1. Drag reduction mechanisms of a car model at moderate yaw by bi-frequency forcing
- Author
-
Fabien Harambat, Laurent Cordier, Bernd R. Noack, Ruiying Li, Jacques Borée, Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Acoustique, Aérodynamique, Turbulence (2AT ), Département Fluides, Thermique et Combustion (FTC), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Turbulence Incompressible et Contrôle (TIC ), Groupe PSA - Centre Technique de Vélizy [Vélizy-Villacoublay], Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
020209 energy ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Computational Mechanics ,02 engineering and technology ,Wake ,01 natural sciences ,010305 fluids & plasmas ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,Physics::Fluid Dynamics ,Aerodynamics ,[SPI]Engineering Sciences [physics] ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,0103 physical sciences ,Wakes & Jets ,0202 electrical engineering, electronic engineering, information engineering ,Trailing edge ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Fluid Flow and Transfer Processes ,Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] ,Forcing (recursion theory) ,Turbulence ,[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Mechanics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph] ,[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,[CHIM.POLY]Chemical Sciences/Polymers ,Drag ,Modeling and Simulation ,Turbulence kinetic energy ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,Actuator - Abstract
International audience; A bi-frequency open-loop control strategy aiming to combine both high- and low-frequency forcing effects is used to experimentally reduce the drag of a simplified car model at a slight yaw angle of 5∘. The unforced mean wake features a lateral asymmetry which induces a low base pressure footprint close to the leeward side and increases drag compared to the aligned model. Forcing is performed with pulsed jets along the windward trailing edge. High-frequency forcing acts as a time-invariant flap. The fluidic flap effect deviates the windward shear layer towards the leeward side and reduces the wake bluffness, but the lateral asymmetry of the near wake is still observed. The drag reduction related to this high-frequency forcing is about 6% with a high actuation efficiency. A modulation of the high-frequency forcing with a low-frequency component is then introduced in order to modify the mass and momentum exchange in the separating shear layer at the windward trailing edge. We find that the modulated forcing provides the ability to manipulate the mean wake orientation while maintaining the fluidic flap effect. Among all wake orientations, those reducing drag are the ones having a mean symmetric wake. The bi-frequency control strategy leads to a maximum drag reduction of 7% for the best choice of frequencies. Importantly, the bi-frequency control is more efficient than the single high-frequency forcing, the actuator requiring only half the actuation energy and presenting an actuation efficiency multiplied by 3. Finally, the physical mechanisms related to drag reduction are carefully analyzed. In particular, we show that the wake symmetrization reduces the global production of turbulent kinetic energy in the shear layers. These results open up opportunities for closed-loop control of wake asymmetries.
- Published
- 2019