1. Development of complementary analytical methods to characterize extracellular vesicles.
- Author
-
Nix C, Sulejman S, and Fillet M
- Subjects
- Humans, Chromatography, Gel, Particle Size, Ultracentrifugation, Fractionation, Field Flow methods, Extracellular Vesicles chemistry, Extracellular Vesicles metabolism
- Abstract
Background: Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use., Results: We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants., Significance: This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF