding Proteins ,Phenotype ,Variable dysmorphic features ,Female ,business ,multisystemic disorder - Abstract
Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is caused by de novo loss-of-function variants in the SON gene (MIM #617140). This multisystemic disorder is characterized by intellectual disability, seizures, abnormal brain imaging, variable dysmorphic features, and various congenital anomalies. The wide application and increasing accessibility of whole exome sequencing (WES) has helped to identify new cases of ZTTK syndrome over the last few years. To date, there have been approximately 45 cases reported in the literature. Here, we describe 15 additional individuals with variants in the SON gene, including those with missense variants bringing the total number of known cases to 60. We have reviewed the clinical and molecular data of these new cases and all previously reported cases to further delineate the most common as well as emerging clinical findings related to this syndrome. Furthermore, we aim to delineate any genotype–phenotype correlations specifically for a recurring pathogenic four base pair deletion (c.5753_5756del) along with discussing the impact of missense variants seen in the SON gene.
- Published
- 2021
33. Epileptic encephalopathy caused by ARV1 deficiency: Refinement of the genotype–phenotype spectrum and functional impact on GPI-anchored proteins
- Author
-
Anna C.E. Hurst, Christina Fagerberg, Lene Sperling, Marcello Scala, Lucas Herissant, Martine Doco-Fenzy, Emma Palmer, Beth Hudson, Melanie Jennesson, Martin Jakob Larsen, Elisabetta Amadori, Vincenzo Nigro, Andrea Accogli, Smrithi Salian, Pasquale Striano, Annalaura Torella, Michele Pinelli, Ieva Miceikaite, Megan Boothe, Valeria Capra, Tawfeg Ben-Omran, Mariasavina Severino, Thi Tuyet Mai Nguyen, Carlo Minetti, Rani Sachdev, Philippe M. Campeau, Salian, S., Scala, M., Nguyen, T. T. M., Severino, M., Accogli, A., Amadori, E., Torella, A., Pinelli, M., Hudson, B., Boothe, M., Hurst, A., Ben-Omran, T., Larsen, M. J., Fagerberg, C. R., Sperling, L., Miceikaite, I., Herissant, L., Doco-Fenzy, M., Jennesson, M., Nigro, V., Striano, P., Minetti, C., Sachdev, R. K., Palmer, E. E., Capra, V., and Campeau, P. M.
- Subjects
Male ,Glycosylphosphatidylinositols ,DNA Mutational Analysis ,Mutant ,Infantile ,Spasms ,Transduction (genetics) ,0302 clinical medicine ,Pregnancy ,Prenatal Diagnosis ,Genetics (clinical) ,0303 health sciences ,Brain ,Magnetic Resonance Imaging ,Hypotonia ,Transmembrane protein ,GPI-anchored proteins ,Pedigree ,3. Good health ,Phenotype ,Female ,medicine.symptom ,Spasms, Infantile ,lentiviral gene rescue ,ARV1 ,early-infantile epileptic encephalopathy ,Alleles ,Amino Acid Substitution ,Carrier Proteins ,Facies ,GPI-Linked Proteins ,Humans ,Membrane Proteins ,Mutation ,Genetic Association Studies ,Genetic Predisposition to Disease ,Encephalopathy ,Biology ,03 medical and health sciences ,Complementary DNA ,Genetics ,medicine ,030304 developmental biology ,GPI-anchored protein ,Endoplasmic reticulum ,Wild type ,medicine.disease ,Molecular biology ,030217 neurology & neurosurgery - Abstract
Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.
- Published
- 2021
34. Quantifying the effects of 16p11.2 copy number variants on brain structure: A multisite genetic-first study
- Author
-
Sandra Martin-Brevet, Borja Rodríguez-Herreros, Jared A. Nielsen, Clara Moreau, Claudia Modenato, Anne M. Maillard, Aurélie Pain, Sonia Richetin, Aia E. Jønch, Abid Y. Qureshi, Nicole R. Zürcher, Philippe Conus, Wendy K. Chung, Elliott H. Sherr, John E. Spiro, Ferath Kherif, Jacques S. Beckmann, Nouchine Hadjikhani, Alexandre Reymond, Randy L. Buckner, Bogdan Draganski, Sébastien Jacquemont, Marie-Claude Addor, Joris Andrieux, Benoît Arveiler, Geneviève Baujat, Frédérique Sloan-Béna, Marco Belfiore, Dominique Bonneau, Sonia Bouquillon, Odile Boute, Alfredo Brusco, Tiffany Busa, Jean-Hubert Caberg, Dominique Campion, Vanessa Colombert, Marie-Pierre Cordier, Albert David, François-Guillaume Debray, Marie-Ange Delrue, Martine Doco-Fenzy, Ulrike Dunkhase-Heinl, Patrick Edery, Christina Fagerberg, Laurence Faivre, Francesca Forzano, David Genevieve, Marion Gérard, Daniela Giachino, Agnès Guichet, Olivier Guillin, Delphine Héron, Bertrand Isidor, Aurélia Jacquette, Sylvie Jaillard, Hubert Journel, Boris Keren, Didier Lacombe, Sébastien Lebon, Cédric Le Caignec, Marie-Pierre Lemaître, James Lespinasse, Michèle Mathieu-Dramart, Sandra Mercier, Cyril Mignot, Chantal Missirian, Florence Petit, Kristina Pilekær Sørensen, Lucile Pinson, Ghislaine Plessis, Fabienne Prieur, Caroline Rooryck-Thambo, Massimiliano Rossi, Damien Sanlaville, Britta Schlott Kristiansen, Caroline Schluth-Bolard, Marianne Till, Mieke Van Haelst, Lionel Van Maldergem, Hanalore Alupay, Benjamin Aaronson, Sean Ackerman, Katy Ankenman, Ayesha Anwar, Constance Atwell, Alexandra Bowe, Arthur L. Beaudet, Marta Benedetti, Jessica Berg, Jeffrey Berman, Leandra N. Berry, Audrey L. Bibb, Lisa Blaskey, Jonathan Brennan, Christie M. Brewton, Randy Buckner, Polina Bukshpun, Jordan Burko, Phil Cali, Bettina Cerban, Yishin Chang, Maxwell Cheong, Vivian Chow, Zili Chu, Darina Chudnovskaya, Lauren Cornew, Corby Dale, John Dell, Allison G. Dempsey, Trent Deschamps, Rachel Earl, James Edgar, Jenna Elgin, Jennifer Endre Olson, Yolanda L. Evans, Anne Findlay, Gerald D. Fischbach, Charlie Fisk, Brieana Fregeau, Bill Gaetz, Leah Gaetz, Silvia Garza, Jennifer Gerdts, Orit Glenn, Sarah E. Gobuty, Rachel Golembski, Marion Greenup, Kory Heiken, Katherine Hines, Leighton Hinkley, Frank I. Jackson, Julian Jenkins, Rita J. Jeremy, Kelly Johnson, Stephen M. Kanne, Sudha Kessler, Sarah Y. Khan, Matthew Ku, Emily Kuschner, Anna L. Laakman, Peter Lam, Morgan W. Lasala, Hana Lee, Kevin LaGuerre, Susan Levy, Alyss Lian Cavanagh, Ashlie V. Llorens, Katherine Loftus Campe, Tracy L. Luks, Elysa J. Marco, Stephen Martin, Alastair J. Martin, Gabriela Marzano, Christina Masson, Kathleen E. McGovern, Rebecca McNally Keehn, David T. Miller, Fiona K. Miller, Timothy J. Moss, Rebecca Murray, Srikantan S. Nagarajan, Kerri P. Nowell, Julia Owen, Andrea M. Paal, Alan Packer, Patricia Z. Page, Brianna M. Paul, Alana Peters, Danica Peterson, Annapurna Poduri, Nicholas J. Pojman, Ken Porche, Monica B. Proud, Saba Qasmieh, Melissa B. Ramocki, Beau Reilly, Timothy P.L. Roberts, Dennis Shaw, Tuhin Sinha, Bethanny Smith-Packard, Anne Snow Gallagher, Vivek Swarnakar, Tony Thieu, Christina Triantafallou, Roger Vaughan, Mari Wakahiro, Arianne Wallace, Tracey Ward, Julia Wenegrat, Anne Wolken, 16p11.2 European Consortium, Simons Variation in Individuals Project (VIP) Consortium, CSIR-Institute of Microbial Technology [Chandigarh] (IMTech), Council of Scientific and Industrial Research [India] (CSIR), Service Hospitalier Frédéric Joliot (SHFJ), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Human Genetics, Gillberg Neuropsychiatry Centre [Göteborg, Sueden], Institute of Neuroscience and Physiology [Göteborg]-University of Gothenburg (GU), The Wellcome Trust Sanger Institute [Cambridge], Department of Psychiatry [Boston], Massachusetts General Hospital [Boston], Service de génétique médicale, Centre Hospitalier Universitaire Vaudois [Lausanne] (CHUV), Laboratoire de Génétique Clinique, Hôpital Jeanne de Flandre [Lille]-Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Laboratoire de Génétique Humaine, Développement et Cancer, Université Bordeaux Segalen - Bordeaux 2, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de Génétique Médicale [CHU Necker], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Guglielmo Marconi University [Roma], Laboratoire de biomécanique (LBM), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Sorbonne Paris Cité (USPC)-Université Paris 13 (UP13), Systèmes de Référence Temps Espace (SYRTE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de Génétique clinique, Hôpital Jeanne de Flandre [Lille]-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Medical Sciences, Università degli studi di Torino (UNITO), Marseille medical genetics - Centre de génétique médicale de Marseille (MMG), Institut National de la Santé et de la Recherche Médicale (INSERM)-Aix Marseille Université (AMU), Département de génétique médicale [Hôpital de la Timone - APHM], Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Génétique du cancer et des maladies neuropsychiatriques (GMFC), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Liège (CHU-Liège), Service de cytogénétique constitutionnelle, Hospices Civils de Lyon (HCL)-CHU de Lyon-Centre Neuroscience et Recherche, Department of Clinical Genetics, Vejle Hospital, Institute of Child Health, Département de génétique médicale, maladies rares et médecine personnalisée [CHRU Montpellier], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Cellules Souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies (IRMB), Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Service de génétique [Angers], Université d'Angers (UA)-Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM), Génétique médicale et fonctionnelle du cancer et des maladies neuropsychiatriques, Institut de Myologie, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Service de Génétique Médicale, Centre hospitalier universitaire de Nantes (CHU Nantes), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Institut de recherche en santé, environnement et travail (Irset), Université d'Angers (UA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Pontchaillou [Rennes], Génétique Médicale, Centre hospitalier Bretagne Atlantique (Morbihan) (CHBA)-Hôpital Chubert, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin, Physiopathologie et neuroprotection des atteintes du cerveau en développement, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Département de Génétique Chromosomique, Bâtiment Hôtel Dieu - Centre Hospitalier de Chambéry, CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer - U1172 Inserm - U837 (JPArc), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Lille Nord de France (COMUE)-Université de Lille, Service de génétique, CHU Dijon, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Service de Génétique [CHU Caen], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN), Service de Génétique Clinique Chromosomique et Moléculaire, CHU Saint-Etienne, CHU Bordeaux [Bordeaux], Hospices Civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Department of Genomics of Common Disease, Imperial College London, Regional Hospital, Department of Psychiatry and Behavioral Sciences! (UW psychiatry), University of Washington [Seattle], University of California, San Francisco (UCSF), UCSF, Unité de Recherches Zootechniques (URZ), Institut National de la Recherche Agronomique (INRA), University of California [San Francisco] (UCSF), University of California, UCL Institute of Neurology, Biomagnetic Imaging Laboratory - University of California, SFARI219193, Simons Foundation, 31003A160203, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Roger De Spoelberch, Partridge Foundations, Jeanne et Jean Louis Levesque Foundation, 604102, Seventh Framework Programme, Canada Research Chairs, CRSII33-133044, SNSF Sinergia, 32003B_159780, SNSF National Centre of Competence in Research Synapsy, Foundation Parkinson Switzerland, Foundation Synapsis, Université de Lausanne = University of Lausanne (UNIL), CHU Sainte Justine [Montréal], Harvard University [Cambridge], Odense University Hospital (OUH), Department of radiology (Massachusetts General Hospital), Department of Psychiatry Massachusetts General Hospital (MGH), Columbia University [New York], Simons Foundation, University of California [San Francisco] (UC San Francisco), University of California (UC), University of Gothenburg (GU), Centre de recherche du CHU Sainte-Justine / Research Center of the Sainte-Justine University Hospital [Montreal, Canada], Université de Montréal (UdeM)-CHU Sainte Justine [Montréal], Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Torino = University of Turin (UNITO), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Vejle Hospital [Danemark], Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Lille Nord de France (COMUE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Harvard University, Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer - U837 (JPArc), Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), University of Lausanne (UNIL), Centre de recherche du CHU Sainte-Justine [Montreal], Institut National de la Santé et de la Recherche Médicale (INSERM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Assistance Publique - Hôpitaux de Marseille (APHM)-Aix Marseille Université (AMU), CHU Caen, Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Amsterdam Neuroscience - Complex Trait Genetics, Amsterdam Reproduction & Development (AR&D), Human genetics, Institute of Microbial Technology (IMTECH), Intitute of Microbial Technology, Gillberg Neuropsychiatry Centre, Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-CHU Necker - Enfants Malades [AP-HP], PSL Research University (PSL)-PSL Research University (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département de génétique médicale, maladies rares et médecine personnalisée [CHRU de Montpellier], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-CHU Pitié-Salpêtrière [APHP], Centre Hospitalier Bretagne Atlantique-Hôpital Chubert, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), CHU Pitié-Salpêtrière [APHP], Centre de recherche Jean-Pierre Aubert-Neurosciences et Cancer, Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé, Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Addor, M.C., Andrieux, J., Arveiler, B., Baujat, G., Sloan-Béna, F., Belfiore, M., Bonneau, D., Bouquillon, S., Boute, O., Brusco, A., Busa, T., Caberg, J.H., Campion, D., Colombert, V., Cordier, M.P., David, A., Debray, F.G., Delrue, M.A., Doco-Fenzy, M., Dunkhase-Heinl, U., Edery, P., Fagerberg, C., Faivre, L., Forzano, F., Genevieve, D., Gérard, M., Giachino, D., Guichet, A., Guillin, O., Héron, D., Isidor, B., Jacquette, A., Jaillard, S., Journel, H., Keren, B., Lacombe, D., Lebon, S., Le Caignec, C., Lemaître, M.P., Lespinasse, J., Mathieu-Dramart, M., Mercier, S., Mignot, C., Missirian, C., Petit, F., Pilekær Sørensen, K., Pinson, L., Plessis, G., Prieur, F., Rooryck-Thambo, C., Rossi, M., Sanlaville, D., Schlott Kristiansen, B., Schluth-Bolard, C., Till, M., Van Haelst, M., Van Maldergem, L., Alupay, H., Aaronson, B., Ackerman, S., Ankenman, K., Anwar, A., Atwell, C., Bowe, A., Beaudet, A.L., Benedetti, M., Berg, J., Berman, J., Berry, L.N., Bibb, A.L., Blaskey, L., Brennan, J., Brewton, C.M., Buckner, R., Bukshpun, P., Burko, J., Cali, P., Cerban, B., Chang, Y., Cheong, M., Chow, V., Chu, Z., Chudnovskaya, D., Cornew, L., Dale, C., Dell, J., Dempsey, A.G., Deschamps, T., Earl, R., Edgar, J., Elgin, J., Olson, J.E., Evans, Y.L., Findlay, A., Fischbach, G.D., Fisk, C., Fregeau, B., Gaetz, B., Gaetz, L., Garza, S., Gerdts, J., Glenn, O., Gobuty, S.E., Golembski, R., Greenup, M., Heiken, K., Hines, K., Hinkley, L., Jackson, F.I., Jenkins, J., Jeremy, R.J., Johnson, K., Kanne, S.M., Kessler, S., Khan, S.Y., Ku, M., Kuschner, E., Laakman, A.L., Lam, P., Lasala, M.W., Lee, H., LaGuerre, K., Levy, S., Cavanagh, A.L., Llorens, A.V., Campe, K.L., Luks, T.L., Marco, E.J., Martin, S., Martin, A.J., Marzano, G., Masson, C., McGovern, K.E., McNally Keehn, R., Miller, D.T., Miller, F.K., Moss, T.J., Murray, R., Nagarajan, S.S., Nowell, K.P., Owen, J., Paal, A.M., Packer, A., Page, P.Z., Paul, B.M., Peters, A., Peterson, D., Poduri, A., Pojman, N.J., Porche, K., Proud, M.B., Qasmieh, S., Ramocki, M.B., Reilly, B., Roberts, TPL, Shaw, D., Sinha, T., Smith-Packard, B., Gallagher, A.S., Swarnakar, V., Thieu, T., Triantafallou, C., Vaughan, R., Wakahiro, M., Wallace, A., Ward, T., Wenegrat, J., and Wolken, A.
- Subjects
Adult ,Male ,0301 basic medicine ,Adolescent ,DNA Copy Number Variations ,[SDV]Life Sciences [q-bio] ,Autism Spectrum Disorder/diagnostic imaging ,Autism Spectrum Disorder/genetics ,Brain/pathology ,Child ,Chromosome Deletion ,Chromosome Duplication ,Chromosomes, Human, Pair 16/genetics ,Cognitive Dysfunction/diagnostic imaging ,Cognitive Dysfunction/genetics ,Female ,Humans ,Intellectual Disability/diagnostic imaging ,Intellectual Disability/genetics ,Language ,Magnetic Resonance Imaging ,Middle Aged ,Neurodevelopmental Disorders/diagnostic imaging ,Neurodevelopmental Disorders/genetics ,Schizophrenia/diagnostic imaging ,Schizophrenia/genetics ,Young Adult ,16p11.2 ,Autism spectrum disorder ,Copy number variant ,Genetics ,Imaging ,Neurodevelopmental disorders ,Biology ,Biological Psychiatry ,03 medical and health sciences ,0302 clinical medicine ,Transverse temporal gyrus ,Neuroimaging ,Intellectual Disability ,medicine ,Cognitive Dysfunction ,Copy-number variation ,ComputingMilieux_MISCELLANEOUS ,Brain morphometry ,Brain ,medicine.disease ,16p112 ,030104 developmental biology ,Schizophrenia ,Williams syndrome ,Neuroscience ,Insula ,Chromosomes, Human, Pair 16 ,030217 neurology & neurosurgery - Abstract
BACKGROUND: 16p11.2 breakpoint 4 to 5 copy number variants (CNVs) increase the risk for developing autism spectrum disorder, schizophrenia, and language and cognitive impairment. In this multisite study, we aimed to quantify the effect of 16p11.2 CNVs on brain structure.METHODS: Using voxel- and surface-based brain morphometric methods, we analyzed structural magnetic resonance imaging collected at seven sites from 78 individuals with a deletion, 71 individuals with a duplication, and 212 individuals without a CNV.RESULTS: Beyond the 16p11.2-related mirror effect on global brain morphometry, we observe regional mirror differences in the insula (deletion > control > duplication). Other regions are preferentially affected by either the deletion or the duplication: the calcarine cortex and transverse temporal gyrus (deletion > control; Cohen's d > 1), the superior and middle temporal gyri (deletion < control; Cohen's d < -1), and the caudate and hippocampus (control > duplication; -0.5 > Cohen's d > -1). Measures of cognition, language, and social responsiveness and the presence of psychiatric diagnoses do not influence these results.CONCLUSIONS: The global and regional effects on brain morphometry due to 16p11.2 CNVs generalize across site, computational method, age, and sex. Effect sizes on neuroimaging and cognitive traits are comparable. Findings partially overlap with results of meta-analyses performed across psychiatric disorders. However, the lack of correlation between morphometric and clinical measures suggests that CNV-associated brain changes contribute to clinical manifestations but require additional factors for the development of the disorder. These findings highlight the power of genetic risk factors as a complement to studying groups defined by behavioral criteria.
- Published
- 2018
35. Reclassification of an FBN1 variant emphasizes the importance of segregation analysis, information sharing, and multidisciplinary teamwork in understanding genetic variants in health and disease.
- Author
-
Lildballe DL, Markholt S, Lyngholm CD, Hao Q, Fagerberg C, Nielsen DG, Svensmark JH, Diness BR, and Gregersen PA
- Subjects
- Humans, Male, Female, Adult, Phenotype, Gene Frequency, Genetic Predisposition to Disease, Pedigree, Genetic Variation, Mutation genetics, Alleles, Adipokines, Fibrillin-1 genetics, Marfan Syndrome genetics, Marfan Syndrome pathology, Marfan Syndrome diagnosis
- Abstract
Marfan syndrome (MFS) is a complex connective tissue disorder characterized by considerable clinical variability. The diagnosis of MFS is based on the Ghent criteria, which require the presence of both clinical and genetic features. MFS is primarily caused by pathogenic alterations in FBN1, which encodes the fibrillin-1 protein. Fibrillin-1 comprises multiple domains rich in cysteine residues, with disulfide bonds formed between these residues. It has long been recognized that variants that alter or introduce cysteine residues damage protein function, leading to the development of MFS. In this study, we report a cysteine-introducing variant: FBN1 variant, c.6724C>T (p.[Arg2242Cys]). We have observed this variant in several individuals without MFS, challenging our previous understanding of the underlying mechanism of MFS. This finding emphasizes the importance of revisiting and reevaluating our current knowledge in light of new and unexpected observations. Moreover, our study highlights the significance of incorporating local and national data on allele frequencies, as well as employing multidisciplinary phenotyping approaches, in the classification of genetic variants. By considering a wide range of information, we can enhance the accuracy and reliability of variant classification, ultimately improving the diagnosis and management of individuals with genetic disorders like MFS., (© 2024 The Author(s). American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
36. Correction: Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study.
- Author
-
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, and Ruaud L
- Published
- 2024
- Full Text
- View/download PDF
37. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study.
- Author
-
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, and Ruaud L
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Infant, Male, Epilepsy genetics, Epilepsy pathology, Genetic Association Studies, Intellectual Disability genetics, Intellectual Disability pathology, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders pathology, Phenotype, Mutation, Missense, Peptide Elongation Factor 1 genetics
- Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations., (© 2024. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2024
- Full Text
- View/download PDF
38. Frail inner limiting membrane maculopathy suggested to describe a new retinal Alport-like condition with two variants in three generations of females.
- Author
-
Petersen SD, Belmouhand M, Hertz JM, Fagerberg C, Brasch-Andersen C, Grauslund J, Munier FL, and Larsen M
- Subjects
- Female, Humans, Collagen Type IV genetics, Phenotype, Retinal Diseases genetics, Retinal Diseases diagnosis, Visual Acuity physiology, Nephritis, Hereditary genetics, Nephritis, Hereditary diagnosis, Nephritis, Hereditary pathology, Pedigree, Tomography, Optical Coherence
- Abstract
Background: We report a three-generation family with isolated Alport-like retinal abnormalities in the absence of lenticonus, hearing loss, kidney disease, and detectable molecular genetic defects in known Alport-related genes., Methods: Clinical examination includes ocular biomicroscopy, fundus photography, optical coherence tomography, dipstick urinalysis, serum creatinine assessment, and molecular genetic analysis., Results: The proband, her mother, and her maternal grandmother had normal best-corrected visual acuity and normal visual fields in both eyes. The macula presented a petaloid stair-case profile with scarce vessels in both eyes of the proband and a flat temporal macula lacking a foveal avascular zone in her mother and her grandmother. No family member had renal symptoms, unexplained subnormal hearing, or lenticonus. Sequencing and MLPA found no defect in COL4A3 , COL4A4 , and COL4A5 . Common SNPs around the genes ± 1Mb showed no segregation. Furthermore, none of the variants shared between the affected individuals in genes from a gene panel of genes relevant for ophthalmopathy nor whole exome- and genome sequencing explained the phenotype., Conclusion: A new condition with two retinal Alport-like phenotypes was found. No abnormalities of the kidneys and lens were found, neither abnormalities of the type IV collagen genes related to Alport syndrome. Homology with retinal abnormalities seen in patients after surgical removal of the inner limiting membrane of the retina suggests that this is where the defect is located. We therefore suggest that the new retinal phenotypes and similar phenotypes can be described with the new definition "frail inner limiting membrane maculopathy."
- Published
- 2024
- Full Text
- View/download PDF
39. Variants in the WDR44 WD40-repeat domain cause a spectrum of ciliopathy by impairing ciliogenesis initiation.
- Author
-
Accogli A, Shakya S, Yang T, Insinna C, Kim SY, Bell D, Butov KR, Severino M, Niceta M, Scala M, Lee HS, Yoo T, Stauffer J, Zhao H, Fiorillo C, Pedemonte M, Diana MC, Baldassari S, Zakharova V, Shcherbina A, Rodina Y, Fagerberg C, Roos LS, Wierzba J, Dobosz A, Gerard A, Potocki L, Rosenfeld JA, Lalani SR, Scott TM, Scott D, Azamian MS, Louie R, Moore HW, Champaigne NL, Hollingsworth G, Torella A, Nigro V, Ploski R, Salpietro V, Zara F, Pizzi S, Chillemi G, Ognibene M, Cooney E, Do J, Linnemann A, Larsen MJ, Specht S, Walters KJ, Choi HJ, Choi M, Tartaglia M, Youkharibache P, Chae JH, Capra V, Park SG, and Westlake CJ
- Subjects
- Animals, Humans, Male, Brain, Cognition, Zebrafish genetics, Ciliopathies genetics, WD40 Repeats, Genes, X-Linked
- Abstract
WDR44 prevents ciliogenesis initiation by regulating RAB11-dependent vesicle trafficking. Here, we describe male patients with missense and nonsense variants within the WD40 repeats (WDR) of WDR44, an X-linked gene product, who display ciliopathy-related developmental phenotypes that we can model in zebrafish. The patient phenotypic spectrum includes developmental delay/intellectual disability, hypotonia, distinct craniofacial features and variable presence of brain, renal, cardiac and musculoskeletal abnormalities. We demonstrate that WDR44 variants associated with more severe disease impair ciliogenesis initiation and ciliary signaling. Because WDR44 negatively regulates ciliogenesis, it was surprising that pathogenic missense variants showed reduced abundance, which we link to misfolding of WDR autonomous repeats and degradation by the proteasome. We discover that disease severity correlates with increased RAB11 binding, which we propose drives ciliogenesis initiation dysregulation. Finally, we discover interdomain interactions between the WDR and NH
2 -terminal region that contains the RAB11 binding domain (RBD) and show patient variants disrupt this association. This study provides new insights into WDR44 WDR structure and characterizes a new syndrome that could result from impaired ciliogenesis., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)- Published
- 2024
- Full Text
- View/download PDF
40. Severe lympho-depletion, abrogated thymopoiesis and systemic EBV positive T-cell lymphoma of childhood, a case.
- Author
-
Asmussen A, Quintanilla-Martinez L, Larsen M, Fagerberg C, Bækvad-Hansen M, Juul MB, Rewers K, Raaschou-Jensen K, Barnkob MB, Møller MB, and Assing K
- Subjects
- Male, Humans, Young Adult, Adult, Herpesvirus 4, Human, T-Lymphocytes pathology, Epstein-Barr Virus Infections complications, Lymphoma, T-Cell etiology, Lymphoma, T-Cell genetics, Lymphoma, T-Cell, Peripheral pathology, Lymphoproliferative Disorders therapy, Leukopenia
- Abstract
Epstein-Barr virus (EBV) associated T-cell and NK-cell lymphoproliferative diseases are lethal and extremely rare in Caucasians. We expand on the clinical, immunological and histogenetic characteristics associated with this second European case (19 years old, previously healthy, Caucasian boy) of systemic EBV positive T-cell lymphoma of childhood. We report, as novel findings, severe lympho-depletion and abrogation of thymopoiesis secondary to severe EBV activation and excessive immune activation. Similar to the first European case, we also detected a somatic missense variant in the proto-oncogene FYN . In the first European patient however, the FYN variant allele frequency (VAF) was 10% and the patient only experienced moderate leukopenia, whereas in our case, the VAF was 48% and the patient experienced severe leukopenia and lymphopenia. This could suggest a pathogenic role of these FYN variants in driving excessive T cell activation. If confirmed, FYN might become target in future treatments of this fatal disorder.
- Published
- 2024
- Full Text
- View/download PDF
41. Founder Variants in KRT5 and POGLUT1 Are Implicated in Dowling-Degos Disease.
- Author
-
Kumar S, Borisov O, Maj C, Ralser DJ, Humbatova A, Hanneken S, Schmieder A, Groß J, Maintz L, Heineke A, Knuever J, Fagerberg C, Parmentier L, Anemüller W, Oji V, Tantcheva-Poór I, Fölster-Holst R, Wenzel J, Krawitz PM, Frank J, and Betz RC
- Subjects
- Humans, Keratin-5 genetics, Glucosyltransferases, Skin Diseases, Genetic genetics, Hyperpigmentation genetics, Skin Diseases, Papulosquamous diagnosis, Skin Diseases, Papulosquamous genetics
- Published
- 2024
- Full Text
- View/download PDF
42. A Novel CDC42 Variant with Impaired Thymopoiesis, IL-7R Signaling, PAK1 Binding, and TCR Repertoire Diversity.
- Author
-
Assing K, Jørgensen SE, Sandgaard KS, De Keukeleere K, B-Hansen M, Petersen MS, Hartling UB, Vaal TMK, Nielsen C, Jakobsen MA, Watt E, Adams S, Hao Q, Fagerberg C, and Mogensen TH
- Subjects
- Humans, Infant, Newborn, Apoptosis, Receptors, Antigen, T-Cell genetics, Signal Transduction, Interleukin-7 genetics, p21-Activated Kinases
- Abstract
Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
43. Comprehensive prenatal diagnostics: Exome versus genome sequencing.
- Author
-
Miceikaite I, Fagerberg C, Brasch-Andersen C, Torring PM, Kristiansen BS, Hao Q, Sperling L, Ibsen MH, Löser K, Bendsen EA, Ousager LB, and Larsen MJ
- Subjects
- Female, Humans, Pregnancy, Microarray Analysis standards, Congenital Abnormalities genetics, Genetic Variation genetics, Prenatal Diagnosis methods, Whole Genome Sequencing standards, Exome Sequencing standards
- Abstract
Objective: This study aimed to assess the diagnostic yield of prenatal genetic testing using trio whole exome sequencing (WES) and trio whole genome sequencing (WGS) in pregnancies with fetal anomalies by comparing the results with conventional chromosomal microarray (CMA) analysis., Methods: A total of 40 pregnancies with fetal anomalies or increased nuchal translucency (NT ≥ 5 mm) were included between the 12th and 21st week of gestation. Trio WES/WGS and CMA were performed in all cases., Results: The trio WES/WGS analysis increased the diagnostic yield by 25% in cases with negative CMA results. Furthermore, all six chromosomal aberrations identified by CMA were independently detected by WES/WGS analysis. In total, 16 out of 40 cases obtained a genetic sequence variant, copy number variant, or aneuploidy explaining the phenotype, resulting in an overall WES/WGS diagnostic yield of 40%. WES analysis provided a more reliable identification of mosaic sequence variants than WGS because of its higher sequencing depth., Conclusions: Prenatal WES/WGS proved to be powerful diagnostic tools for fetal anomalies, surpassing the diagnostic yield of CMA. They have the potential to serve as standalone methods for prenatal diagnosis. The study highlighted the limitations of WGS in accurately detecting mosaic variants, which is particularly relevant when analyzing chorionic villus samples., (© 2023 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
44. Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder.
- Author
-
Melland H, Bumbak F, Kolesnik-Taylor A, Ng-Cordell E, John A, Constantinou P, Joss S, Larsen M, Fagerberg C, Laulund LW, Thies J, Emslie F, Willemsen M, Kleefstra T, Pfundt R, Barrick R, Chang R, Loong L, Alfadhel M, van der Smagt J, Nizon M, Kurian MA, Scott DJ, Ziarek JJ, Gordon SL, and Baker K
- Subjects
- Calcium metabolism, Genotype, Humans, Phenotype, Intellectual Disability genetics, Movement Disorders genetics, Neurodevelopmental Disorders genetics, Synaptotagmin I genetics
- Abstract
Purpose: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder., Methods: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders., Results: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability., Conclusion: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function., Competing Interests: Conflict of Interest The authors declare that there are no commercial associations that might pose or create the appearance of a conflict of interest with the information presented in this manuscript., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
45. Variants in ADD1 cause intellectual disability, corpus callosum dysgenesis, and ventriculomegaly in humans.
- Author
-
Qi C, Feng I, Costa AR, Pinto-Costa R, Neil JE, Caluseriu O, Li D, Ganetzky RD, Brasch-Andersen C, Fagerberg C, Hansen LK, Bupp C, Muraresku CC, Ruan X, Kang B, Hu K, Zhong R, Brites P, Bhoj EJ, Hill RS, Falk MJ, Hakonarson H, Kahle KT, Sousa MM, Walsh CA, and Zhang X
- Subjects
- Agenesis of Corpus Callosum genetics, Agenesis of Corpus Callosum pathology, Animals, DNA Copy Number Variations, Humans, Mice, Phenotype, Hydrocephalus genetics, Intellectual Disability genetics
- Abstract
Purpose: Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown., Methods: We used exome sequencing to uncover ADD1 variants associated with intellectual disability (ID) and brain malformations. We studied ADD1 splice isoforms in mouse and human neocortex development with RNA sequencing, super resolution imaging, and immunoblotting. We investigated 4 variant ADD1 proteins and heterozygous ADD1 cells for protein expression and ADD1-ADD2 dimerization. We studied Add1 functions in vivo using Add1 knockout mice., Results: We uncovered loss-of-function ADD1 variants in 4 unrelated individuals affected by ID and/or structural brain defects. Three additional de novo copy number variations covering the ADD1 locus were associated with ID and brain malformations. ADD1 is highly expressed in the neocortex and the corpus callosum, whereas ADD1 splice isoforms are dynamically expressed between cortical progenitors and postmitotic neurons. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes., Conclusion: Our human and mouse genetics results indicate that pathogenic ADD1 variants cause corpus callosum dysgenesis, ventriculomegaly, and/or ID., Competing Interests: Conflict of Interest R.D.G receives consulting fees from Minovia Therapeutics. All other authors declare no conflicts of interest., (Copyright © 2021 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
46. Genotype-Phenotype Comparison in POGZ-Related Neurodevelopmental Disorders by Using Clinical Scoring.
- Author
-
Nagy D, Verheyen S, Wigby KM, Borovikov A, Sharkov A, Slegesky V, Larson A, Fagerberg C, Brasch-Andersen C, Kibæk M, Bader I, Hernan R, High FA, Chung WK, Schieving JH, Behunova J, Smogavec M, Laccone F, Witsch-Baumgartner M, Zobel J, Duba HC, and Weis D
- Subjects
- Adolescent, Adult, Case-Control Studies, Child, Child, Preschool, Female, Humans, Infant, Infant, Newborn, Male, Neurodevelopmental Disorders genetics, Young Adult, Genetic Association Studies, Mutation, Neurodevelopmental Disorders pathology, Transposases genetics
- Abstract
POGZ -related disorders (also known as White-Sutton syndrome) encompass a wide range of neurocognitive abnormalities and other accompanying anomalies. Disease severity varies widely among POGZ patients and studies investigating genotype-phenotype association are scarce. Therefore, our aim was to collect data on previously unreported POGZ patients and perform a large-scale phenotype-genotype comparison from published data. Overall, 117 POGZ patients' genotype and phenotype data were included in the analysis, including 12 novel patients. A severity scoring system was developed for the comparison. Mild and severe phenotypes were compared with the types and location of the variants and the predicted presence or absence of nonsense-mediated RNA decay (NMD). Missense variants were more often associated with mild phenotypes ( p = 0.0421) and truncating variants predicted to escape NMD presented with more severe phenotypes ( p < 0.0001). Within this group, variants in the prolin-rich region of the POGZ protein were associated with the most severe phenotypes ( p = 0.0004). Our study suggests that gain-of-function or dominant negative effect through escaping NMD and the location of the variants in the prolin-rich domain of the protein may play an important role in the severity of manifestations of POGZ -associated neurodevelopmental disorders.
- Published
- 2022
- Full Text
- View/download PDF
47. Integrative approach to interpret DYRK1A variants, leading to a frequent neurodevelopmental disorder.
- Author
-
Courraud J, Chater-Diehl E, Durand B, Vincent M, Del Mar Muniz Moreno M, Boujelbene I, Drouot N, Genschik L, Schaefer E, Nizon M, Gerard B, Abramowicz M, Cogné B, Bronicki L, Burglen L, Barth M, Charles P, Colin E, Coubes C, David A, Delobel B, Demurger F, Passemard S, Denommé AS, Faivre L, Feger C, Fradin M, Francannet C, Genevieve D, Goldenberg A, Guerrot AM, Isidor B, Johannesen KM, Keren B, Kibæk M, Kuentz P, Mathieu-Dramard M, Demeer B, Metreau J, Steensbjerre Møller R, Moutton S, Pasquier L, Pilekær Sørensen K, Perrin L, Renaud M, Saugier P, Rio M, Svane J, Thevenon J, Tran Mau Them F, Tronhjem CE, Vitobello A, Layet V, Auvin S, Khachnaoui K, Birling MC, Drunat S, Bayat A, Dubourg C, El Chehadeh S, Fagerberg C, Mignot C, Guipponi M, Bienvenu T, Herault Y, Thompson J, Willems M, Mandel JL, Weksberg R, and Piton A
- Subjects
- Animals, Humans, Mice, Phenotype, Dyrk Kinases, Intellectual Disability diagnosis, Intellectual Disability genetics, Microcephaly, Protein Serine-Threonine Kinases genetics, Protein-Tyrosine Kinases genetics
- Abstract
Purpose: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics., Methods: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature., Results: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice., Conclusion: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene., (© 2021. The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics.)
- Published
- 2021
- Full Text
- View/download PDF
48. National data on the early clinical use of non-invasive prenatal testing in public and private healthcare in Denmark 2013-2017.
- Author
-
Lund ICB, Petersen OB, Becher NH, Lildballe DL, Jørgensen FS, Ambye L, Skibsted L, Ernst A, Jensen AN, Fagerberg C, Brasch-Andersen C, Tabor A, Zingenberg HJ, Nørgaard P, Almind GJ, Vestergaard EM, and Vogel I
- Subjects
- Adult, Chromosome Aberrations, Denmark epidemiology, Down Syndrome diagnosis, Female, Humans, Middle Aged, Pregnancy, Sensitivity and Specificity, Trisomy 13 Syndrome diagnosis, Trisomy 18 Syndrome diagnosis, Health Facilities, Noninvasive Prenatal Testing statistics & numerical data, Private Sector, Public Sector
- Abstract
Introduction: In Denmark, non-invasive prenatal testing (NIPT) has been used since 2013. We aimed to evaluate the early clinical use of NIPT in Danish public and private healthcare settings before NIPT became an integrated part of the national guidelines on prenatal screening and diagnosis in 2017., Material and Methods: NIPT data were collected between March 2013 and June 2017 from national public registries and private providers. Results from follow-up samples (chorionic villi, amniotic fluid, postnatal blood or fetal tissue) were included from The Danish Cytogenetics Central Registry and indications and outcome from The Danish Fetal Medicine Database., Results: A total of 3936 NIPT results were included in the study from public hospitals (n = 3463, 88.0%) and private clinics (n = 473, 12.0%). The total number of prenatal tests was 19 713 during the study period: 20% were NIPT analyses (n = 3936) and 80% invasive procedures (n = 15 777). Twenty-five percent of NIPTs in the private clinics were performed before gestational week 11
+0 , whereas NIPT in public settings was used only after combined first trimester screening (P < .001). Regardless of indication, the national public sensitivity was 96.9% (95% CI 82.0%-99.8%) for trisomy 21, 100% (95% CI 46.3%-100%) for trisomy 18, 100% (95% CI 5.5%-100%) for trisomy 13, and 87.0% (95% CI 74.5%-92.4%) for any fetal chromosomal aberration. Forty-seven true-positive NIPT results included cases of common aneuplodies (trisomy 21, n = 31; trisomy 18, n = 5; and trisomy 13, n = 1), sex chromosomal aberrations (n = 7) and atypical chromosomal aberrations (n = 3). One false-negative NIPT result occurred (trisomy 21). Of 47 cases, 21 (45%) cases with a true-positive NIPT result resulted in live births by choice; 11 of these children had Down and 4 had Edwards syndrome., Conclusions: The total number of NIPT analyses was low compared with the number of invasive procedures in the implementation period. In contrast to the generally high termination rate after a positive result following invasive testing in Denmark, a high proportion of true-positive NIPT results from the public setting resulted in live births. NIPT may be an important risk-free alternative to invasive testing for a minority of women in the public setting who wish to use prenatal genetic testing for information only and not for reproductive decision-making., (© 2021 Nordic Federation of Societies of Obstetrics and Gynecology (NFOG). Published by John Wiley & Sons Ltd.)- Published
- 2021
- Full Text
- View/download PDF
49. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders.
- Author
-
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, and Eichler EE
- Subjects
- Brain metabolism, DNA Copy Number Variations genetics, Gene Expression Regulation, Genetic Association Studies, Genetic Variation, Heterogeneous-Nuclear Ribonucleoproteins metabolism, Humans, Inheritance Patterns genetics, Mutation, Missense genetics, Phenotype, RNA Processing, Post-Transcriptional genetics, Single-Cell Analysis, Genetic Predisposition to Disease, Heterogeneous-Nuclear Ribonucleoproteins genetics, Mutation genetics, Neurodevelopmental Disorders genetics
- Abstract
Background: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations., Methods: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk., Results: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs., Conclusions: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
- Published
- 2021
- Full Text
- View/download PDF
50. Total number of reads affects the accuracy of fetal fraction estimates in NIPT.
- Author
-
Miceikaitė I, Brasch-Andersen C, Fagerberg C, and Larsen MJ
- Subjects
- Cell-Free Nucleic Acids genetics, Chromosomes, Human, Y genetics, Data Accuracy, Female, Humans, Noninvasive Prenatal Testing standards, Polymorphism, Single Nucleotide, Pregnancy, Reproducibility of Results, Whole Genome Sequencing standards, Noninvasive Prenatal Testing methods, Whole Genome Sequencing methods
- Abstract
Background: Sufficient fetal fraction (FF) is crucial for quality control of NIPT (Non-Invasive Prenatal Test) results. Different factors influencing bioinformatic estimation of FF should be considered when implementing NIPT. To what extent the total number of sequencing reads influences FF estimate has been unexplored. In this study, to test the robustness of SeqFF FF estimation and provide additional recommendations for NIPT analysis quality control, we compared the SeqFF FF estimates with two other methods and investigated how the number of sequencing reads and FF level affects the accuracy and precision of FF estimates., Methods: WGS data of 516 NIPT samples from a prenatal screening program was obtained. Sample data were randomly downsampled by the read count, and FF was calculated by SeqFF software. Then, the outcome was compared with FF estimates from SNP- and chrY-based methods. FF estimated with different read counts and FF levels were compared with FF at 30 M reads as a reference., Results: SeqFF FF highly correlates with SNP- and chrY-based FF estimates. Raising read count from 2 M to 10 M drastically increased the accuracy of FF estimates. After adding more reads, we saw a further improvement in FF accuracy, reaching a plateau at 20 M reads. Precision of SeqFF FF estimate is independent of FF level in the sample., Conclusion: SeqFF is a robust method for FF estimation for both genders and for any FF level in range 2-13%. Accuracy of FF estimates highly depends on the read count. We recommend using no less than 10 M reads to achieve accurate FF estimates for NIPT analysis in clinical settings., (© 2021 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.