5 results on '"Fagá G"'
Search Results
2. Novel selective inhibitors of macropinocytosis-dependent growth in pancreatic ductal carcinoma.
- Author
-
Brambillasca S, Cera MR, Andronache A, Dey SK, Fagá G, Fancelli D, Frittoli E, Pasi M, Robusto M, Varasi M, Scita G, and Mercurio C
- Subjects
- Humans, Cell Line, Tumor, Cell Proliferation drug effects, Antineoplastic Agents pharmacology, Proto-Oncogene Proteins p21(ras) genetics, Proto-Oncogene Proteins p21(ras) metabolism, Mutation, Pinocytosis drug effects, Pancreatic Neoplasms drug therapy, Pancreatic Neoplasms pathology, Pancreatic Neoplasms metabolism, Carcinoma, Pancreatic Ductal drug therapy, Carcinoma, Pancreatic Ductal pathology, Carcinoma, Pancreatic Ductal metabolism
- Abstract
Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 μM (EC
50 ). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests., (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
3. Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 2: Structure-Based Drug Design and Structure-Activity Relationship.
- Author
-
Vianello P, Sartori L, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Botrugno OA, Dessanti P, Minucci S, Vultaggio S, Zagarrí E, Varasi M, and Mercurio C
- Subjects
- Cell Line, Tumor, Crystallography, X-Ray, Drug Design, Enzyme Inhibitors chemistry, Fluorescence Resonance Energy Transfer, High-Throughput Screening Assays, Histone Demethylases, Humans, Inhibitory Concentration 50, Pyrroles chemistry, Structure-Activity Relationship, Enzyme Inhibitors pharmacology, Lysine chemistry, Pyrroles pharmacology
- Abstract
The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.1021.acs.jmedchem.6b01018 ) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC
50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.- Published
- 2017
- Full Text
- View/download PDF
4. Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 1: High-Throughput Screening and Preliminary Exploration.
- Author
-
Sartori L, Mercurio C, Amigoni F, Cappa A, Fagá G, Fattori R, Legnaghi E, Ciossani G, Mattevi A, Meroni G, Moretti L, Cecatiello V, Pasqualato S, Romussi A, Thaler F, Trifiró P, Villa M, Vultaggio S, Botrugno OA, Dessanti P, Minucci S, Zagarrí E, Carettoni D, Iuzzolino L, Varasi M, and Vianello P
- Subjects
- Cell Line, Tumor, Crystallography, X-Ray, Drug Design, High-Throughput Screening Assays, Humans, Proton Magnetic Resonance Spectroscopy, Pyrroles chemistry, Spectrometry, Mass, Electrospray Ionization, Structure-Activity Relationship, Enzyme Inhibitors pharmacology, Histone Demethylases antagonists & inhibitors, Pyrroles pharmacology
- Abstract
Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC
50 , thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-phenyl-4H-thieno[3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC50 = 2.9 μM) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC50 (0.162 μM), capable of inhibiting the target in cells.- Published
- 2017
- Full Text
- View/download PDF
5. Pathogenic effects of human herpesvirus 6 in human lymphoid tissue ex vivo.
- Author
-
Grivel JC, Santoro F, Chen S, Fagá G, Malnati MS, Ito Y, Margolis L, and Lusso P
- Subjects
- Antigens, CD metabolism, CD3 Complex metabolism, CD4-Positive T-Lymphocytes immunology, CD4-Positive T-Lymphocytes metabolism, CD8-Positive T-Lymphocytes immunology, CD8-Positive T-Lymphocytes metabolism, Chemokine CCL5 metabolism, Culture Techniques, Down-Regulation, Flow Cytometry, Humans, Membrane Cofactor Protein, Membrane Glycoproteins metabolism, Palatine Tonsil physiopathology, Roseolovirus Infections virology, Up-Regulation, Virus Replication, Herpesvirus 6, Human pathogenicity, Palatine Tonsil virology, Roseolovirus Infections physiopathology
- Abstract
Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of human immunodeficiency virus disease. However, the lack of suitable experimental models has hampered the elucidation of the mechanisms of HHV-6-mediated immune suppression. Here, we used ex vivo lymphoid tissue to investigate the cellular tropism and pathogenic mechanisms of HHV-6. Viral strains belonging to both HHV-6 subgroups (A and B) were able to productively infect human tonsil tissue fragments in the absence of exogenous stimulation. The majority of viral antigen-expressing cells were CD4(+) T lymphocytes expressing a nonnaive phenotype, while CD8(+) T cells were efficiently infected only with HHV-6A. Accordingly, HHV-6A infection resulted in the depletion of both CD4(+) and CD8(+) T cells, whereas in HHV-6B-infected tissue CD4(+) T cells were predominantly depleted. The expression of different cellular antigens was dramatically altered in HHV-6-infected tissues: whereas CD4 was upregulated, both CD46, which serves as a cellular receptor for HHV-6, and CD3 were downmodulated. However, CD3 downmodulation was restricted to infected cells, while the loss of CD46 expression was generalized. Moreover, HHV-6 infection markedly enhanced the production of the CC chemokine RANTES, whereas other cytokines and chemokines were only marginally affected. These results provide the first evidence, in a physiologically relevant study model, that HHV-6 can severely affect the physiology of secondary lymphoid organs through direct infection of T lymphocytes and modulation of key membrane receptors and chemokines.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.