8 results on '"F. Rival"'
Search Results
2. Tests of a 70 mm aperture quadrupole for the LHC low-$\beta$ insertions
- Author
-
Andrzej Siemko, R. Ostojic, J.R. Treadgold, M. Lamm, F. Rival, F. Rodriguez-Mateos, Glyn Kirby, L. Walckier, T. Taylor, and S.R. Milward
- Subjects
Large Hadron Collider ,Materials science ,Aperture ,business.industry ,Superconducting magnet ,Condensed Matter Physics ,Accelerators and Storage Rings ,Electronic, Optical and Magnetic Materials ,Nuclear magnetic resonance ,Optics ,Electromagnetic coil ,Beta (plasma physics) ,Magnet ,Quadrupole ,Electrical and Electronic Engineering ,Quadrupole magnet ,business - Abstract
Three 70 mm aperture 1-meter superconducting quadrupole magnets for the LHC low- beta insertions have been designed and built in collaboration between CERN and Oxford Instruments. These magnets feature a four layer coil wound fromtwo 8.2 mm wide graded NbTi cables. In this paper, the authors present the results from the tests at 4.4 K and 1.9 K of the third quadrupole (Q3), with an emphasis on studies concerning quench protection. After a summary of Q3 training in three thermal cycles, quench velocities, peak temperatures in the two superconducting cables and the performance of the layer strip heaters are reported. (6 refs).
- Published
- 1999
3. Construction and test of a fine-grained liquid argon preshower prototype
- Author
-
Giuseppe Costa, G. Eynard, D.C. Rahm, D. VanDenPlas, J. Boniface, J-P. Meyer, Daniel Fournier, S. Nicoleau, P. Dargent, C. De La Taille, J. Soderqvist, E. Fernandez, A. Savoy-Navarro, P. Depommier, Paola Sala, Stephane Jezequel, Donatella Cavalli, Sylvain Tisserant, Isabelle Wingerter-Seez, G. Sauvage, S. Robertson, Douglas Gingrich, C. Padilla, James Pinfold, Veljko Radeka, Laura Perini, J. Teiger, Arthur Schaffer, W. Richter, J. F. Renardy, Irene Vichou, A. Hoummada, G. Mahout, J.P. Lottin, V. Vuillemin, Emmanuel Monnier, D. Stephani, Howard Gordon, Bruno Mansoulie, L. Mandelli, N. Seguin-Moreau, J.L. Chevalley, G. Laborie, V. Tisserand, D. Fouchez, L. Baisin, A. Miotto, B. Aubert, J-Y. Hostachy, M. Chmeissani, M. Mazzanti, Claude Leroy, M. C. Cousinou, L. Cozzi, Laurent Serin, A. Hrisoho, T. Leflour, J.C. Berset, Louis Fayard, Johann Collot, Luis Hervas, C. Olivetto, J. Colas, Marzio Nessi, M. Lefebvre, Daniel Dzahini, F. Etienne, B. Canton, O. Le Dortz, Patrick Fassnacht, J.M. Baze, Ll. Garrido, B. O. Zhautykov, G. Battistoni, L. O. Eek, E. León-Florián, R. Chase, Bengt Lund-Jensen, A. Chekhtman, J. F. Genat, N. L. Rodning, P. Roy, R. Davis, Miriam Lucio Martinez, L. Gosset, G. Parrour, P. Schwemling, A. Bazan, Silvia Resconi, N. Fedyakin, P. Lavocat, R. Zitoun, E. Auge, O. Linossier, J.M. Noppe, Y. Zolnierowski, L. Martin, J. Thion, J. David, C.P. Marin, Elemer Nagy, Gilles Beaudoin, Didier Imbault, F. Rival, Edouard Boos, B. Dinkespiller, P. de Saintignon, J.C. Chollet, J. Schwindling, B. Merkel, Andrea Ferrari, Luc Poggioli, Pierre Petroff, D.V. Camin, F. Gianotti, B. Beaugiraud, O. Gildemeister, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), RD3, Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Physics ,Nuclear and High Energy Physics ,Large Hadron Collider ,Photon ,Calorimeter (particle physics) ,Preamplifier ,Physics::Instrumentation and Detectors ,Detector ,Electron ,Azimuth ,Nuclear physics ,CMOS ,High Energy Physics::Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,Instrumentation - Abstract
A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10$^{\mathrm{-3}}$ was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~$\mu$m in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider.
- Published
- 1997
- Full Text
- View/download PDF
4. Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter
- Author
-
Y. Zolnierowski, B. Olsen, Bruno Mansoulie, Louis Fayard, S. Robertson, M. Stipcevic, C. V. Scheel, Stephane Jezequel, E. Fernandez, Gilles Beaudoin, P. Depommier, B. Aubert, Isabelle Wingerter-Seez, Sylvain Tisserant, J-P. Meyer, D.V. Camin, M. Mazzanti, B. Dinkespiller, Doug Gingrich, Paola Sala, F. Rival, Luis Hervas, O. Le Dortz, Donatella Cavalli, N. Fedyakin, J. Boniface, T. Leflour, J.P. Lottin, E. Auge, James Pinfold, J.L. Chevalley, B. Canton, Laura Perini, Miriam Lucio Martinez, B. Merkel, Andrea Ferrari, C. Olivetto, N. L. Rodning, D. Dzahini, A. Cravero, L. Martin, R. Zitoun, B. Beaugiraud, G. Mahout, A. Chekhtman, Luc Poggioli, P. de Saintignon, J. Thion, J. David, V. Vuillemin, Veljko Radeka, O. Gildemeister, G. Battistoni, L. Labarga, L. Mandelli, Johann Collot, Bengt Lund-Jensen, P. Dargent, A. Savoy-Navarro, L. Gosset, G. Parrour, J. Teiger, Irene Vichou, V. Tisserand, J-Y. Hostachy, J.C. Chollet, J. Schwindling, P. Lavocat, M. Lefebvre, J.C. Berset, Giuseppe Costa, M. Seman, Daniel Fournier, F. Gianotti, Didier Imbault, R. Chase, Patrick Fassnacht, C.P. Marin, J. Pouxe, M. Maire, Pierre Petroff, G. Greeniaus, Georges Azuelos, C. Padilla, P. Schwemling, Elemer Nagy, A. Bazan, J. F. Genat, Edouard Boos, G. Laborie, E. Merchez, D. Stephani, Howard Gordon, D.C. Rahm, J.M. Noppe, L. Baisin, J. S. White, Claude Leroy, A. Hrisoho, P. Kitching, W. Richter, J. F. Renardy, F. Etienne, Arthur Schaffer, D. Van den plas, L. O. Eek, L. Cozzi, D. Fouchez, O. Martin, C. De La Taille, A. Miotto, J. Soderqvist, Ll. Garrido, E. León-Florián, J. Colas, Marzio Nessi, N. Seguin-Moreau, M. Chmeissani, Laurent Serin, P. Roy, J.M. Baze, B. O. Zhautykov, Emmanuel Monnier, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), RD3, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Argon ,Large Hadron Collider ,Atlas (topology) ,Physics::Instrumentation and Detectors ,ATLAS experiment ,Linearity ,chemistry.chemical_element ,Calorimetry ,Nuclear physics ,chemistry ,calorimetry ,liquid-argon ,ATLAS ,Cathode ray ,Rapidity ,High Energy Physics::Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,Instrumentation - Abstract
The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below $11\%/\sqrt{E(\rm GeV)}$ and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of $2.2 < \eta
- Published
- 1996
- Full Text
- View/download PDF
5. Lithium complexes of tri- and hexaanionic cyclophosphazenates, the impact of metal coordination on the ring conformation
- Author
-
Frederic Rivals, Alexander Steiner, Philip I. Richards, Gavin T. Lawson, Mark A. Benson, Stefano Zacchini, F. Rival, G. T. Lawson, M. A. Benson, P. I. Richard, S. Zacchini, and A. Steiner
- Subjects
chemistry.chemical_classification ,Denticity ,Ligand ,Stereochemistry ,Cyclohexane conformation ,chemistry.chemical_element ,Ring (chemistry) ,Coordination complex ,Inorganic Chemistry ,Crystallography ,Deprotonation ,chemistry ,cyclophosphazene ,Materials Chemistry ,Butyllithium ,Lithium ,Physical and Theoretical Chemistry ,COORDINATION CHEMISTRY ,lithium complexe - Abstract
Cyclophosphazenes (RNH)(6)P(3)N(3) 1 react with three and six equivalents of butyllithium in thf to give lithium complexes of tri- (2) and hexaanionic (3) phosphazenate ligands, respectively. A variety of lithium complexes 2 and 3 were prepared and structurally characterised. The degree of puckering of the (PN)(3) ring systems correlates with increasing ligand charge. The trianions solely exhibit the chair conformation; their deprotonated side groups are positioned at equatorial sites. This conformation ensures that the charge of the ligand is most effectively distributed and it also provides three distinct coordination sites for the three lithium ions. Complexes of the trianion can be monomeric or dimeric. Aryl-N(exo) derivatives tend to form monomers, while alkyl derivatives form dimeric sandwich complexes. Complexes of the hexaanion fall into two categories. Binary complexes, which contain the ligand and lithium ions, form dimers; the (PN)(3) ring in these complexes exhibit a chair conformation. Complexes which, in addition, contain small monodentate ions, such as chloride, fall into the second category; their ring systems adopt a boat conformation. (
- Published
- 2011
- Full Text
- View/download PDF
6. Scanning laser ophthalmoscopy and optical coherence tomography imaging of spectacular ecdysis in the corn snake (Pantherophis guttatus) and the California king snake (Lampropeltis getulus californiae).
- Author
-
Cazalot G, Rival F, Linsart A, Isard PF, Tissier M, Peiffer RL, and Dulaurent T
- Subjects
- Animals, Species Specificity, Anterior Eye Segment anatomy & histology, Molting physiology, Ophthalmoscopes veterinary, Ophthalmoscopy veterinary, Snakes anatomy & histology, Tomography, Optical Coherence veterinary
- Abstract
Purpose: One of the singularities of the eyes of snakes is the presence of the spectacle, a transparent and vascularized integument covering the cornea. The spectacle is completely renewed during ecdysis. Combined scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and conventional macrophotography were used to image this phenomenon., Material and Methods: A spectral OCT/SLO examination and macrophotography were performed in four healthy adult corn snakes (Pantherophis guttatus) and one healthy adult California king snake (Lampropeltis getulus californiae) the day before the start of ecdysis and then daily during ecdysis., Results: In all animals, ecdysis lasted 5 days. The spectacle was hardly visible at baseline, but became obvious at day one, while the subspectacular space became larger and the superficial cornea presented a hyperechoic band. At day two, eye surface became translucent, and at the same time, vascularization of the spectacle was visible using SLO. At day 3, the vascularization was no longer visible, while the subspectacular space increased and the eye surface remained translucent. At day 4, the eye surface was transparent and the superficial hyperechoic band started to become less bright. At day 5, the old spectacle was shed and all the parameters returned to baseline., Conclusion: We hypothesize that the echogenicity modifications of the anterior cornea correspond to major metabolic activity associated with new spectacle formation. This increased metabolic activity may contribute to the neovascularization and play an important role in the accumulation of fluid in the subspectacular space, facilitating the shedding of the old spectacle., (© 2014 American College of Veterinary Ophthalmologists.)
- Published
- 2015
- Full Text
- View/download PDF
7. Congenital ankyloblepharon in a leopard gecko (Eublepharis macularius).
- Author
-
Rival F
- Subjects
- Animals, Eye Abnormalities pathology, Eye Abnormalities surgery, Eye Abnormalities veterinary, Lizards abnormalities
- Abstract
A 6-month-old leopard gecko with unilateral partially fused eyelids since birth was presented for examination. A diagnosis of congenital ankyloblepharon was made and surgical correction was performed successfully., (© 2014 American College of Veterinary Ophthalmologists.)
- Published
- 2015
- Full Text
- View/download PDF
8. Anterior segment morphology and morphometry in selected reptile species using optical coherence tomography.
- Author
-
Rival F, Linsart A, Isard PF, Besson C, and Dulaurent T
- Subjects
- Animals, Species Specificity, Anterior Eye Segment anatomy & histology, Reptiles anatomy & histology, Tomography, Optical Coherence
- Abstract
Objective: To provide new and original images of the anterior segment (AS) of the eye of selected Ophidian, Chelonian, and Saurian species and to compare the AS architecture among and within these three groups., Animals Studied: 17 Saurians, 14 Ophidians, and 11 Chelonians with no concurrent systemic or eye disease were included in the study., Procedure: Age, weight, nose-cloaca distance (NCD), and pupil shape were collected for each animal. The AS was examined by optical coherence tomography (OCT). After gross description of the appearance of the AS, the central and peripheral corneal thickness (CCT, PCT) and anterior chamber depth (ACD) were measured using the software provided with the OCT device. The ratio CCT/ACD was then calculated for each animal., Results: Pupil shape was a vertical slit in all the crepuscular or nocturnal animals (except for 1 chelonian and 1 ophidian). Each group had its own particular AS architecture. Saurians had a regularly thin cornea with a flat anterior lens capsule and a deep anterior chamber. Ophidians had a thick cornea with a narrow anterior chamber due to a very anteriorly anchored spherical lens. The spectacle was difficult to identify in all ophidians except in Python molurus bivitattus in which it was more obvious. Chelonians displayed an intermediate architecture which more closely resembled the Saurian type than the Ophidian type., Conclusion: Despite grossly similar AS architecture, the three groups of reptiles in the study demonstrated differences that are suggestive of a link between anatomical disparities and variations in environment and lifestyle., (© 2014 American College of Veterinary Ophthalmologists.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.