107 results on '"Experimental nuclear physics"'
Search Results
2. A physical zero-knowledge object-comparison system for nuclear warhead verification
- Author
-
d’Errico, Francesco [Univ. of Pisa (Italy); Yale Univ., New Haven, CT (United States). School of Medicine]
- Published
- 2016
- Full Text
- View/download PDF
3. Measurement of interaction between antiprotons
- Author
-
Zyzak, M.
- Published
- 2015
- Full Text
- View/download PDF
4. Precision measurement of the mass difference between light nuclei and anti-nuclei
- Author
-
Adam, J. [Czech Technical University in Prague (Czech Republic). Faculty of Nuclear Sciences and Physical Engineering. et al.]
- Published
- 2015
- Full Text
- View/download PDF
5. Applications of Rutherford backscattering analysis methods to nuclear physics experiments.
- Author
-
Rocchini, M., Chiari, M., Pasquali, E., Nannini, A., Hadyńska-Klęk, K., Sona, P., Bazzacco, D., Benzoni, G., Camera, F., Czelusniak, C., Doherty, D.T., Goasduff, A., John, P.R., Komorowska, M., Marchini, N., Matejska-Minda, M., Melon, B., Mengoni, D., Napiorkowski, P.J., and Ottanelli, M.
- Subjects
- *
NUCLEAR physics , *PHYSICS experiments , *TARGETS (Nuclear physics) , *BACKSCATTERING , *COULOMB excitation , *SILICON detectors - Abstract
Target properties such as thickness and composition are essential ingredients in nuclear physics experiments, therefore, dedicated analyses to evaluate them before and/or after the measurement are often performed. In some experimental techniques, the exploited detectors allow for the evaluation of these properties on-line, i.e. directly during the experiment. In this paper, we report on the use of analysis methods coming from the Rutherford backscattering spectroscopy technique to obtain on-line information on the target used in a nuclear physics experiment. This measurement was performed at INFN LNL by exploiting the low-energy Coulomb excitation technique. The results have been compared with an independent Rutherford backscattering spectroscopy analysis of the same target performed at INFN LABEC in Florence. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Search for 22Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica, Fougères, Chloé, de Oliveira Santos, François, José Pont, Jordi, Michelagnoli, Caterina, Clément, Emmanuel, Kim, Yung Hee, Lemasson, Antoine, Guimarães, Valdir, Barrientos, Diego, Bemmerer, Daniel, Benzoni, Giovanna, Boston, Andrew J., Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica, Fougères, Chloé, de Oliveira Santos, François, José Pont, Jordi, Michelagnoli, Caterina, Clément, Emmanuel, Kim, Yung Hee, Lemasson, Antoine, Guimarães, Valdir, Barrientos, Diego, Bemmerer, Daniel, Benzoni, Giovanna, and Boston, Andrew J.
- Abstract
Classical novae are thermonuclear explosions in stellar binary systems, and important sources of 26Al and 22Na. While ¿ rays from the decay of the former radioisotope have been observed throughout the Galaxy, 22Na remains untraceable. Its half-life (2.6 yr) would allow the observation of its 1.275 MeV ¿-ray line from a cosmic source. However, the prediction of such an observation requires good knowledge of its nucleosynthesis. The 22Na(p,¿¿)23Mg reaction remains the only source of large uncertainty about the amount of 22Na ejected. Its rate is dominated by a single resonance on the short-lived state at 7785.0(7) keV in 23Mg. Here, we propose a combined analysis of particle-particle correlations and velocity-difference profiles to measure femtosecond nuclear lifetimes. The application of this method to the study of the 23Mg states, places strong limits on the amount of 22Na produced in novae and constrains its detectability with future space-borne observatories., Postprint (published version)
- Published
- 2023
7. Classification of events from [formula omitted]-induced reactions in the MUSIC detector via statistical and ML methods.
- Author
-
Raghavan, K., Avila, M.L., Balaprakash, P., Jayatissa, H., and Santiago-Gonzalez, D.
- Subjects
- *
NUCLEAR cross sections , *DETECTORS , *IONIZATION chambers , *NUCLEAR astrophysics , *STATISTICAL learning , *NUCLEAR reactions - Abstract
The Multi-Sampling Ionization Chamber (MUSIC) detector is typically used to measure nuclear reaction cross sections relevant for nuclear astrophysics, fusion studies, and other applications. From the MUSIC data produced in one experiment scientists carefully extract an order of 1 0 3 events of interest from about 1 0 9 total events, where each event can be represented by an 18-dimensional vector. However, the standard data classification process is based on expert-driven, manually intensive data analysis techniques that require several months to identify patterns and classify the relevant events from the collected data. To address this issue, we present a method for the classification of events originating from specific α -induced reactions by combining statistical and machine learning methods that require significantly less input from the domain scientist, relative to the standard technique. We applied the new method to two experimental data sets and compared our results with those obtained using traditional methods. With few exceptions, the new method yields results such that the percent change with respect to results obtained with traditional methods are within ± 20 %. With the present method, which is the first of its kind for the MUSIC data, we have established the foundation for the automated extraction of physical events of interest from experiments using the MUSIC detector. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Decay of muons generated by laser-induced processes in ultra-dense hydrogen H(0)
- Author
-
Leif Holmlid and Sveinn Olafsson
- Subjects
Condensed matter physics ,Nuclear physics ,Particle physics ,Quantum fluids ,Superfluid ,Experimental nuclear physics ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
This work reports identification of muons by their characteristic life-time of 2.20 μs after laser-induction of their precursor mesons, both kaons K± and KL0 and pions π± in ultra-dense hydrogen H(0). The pair-production signal from scattered muons at a metal converter in front of a photo-multiplier detector is observed with its decay. The observed signal intensity is decreased by a metal beam-flag which intercepts the meson and muon flux to the detector. Using D(0), the observed decay time is (2.23 ± 0.05) μs in agreement with the free muon lifetime of 2.20 μs. This signal is apparently due to the preferential generation of positive muons. Using p(0), the observed decay time is in the range 1–2 μs, thus shorter than the free muon lifetime, as expected when the signal is mainly caused by negative muons which interact with matter by muon capture.
- Published
- 2019
- Full Text
- View/download PDF
9. Determination and benchmarking of 27Al(d,α) and 27Al(d,p) reaction cross sections for energies and angles relevant to NRA
- Author
-
Ian Vickridge, M. Salimi, H. Rafi-kheiri, J. J. Ganem, O. Kakuee, Emrick Briand, S. F. Masoudi, Khajeh Nasir Toosi University of Technology [Téhéran] (KNTU), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Couches nanométriques : formation, interfaces, défauts (INSP-E5), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear reaction ,Materials science ,Science ,Analytical chemistry ,Nuclear physics ,chemistry.chemical_element ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Spectral line ,Article ,Aluminium ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,0103 physical sciences ,Experimental nuclear physics ,010302 applied physics ,Multidisciplinary ,Ion beam analysis ,Scattering ,Detector ,Nuclear data ,021001 nanoscience & nanotechnology ,Deuterium ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Medicine ,0210 nano-technology - Abstract
The cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27Al(d,p) and 27Al(d,α) reactions were measured, and the cross sections benchmarked with thick target spectra obtained from pure aluminium for the first time in two independent laboratories. The 27Al(d,p) and (d,α) differential cross-sections were measured between 1.4 and 2 MeV at scattering angles of 165°, 150°, and 135° in the VDGT laboratory in Tehran (Iran), and the same measurements for detector angle of 150° were repeated from scratch, including target making, with independent equipment on the SAFIR platform at INSP in Paris (France). The results of these two measurements at 150° are in good agreement, and for the first time a fitted function is proposed to describe the Al-cross sections for which no suitable theoretical expression exists. The obtained differential cross-sections were validated through benchmarking, by fitting with SIMNRA deuteron-induced particle spectra obtained from a high purity bulk Al target at both labs for deuteron incident energies between 1.6 and 2 MeV. The thick target spectra are well-reproduced. The evaluated and benchmarked cross sections have been uploaded to the ion beam analysis nuclear data library database (www-nds.iaea.org/ibandl/).
- Published
- 2021
10. Reassigning the shapes of the 0+ states in the 186Pb nucleus
- Author
-
Ojala, Joonas, Pakarinen, Janne, Papadakis, Philippos, Sorri, Juha, Sandzelius, Mikael, Cox, Daniel M., Auranen, Kalle, Badran, Hussam, Davies, Paul J., Grahn, Tuomas, Greenlees, Paul T., Henderson, Jack, Herzáň, Andrej, Herzberg, Rolf Dietmar, Hilton, Joshua, Jakobsson, Ulrika, Jenkins, David G., Joss, David T., Julin, Rauno, Juutinen, Sakari, Kibédi, Tibor, Konki, Joonas, Lane, Gregory J., Leino, Matti, Liimatainen, Jarkko, McPeake, Christopher G., Neuvonen, Olavi, Page, Robert D., Parr, Edward, Partanen, Jari, Peura, Pauli, Rahkila, Panu, Revill, John, Ruotsalainen, Panu, Sarén, Jan, Scholey, Catherine, Stolze, Sanna, Uusitalo, Juha, Ward, Andrew, and Wadsworth, Robert
- Subjects
experimental nuclear physics ,lyijy ,hiukkasfysiikka ,ydinfysiikka ,physics - Abstract
Across the physics disciplines, the 186Pb nucleus is the only known system, where the two first excited states, together with the ground state, form a triplet of zero-spin states assigned with prolate, oblate and spherical shapes. Here we report on a precision measurement where the properties of collective transitions in 186Pb were determined in a simultaneous in-beam γ-ray and electron spectroscopy experiment employing the recoil-decay tagging technique. The feeding of the 0+2 state and the interband 2+2→2+1 transition have been observed. We also present direct measurement of the energies of the electric monopole transitions from the excited 0+ states to the 0+ ground state. In contrast to the earlier understanding, the obtained reduced transition probability B(E2;2+1→0+2) value of 190(80) W.u., the transitional quadrupole moment |Qt(2+1→0+2)|=7.7(33) eb and intensity balance arguments provide evidence to reassign the 0+2 and 0+3 states with predominantly prolate and oblate shape, respectively. Our work demonstrates a step-up in experimental sensitivity and paves the way for systematic studies of electric monopole transitions in this region. These electric monopole transitions probe the nuclear volume in a unique manner and provide unexploited input for development of the next-generation energy density functional models. peerReviewed
- Published
- 2022
11. Measurement of the neutron charge radius and the role of its constituents
- Author
-
Martha Constantinou, Nikolaos Sparveris, Z. E. Meziani, Michael Paolone, and H. Atac
- Subjects
Quark ,Nuclear Theory ,High Energy Physics::Lattice ,Astrophysics::High Energy Astrophysical Phenomena ,Science ,Strong interaction ,General Physics and Astronomy ,FOS: Physical sciences ,01 natural sciences ,Electric charge ,General Biochemistry, Genetics and Molecular Biology ,Article ,Nuclear Theory (nucl-th) ,Mathematics::Group Theory ,Charge radius ,0103 physical sciences ,Neutron ,Connection (algebraic framework) ,Experimental nuclear physics ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Multidisciplinary ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Electric form factor ,General Chemistry ,Theoretical nuclear physics ,Quadrupole ,Astrophysics::Earth and Planetary Astrophysics ,Atomic physics - Abstract
The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩. The precise measurement of the neutron’s charge radius thus emerges as an essential part of unraveling its structure. Here we report on a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ measurement, based on the extraction of the neutron electric form factor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{{\rm{E}}}^{{\rm{n}}}$$\end{document}GEn, at low four-momentum transfer squared (Q2) by exploiting the long known connection between the N → Δ quadrupole transitions and the neutron electric form factor. Our result, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle =-0.110\pm 0.008\,({{\rm{fm}}}^{2})$$\end{document}⟨rn2⟩=−0.110±0.008(fm2), addresses long standing unresolved discrepancies in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ determination. The dynamics of the strong nuclear force can be viewed through the precise picture of the neutron’s constituent distributions that result into the non-zero \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ value., The charge radius of nucleons provides information about their structure. Here the authors present a method, based values of neutron electric form factors, to determine the charge radius of the neutron and provide information on improving the uncertainty of neutron charge radius measurements
- Published
- 2021
12. Applications of Rutherford backscattering analysis methods to nuclear physics experiments
- Author
-
M. Siciliano, F. Camera, P. J. Napiorkowski, A. Perego, D. Testov, E. Pasquali, D. Mengoni, M. Matejska-Minda, P. R. John, A. Goasduff, D. T. Doherty, K. Wrzosek-Lipska, M. Komorowska, F. Recchia, M. Rocchini, D. Bazzacco, Caroline Czelusniak, M. Ottanelli, L. Sottili, P. Sona, A. Nannini, N. Marchini, G. Benzoni, K. Hadynska-Klek, J. J. Valiente-Dobón, M. Zielińska, B. Melon, Massimo Chiari, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Detector ,Coulomb excitation ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Experimental nuclear physics ,Low-energy Coulomb excitation ,Rutherford backscattering spectroscopy ,Silicon detectors ,Nuclear physics ,0103 physical sciences ,010306 general physics ,Spectroscopy ,Instrumentation ,Analysis method - Abstract
International audience; Target properties such as thickness and composition are essential ingredients in nuclear physics experiments, therefore, dedicated analyses to evaluate them before and/or after the measurement are often performed. In some experimental techniques, the exploited detectors allow for the evaluation of these properties on-line, i.e. directly during the experiment. In this paper, we report on the use of analysis methods coming from the Rutherford backscattering spectroscopy technique to obtain on-line information on the target used in a nuclear physics experiment. This measurement was performed at INFN LNL by exploiting the low-energy Coulomb excitation technique. The results have been compared with an independent Rutherford backscattering spectroscopy analysis of the same target performed at INFN LABEC in Florence.
- Published
- 2021
13. Unveiling the strong interaction among hadrons at the LHC
- Author
-
Acharya, Shreyasi, Adamova, Dagmar, Ahn, Sang Un, Bhattacharjee, Buddhadeb, Yurchenko, Volodymyr, Zaccolo, Valentina, Zaman, Ali, Zampolli, Chiara, Correia Zanoli, Henrique Jose, Zardoshti, Nima, Zarochentsev, Andrey, Zavada, Petr, Zavyalov, Nikolay, Zbroszczyk, Hanna Paulina, Bianchi, Antonio, Zhalov, Mikhail, Zhang, Song, Zhang, Xiaoming, Zhang, Zuman, Zherebchevskii, Vladimir, Yu, Zhi, Zhou, Daicui, Zhou, You, Zhou, Zhuo, Zhu, Jianhui, Bianchi, Livio, Zhu, Ya, Zichichi, Antonino, Zinovjev, Gennady, Zurlo, Nicola, ALICE Collaboration, Bianchi, Nicola, Bielcik, Jaroslav, Bielcikova, Jana, Bilandzic, Ante, Biro, Gabor, Biswas, Rathijit, Biswas, Saikat, Akbar, Zaenal, Blair, Justin Thomas, Blau, Dmitry, Blume, Christoph, Boca, Gianluigi, Bock, Friederike, Bogdanov, Alexey, Boi, Stefano, Bok, Jeongsu, Boldizsar, Laszlo, Bolozdynya, Alexander, Akindinov, Alexander, Bombara, Marek, Bonomi, Germano, Borel, Herve, Borissov, Alexander, Bossi, Hannah, Botta, Elena, Bratrud, Lars, Braun-munzinger, Peter, Bregant, Marco, Broz, Michal, Al-turany, Mohammad, Bruna, Elena, Bruno, Giuseppe Eugenio, Buckland, Matthew Daniel, Budnikov, Dmitry, Buesching, Henner, Bufalino, Stefania, Bugnon, Ophelie, Buhler, Paul Alois, Buncic, Predrag, Buthelezi, Edith Zinhle, Alam, Sk Noor, Bashir Butt, Jamila, Bysiak, Sebastian Adam, Caffarri, Davide, Caliva, Alberto, Calvo Villar, Ernesto, Mejia Camacho, Juan Manuel, Soto Camacho, Rabi, Camerini, Paolo, De Moraes Canedo, Fabio, Capon, Aaron Allan, Silva De Albuquerque, Danilo, Carnesecchi, Francesca, Caron, Robin Albert Andre, Castillo Castellanos, Javier Ernesto, Castro, Andrew John, Casula, Ester Anna Rita, Catalano, Fabio, Ceballos Sanchez, Cesar, Chakraborty, Pritam, Chandra, Sinjini, Chang, Wan, Aleksandrov, Dmitry, Chapeland, Sylvain, Chartier, Marielle, Chattopadhyay, Subhasis, Chattopadhyay, Sukalyan, Chauvin, Alex Henri Jean, Cheshkov, Cvetan Valeriev, Cheynis, Brigitte, Chibante Barroso, Vasco Miguel, Dobrigkeit Chinellato, David, Cho, Soyeon, Alessandro, Bruno, Chochula, Peter, Chowdhury, Tasnuva, Christakoglou, Panagiotis, Christensen, Christian Holm, Christiansen, Peter, Chujo, Tatsuya, Cicalo, Corrado, Cifarelli, Luisa, De Cilladi, Lorenzo, Cindolo, Federico, Alfanda, Haidar Mas'ud, Ciupek, Michael Rudolf, Clai, Giulia, Cleymans, Jean Willy Andre, Colamaria, Fabio Filippo, Colella, Domenico, Collu, Alberto, Colocci, Manuel, Concas, Matteo, Conesa Balbastre, Gustavo, Conesa Del Valle, Zaida, Alfaro Molina, Jose Ruben, Contin, Giacomo, Contreras Nuno, Jesus Guillermo, Cormier, Thomas Michael, Corrales Morales, Yasser, Cortese, Pietro, Cosentino, Mauro Rogerio, Costa, Filippo, Costanza, Susanna, Crochet, Philippe, Cuautle Flores, Eleazar, Adler, Alexander, Ali, Bushra, Cui, Pengyao, Cunqueiro Mendez, Leticia, Dabrowski, Daniel, Dahms, Torsten, Dainese, Andrea, Damas, Florian Paul Andre, Danisch, Meike Charlotte, Danu, Andrea, Das, Debasish, Das, Indranil, Ali, Yasir, Das, Prottay, Das, Prottoy, Das, Supriya, Dash, Ajay Kumar, Dash, Sadhana, De, Sudipan, De Caro, Annalisa, De Cataldo, Giacinto, De Cuveland, Jan, De Falco, Alessandro, Alici, Andrea, De Gruttola, Daniele, De Marco, Nora, De Pasquale, Salvatore, Deb, Suman, Franz Degenhardt, Hermann, Deja, Kamil Rafal, Deloff, Andrzej, Delsanto, Silvia, Deng, Wenjing, Dhankher, Preeti, Alizadehvandchali, Negin, Di Bari, Domenico, Di Mauro, Antonio, Arteche Diaz, Raul, Dietel, Thomas, Raisig, Pascal, Ding, Yanchun, Divia, Roberto, Dixit, Dhruv Utpalkumar, Djuvsland, Oeystein, Dmitrieva, Uliana, Alkin, Anton, Dobrin, Alexandru Florin, Donigus, Benjamin, Dordic, Olja, Dubey, Anand Kumar, Dubla, Andrea, Dudi, Sandeep, Mallick, Dukhishyam, Dupieux, Pascal, Ehlers Iii, Raymond James, Eikeland, Viljar Nilsen, Alme, Johan, Elia, Domenico, Erazmus, Barbara Ewa, Erhardt, Filip, Erokhin, Andrey, Ersdal, Magnus Rentsch, Espagnon, Bruno, Eulisse, Giulio, Evans, David, Evdokimov, Sergey, Fabbietti, Laura, Alt, Torsten, Faggin, Mattia, Faivre, Julien, Fan, Feng, Fantoni, Alessandra, Fasel, Markus, Fecchio, Pietro, Feliciello, Alessandro, Feofilov, Grigorii, Fernandez Tellez, Arturo, Ferrero, Andrea, Altenkamper, Lucas, Ferretti, Alessandro, Festanti, Andrea, Feuillard, Victor Jose Gaston, Figiel, Jan, Filchagin, Sergey, Finogeev, Dmitry, Fionda, Fiorella, Fiorenza, Gabriele, Flor, Fernando Antonio, Flores, Amanda Nicole, Altsybeev, Igor, Foertsch, Siegfried Valentin, Foka, Panagiota, Fokin, Sergey, Fragiacomo, Enrico, Frankenfeld, Ulrich Michael, Fuchs, Ulrich, Furget, Christophe, Furs, Artur, Fusco Girard, Mario, Gaardhoeje, Jens Joergen, Anaam, Mustafa, Gagliardi, Martino, Gago Medina, Alberto Martin, Gal, Arthur Willem Jean, Duarte Galvan, Carlos, Ganoti, Paraskevi, Garabatos Cuadrado, Jose, Alvarado Garcia, Jesus Ricardo, Garcia-solis, Edmundo Javier, Garg, Kunal, Gargiulo, Corrado, Adolfsson, Jonatan, Andrei, Cristian, Garibli, Aydan, Garner, Katharina, Gasik, Piotr Jan, Gauger, Erin Frances, De Leone Gay, Maria Beatriz, Germain, Marie, Ghosh, Jhuma, Ghosh, Premomoy, Ghosh, Sanjay Kumar, Giacalone, Marco, Andreou, Dimitra, Gianotti, Paola, Giubellino, Paolo, Giubilato, Piero, Glaenzer, Aude Marie Camille, Glassel, Peter, Gomez Ramirez, Andres, Gonzalez, Victor, Gonzalez Trueba, Laura Helena, Gorbunov, Sergey, Gorlich, Lidia Maria, Andronic, Anton, Goswami, Ankita, Gotovac, Sven, Grabski, Varlen, Graczykowski, Lukasz Kamil, Graham, Katie Leanne, Greiner, Leo Clifford, Grelli, Alessandro, Grigoras, Costin, Grigoryev, Vladislav, Grigoryan, Ara, Angeletti, Massimo, Grigoryan, Smbat, Groettvik, Ola Slettevoll, Grosa, Fabrizio, Grosse-oetringhaus, Jan Fiete, Grosso, Raffaele, Guernane, Rachid, Guittiere, Manuel, Gulbrandsen, Kristjan Herlache, Gunji, Taku, Gupta, Anik, Anguelov, Venelin, Gupta, Ramni, Bautista Guzman, Irais, Haake, Rudiger, Habib, Michael Karim, Hadjidakis, Cynthia Marie, Hamagaki, Hideki, Hamar, Gergoe, Hamid, Mohammed, Hannigan, Ryan Patrick, Haque, Md Rihan, Anson, Christopher Daniel, Harlenderova, Alena, Harris, John William, Harton, Austin Vincent, Hasenbichler, Jan Anton, Hassan, Hadi, Hassan, Qamar Ul, Hatzifotiadou, Despina, Hauer, Philip, Havener, Laura Brittany, Hayashi, Shinichi, Anticic, Tome, Heckel, Stefan Thomas, Hellbar, Ernst, Helstrup, Haavard, Herghelegiu, Andrei Ionut, Herman, Tomas, Gonzalez Hernandez, Emma, Herrera Corral, Gerardo Antonio, Herrmann, Florian, Hetland, Kristin Fanebust, Hillemanns, Hartmut, Antinori, Federico, Hills, Christopher, Hippolyte, Boris, Hohlweger, Bernhard, Honermann, Jan, Horak, David, Hornung, Andrea, Hornung, Sebastian, Hosokawa, Ritsuya, Hristov, Peter Zahariev, Huang, Chun-lu, Antonioli, Pietro, Hughes, Charles, Huhn, Patrick, Humanic, Thomas, Hushnud, Hushnud, Husova, Lucia Anna, Hussain, Nur, Hussain, Syed Asad, Hutter, Dirk, Iddon, James Philip, Ilkaev, Radiy, Apadula, Nicole, Ilyas, Hira, Inaba, Motoi, Innocenti, Gian Michele, Ippolitov, Mikhail, Isakov, Artem, Islam, Md Samsul, Ivanov, Marian, Ivanov, Vladimir, Izucheev, Vladimir, Jacak, Barbara, Aggarwal, Madan Mohan, Aphecetche, Laurent Bernard, Jacazio, Nicolo, Jacobs, Peter Martin, Jadlovska, Slavka, Jadlovsky, Jan, Jaelani, Syaefudin, Jahnke, Cristiane, Jakubowska, Monika Joanna, Janik, Malgorzata Anna, Janson, Thomas, Jercic, Marko, Appelshaeuser, Harald, Jevons, Oliver Thomas, Jin, Muqing, Jonas, Florian, Jones, Peter Graham, Jung, Jerome, Jung, Michael, Jusko, Anton, Kalinak, Peter, Kalweit, Alexander Philipp, Kaplin, Vladimir, Arcelli, Silvia, Kar, Somnath, Karasu Uysal, Ayben, Karatovic, David, Karavichev, Oleg, Karavicheva, Tatiana, Karczmarczyk, Przemyslaw, Karpechev, Evgeny, Kazantsev, Andrey, Kebschull, Udo Wolfgang, Keidel, Ralf, Arnaldi, Roberta, Keil, Markus, Ketzer, Bernhard Franz, Khabanova, Zhanna, Khan, Ahsan Mehmood, Khan, Shaista, Khanzadeev, Alexei, Kharlov, Yury, Khatun, Anisa, Khuntia, Arvind, Kileng, Bjarte, Arratia Munoz, Miguel Ignacio, Kim, Beomkyu, Kim, Byungchul, Kim, Daehyeok, Kim, Dong Jo, Kim, Eun Joo, Kim, Hyeonjoong, Kim, Jaehyun, Kim, Jinsook, Kim, Jiyoung, Kim, Jungeol, Arsene, Ionut Cristian, Kim, Junlee, Kim, Minjung, Kim, Se Yong, Kim, Taejun, Kim, Taesoo, Kirsch, Stefan, Kisel, Ivan, Kiselev, Sergey, Kisiel, Adam Ryszard, Klay, Jennifer Lynn, Arslandok, Mesut, Klein, Carsten, Klein, Jochen, Klein, Spencer Robert, Klein-boesing, Christian, Kleiner, Matthias, Kluge, Alexander, Knichel, Michael Linus, Knospe, Anders Garritt, Kobdaj, Chinorat, Kohler, Markus Konrad, Augustinus, Andre, Kollegger, Thorsten Sven, Kondratyev, Andrey, Kondratyeva, Natalia, Kondratyuk, Evgeny, Konig, Joshua Leon, Konigstorfer, Stephan Alexander, Konopka, Piotr Jan, Kornakov, Georgui, Koska, Lukas, Kovalenko, Oleksandr, Averbeck, Ralf Peter, Kovalenko, Vladimir, Kowalski, Marek, Kralik, Ivan, Kravcakova, Adela, Kreis, Lukas, Krivda, Marian, Krizek, Filip, Krizkova Gajdosova, Katarina, Kruger, Mario, Kryshen, Evgeny, Aziz, Sizar, Krzewicki, Mikolaj, Kubera, Andrew Michael, Kucera, Vit, Kuhn, Christian Claude, Kuijer, Paulus Gerardus, Kumar, Lokesh, Kundu, Sourav, Kurashvili, Podist, Kurepin, Alexander, Kurepin, Alexey, Aglieri Rinella, Gianluca, Azmi, Mohd Danish, Kuryakin, Alexey, Kushpil, Svetlana, Kvapil, Jakub, Kweon, Min Jung, Kwon, Jiyeon, Kwon, Youngil, La Pointe, Sarah Louise, La Rocca, Paola, Lai, Yue Shi, Lamanna, Massimo, Badala, Angela, Langoy, Rune, Lapidus, Kirill, Lardeux, Antoine Xavier, Larionov, Pavel, Laudi, Elisa, Lavicka, Roman, Lazareva, Tatiana, Lea, Ramona, Leardini, Lucia, Lee, Joonil, Baek, Yongwook, Lee, Seongjoo, Lehner, Sebastian, Lehrbach, Johannes, Lemmon, Roy Crawford, Leon Monzon, Ildefonso, Lesser, Ezra Douglas, Lettrich, Michael, Levai, Peter, Li, Xiaomei, Li, Xing Long, Bagnasco, Stefano, Lien, Jorgen Andre, Lietava, Roman, Lim, Bong-hwi, Lindenstruth, Volker, Lindner, Amelia, Lippmann, Christian, Lisa, Michael Annan, Liu, Alwina Ruixin, Liu, Jian, Liu, Suyuan, Bai, Xiaozhi, Llope, William Joseph, Lofnes, Ingrid Mckibben, Loginov, Vitaly, Loizides, Constantinos, Loncar, Petra, Lopez Lopez, Jorge Andres, Lopez, Xavier Bernard, Lopez Torres, Ernesto, Luhder, Jens Robert, Lunardon, Marcello, Bailhache, Raphaelle Marie, Luparello, Grazia, Ma, Yugang, Maevskaya, Alla, Mager, Magnus, Mahmood, Sohail Musa, Mahmoud, Tariq, Maire, Antonin, Majka, Richard Daniel, Malaev, Mikhail, Malik, Qasim Waheed, Bala, Renu, Malinina, Liudmila, Mal Kevich, Dmitry, Malzacher, Peter, Mandaglio, Giuseppe, Manko, Vladislav, Manso, Franck, Manzari, Vito, Mao, Yaxian, Marchisone, Massimiliano, Mares, Jiri, Balbino, Alessandro, Margagliotti, Giacomo Vito, Margotti, Anselmo, Marin, Ana Maria, Markert, Christina, Marquard, Marco, De Martin, Chiara, Martin, Nicole Alice, Martinengo, Paolo, Martinez, Jacobb Lee, Martinez Hernandez, Mario Ivan, Baldisseri, Alberto, Martinez-garcia, Gines, Masciocchi, Silvia, Masera, Massimo, Masoni, Alberto, Massacrier, Laure Marie, Masson, Erwann, Mastroserio, Annalisa, Mathis, Andreas Michael, Matonoha, Oliver, Toledo Matuoka, Paula Fernanda, Ball, Markus, Matyja, Adam Tomasz, Mayer, Christoph, Mazzaschi, Francesco, Mazzilli, Marianna, Mazzoni, Alessandra Maria, Mechler, Adrian Florin, Meddi, Franco, Melikyan, Yury, Menchaca-rocha, Arturo Alejandro, Cai, Mengke, Agnello, Michelangelo, Balouza, Samah, Meninno, Elisa, Sasikumar Menon, Anjaly, Meres, Michal, Mhlanga, Sibaliso, Miake, Yasuo, Micheletti, Luca, Migliorin, Lucrezia Camilla, Mihaylov, Dimitar Lubomirov, Mikhaylov, Konstantin, Mishra, Aditya Nath, Banerjee, Debjani, Miskowiec, Dariusz Czeslaw, Modak, Abhi, Mohammadi, Naghmeh, Mohanty, Auro Prasad, Mohanty, Bedangadas, Khan, Mohammed Mohisin, Moravcova, Zuzana, Mordasini, Cindy, Moreira De Godoy, Denise Aparecida, Perez Moreno, Luis Alberto, Barbera, Roberto, Morozov, Igor, Morsch, Andreas, Mrnjavac, Teo, Muccifora, Valeria, Mudnic, Eugen, Muhlheim, Daniel Michael, Muhuri, Sanjib, Mulligan, James Declan, Mulliri, Alice, Gameiro Munhoz, Marcelo, Barioglio, Luca, Munzer, Robert Helmut, Murakami, Hikari, Murray, Sean, Musa, Luciano, Musinsky, Jan, Myers, Corey James, Myrcha, Julian Wojciech, Naik, Bharati, Nair, Rahul Ramachandran, Nandi, Basanta Kumar, Barnafoldi, Gergely Gabor, Nania, Rosario, Nappi, Eugenio, Naru, Muhammad Umair, Nassirpour, Adrian Fereydon, Nattrass, Christine, Nayak, Ranjit, Nayak, Tapan Kumar, Nazarenko, Sergey, Neagu, Alexandra, Negrao De Oliveira, Renato Aparecido, Barnby, Lee Stuart, Nellen, Lukas, Nesbo, Simon Voigt, Neskovic, Gvozden, Nesterov, Dmitrii, Neumann, Lukasz Tomasz, Nielsen, Borge Svane, Nikolaev, Sergey, Nikulin, Sergey, Nikulin, Vladimir, Noferini, Francesco, Ramillien Barret, Valerie, Nomokonov, Petr, Norman, Jaime, Novitzky, Norbert, Nowakowski, Piotr, Nyanin, Alexander, Nystrand, Joakim Ingemar, Ogino, Masanori, Ohlson, Alice Elisabeth, Oleniacz, Janusz, Oliveira Da Silva, Antonio Carlos, Bartalini, Paolo, Oliver, Michael Henry, Oppedisano, Chiara, Ortiz Velasquez, Antonio, Oskarsson, Anders Nils Erik, Otwinowski, Jacek Tomasz, Oyama, Ken, Pachmayer, Yvonne Chiara, Pacik, Vojtech, Padhan, Sonali, Pagano, Davide, Bartels, Clara, Paic, Guy, Pan, Jinjin, Panebianco, Stefano, Pareek, Pooja, Park, Jonghan, Parkkila, Jasper Elias, Parmar, Sonia, Pathak, Surya Prakash, Paul, Biswarup, Pazzini, Jacopo, Barth, Klaus, Pei, Hua, Peitzmann, Thomas, Peng, Xinye, Pereira, Luis Gustavo, Pereira Da Costa, Hugo Denis Antonio, Peresunko, Dmitry Yurevich, Mesa Perez, Guillermo, Perrin, Sebastien, Pestov, Yury, Petracek, Vojtech, Agrawal, Neelima, Bartsch, Esther, Petrovici, Mihai, Peretti Pezzi, Rafael, Piano, Stefano, Pikna, Miroslav, Pillot, Philippe, Pinazza, Ombretta, Pinsky, Lawrence, Pinto, Chiara, Pisano, Silvia, Pistone, Daniele, Baruffaldi, Filippo, Ploskon, Mateusz Andrzej, Planinic, Mirko, Pliquett, Fabian, Poghosyan, Martin, Polishchuk, Boris, Poljak, Nikola, Pop, Amalia, Porteboeuf, Sarah Julie, Pozdniakov, Valeriy, Prasad, Sidharth Kumar, Bastid, Nicole, Preghenella, Roberto, Prino, Francesco, Pruneau, Claude Andre, Pshenichnov, Igor, Puccio, Maximiliano, Putschke, Jorn Henning, Qiu, Shi, Quaglia, Luca, Quishpe Quishpe, Raquel Estefania, Ragoni, Simone, Basu, Sumit, Raha, Sibaji, Rajput, Sonia, Rak, Jan, Rakotozafindrabe, Andry Malala, Ramello, Luciano, Rami, Fouad, Rodriguez Ramirez, Saul Anibal, Raniwala, Rashmi, Raniwala, Sudhir, Rasanen, Sami Sakari, Batigne, Guillaume, Rath, Rutuparna, Ratza, Viktor, Ravasenga, Ivan, Read, Kenneth Francis, Redelbach, Andreas Ralph, Redlich, Krzysztof, Rehman, Attiq Ur, Reichelt, Patrick Simon, Reidt, Felix, Ren, Xiaowen, Batyunya, Boris, Renfordt, Rainer Arno Ernst, Jakubcinova, Zuzana, Reygers, Klaus Johannes, Riabov, Andrei, Riabov, Viktor, Richert, Tuva Ora Herenui, Richter, Matthias Rudolph, Riedler, Petra, Riegler, Werner, Riggi, Francesco, Bauri, Dibakar, Ristea, Catalin-lucian, Rode, Sudhir Pandurang, Rodriguez Cahuantzi, Mario, Roeed, Ketil, Rogalev, Roman, Rogochaya, Elena, Rohr, David Michael, Roehrich, Dieter, Fierro Rojas, Pablo, Rokita, Przemyslaw Stefan, Bazo Alba, Jose Luis, Ronchetti, Federico, Rosano, Antonina, Dominguez Rosas, Edgar, Roslon, Krystian, Rossi, Andrea, Rotondi, Alberto, Roy, Ankhi, Roy, Pradip Kumar, Vazquez Rueda, Omar, Rui, Rinaldo, Bearden, Ian Gardner, Rumyantsev, Boris, Rustamov, Anar, Ryabinkin, Evgeny, Ryabov, Yury, Rybicki, Andrzej, Rytkonen, Heidi Maria, Saarimaki, Oskari Antti Matti, Sadek, Rita, Sadhu, Samrangy, Sadovskiy, Sergey, Beattie, Caitlin, Safarik, Karel, Saha, Sumit Kumar, Sahoo, Baidyanath, Sahoo, Pragati, Sahoo, Raghunath, Sahoo, Sarita, Sahu, Pradip Kumar, Saini, Jogender, Sakai, Shingo, Sambyal, Sanjeev Singh, Ahammed, Zubayer, Bedda, Cristina, Samsonov, Vladimir, Sarkar, Debojit, Sarkar, Nachiketa, Sarma, Pranjal, Mantovani Sarti, Valentina, Sas, Mike Henry Petrus, Scapparone, Eugenio, Schambach, Johann Joachim, Scheid, Horst Sebastian, Schiaua, Claudiu Cornel, Behera, Nirbhay Kumar, Schicker, Rainer Martin, Schmah, Alexander, Schmidt, Christian Joachim, Schmidt, Hans Rudolf, Schmidt, Marten Ole, Schmidt, Martin, Schmidt, Nicolas, Schmier, Austin Robert, Schukraft, Jurgen, Schutz, Yves Roland, Belikov, Iouri, Schwarz, Kilian Eberhard, Schweda, Kai Oliver, Scioli, Gilda, Scomparin, Enrico, Seger, Janet Elizabeth, Sekiguchi, Yuko, Sekihata, Daiki, Selyuzhenkov, Ilya, Senyukov, Serhiy, Serebryakov, Dmitry, Bell Hechavarria, Ailec, Sevcenco, Adrian, Shabanov, Arseniy, Shabetai, Alexandre, Shahoyan, Ruben, Shaikh, Wadut, Shangaraev, Artem, Sharma, Anjali, Sharma, Ankita, Sharma, Himanshu, Sharma, Meenakshi, Bellini, Francesca, Sharma, Natasha, Sharma, Sheetal, Sheibani, Oveis, Shigaki, Kenta, Hachiya Shimomura, Maya, Shirinkin, Sergey, Shou, Qiye, Sibiryak, Yury, Siddhanta, Sabyasachi, Siemiarczuk, Teodor, Bellwied, Rene, Silvermyr, David Olle Rickard, Simatovic, Goran, Simonetti, Giuseppe, Singh, Bhawani, Singh, Ranbir, Singh, Randhir, Singh, Ravindra, Singh, Vivek, Singhal, Vikas, Sarkar - Sinha, Tinku, Belyaev, Vladimir, Sitar, Branislav, Sitta, Mario, Skaali, Bernhard, Slupecki, Maciej, Smirnov, Nikolai, Snellings, Raimond, Soncco Meza, Carlos, Song, Jihye, Songmoolnak, Arnon, Soramel, Francesca, Bencedi, Gyula, Sorensen, Soren Pontoppidan, Sputowska, Iwona Anna, Stachel, Johanna, Stan, Ionel, Steffanic, Patrick John, Stenlund, Evert Anders, Stiefelmaier, Stephan Friedrich, Stocco, Diego, Storetvedt, Maksim Melnik, Dello Stritto, Luigi, Beole, Stefania, Alarcon Do Passo Suaide, Alexandre, Sugitate, Toru, Suire, Christophe Pierre, Suleymanov, Mais Kazim Oglu, Suljic, Miljenko, Sultanov, Rishat, Sumbera, Michal, Sumberia, Vikash, Sumowidagdo, Suharyo, Swain, Sagarika, Bercuci, Alexandru, Szabo, Alexander, Szarka, Imrich, Tabassam, Uzma, Taghavi, Seyed Farid, Taillepied, Guillaume, Takahashi, Jun, Tambave, Ganesh Jagannath, Tang, Siyu, Tarhini, Mohamad, Tarzila, Madalina-gabriela, Ahmad, Shakeel, Berdnikov, Yaroslav, Tauro, Arturo, Tejeda Munoz, Guillermo, Telesca, Adriana, Terlizzi, Livia, Terrevoli, Cristina, Thakur, Dhananjaya, Thakur, Sanchari, Thomas, Deepa, Thoresen, Freja, Tieulent, Raphael Noel, Berenyi, Daniel, Tikhonov, Anatoly, Timmins, Anthony Robert, Toia, Alberica, Topilskaya, Nataliya, Toppi, Marco, Torales Acosta, Fernando, Rojas Torres, Solangel, Trifiro, Antonio, Tripathy, Sushanta, Tripathy, Tulika, Bertens, Redmer Alexander, Trogolo, Stefano, Trombetta, Giuseppe, Tropp, Lukas, Trubnikov, Victor, Trzaska, Wladyslaw Henryk, Trzcinski, Tomasz Piotr, Trzeciak, Barbara Antonina, Tumkin, Alexandr, Turrisi, Rosario, Tveter, Trine Spedstad, Berzano, Dario, Ullaland, Kjetil, Umaka, Ejiro Naomi, Uras, Antonio, Usai, Gianluca, Vala, Martin, Valle, Nicolo', Vallero, Sara, Van Der Kolk, Naomi, Van Doremalen, Lennart, Van Leeuwen, Marco, Besoiu, Mihaela Gabriela, Vande Vyvre, Pierre, Varga, Dezso, Varga, Zoltan, Varga-kofarago, Monika, Diozcora Vargas Trevino, Aurora, Vasileiou, Maria, Vasiliev, Andrey, Vazquez Doce, Oton, Vechernin, Vladimir, Vercellin, Ermanno, Betev, Latchezar, Vergara Limon, Sergio, Vermunt, Lucas Anne, Vernet, Renaud, Vertesi, Robert, Vickovic, Linda, Vilakazi, Zabulon, Villalobos Baillie, Orlando, Vino, Gioacchino, Vinogradov, Alexander, Virgili, Tiziano, Bhasin, Anju, Vislavicius, Vytautas, Vodopyanov, Alexander, Volkel, Benedikt, Volkl, Martin Andreas, Voloshin, Kirill, Voloshin, Sergey, Volpe, Giacomo, Von Haller, Barthelemy, Vorobyev, Ivan, Voscek, Dominik, Bhat, Inayat Rasool, Vrlakova, Janka, Wagner, Boris, Weber, Michael, Weber, Steffen Georg, Wegrzynek, Adam Tadeusz, Wenzel, Sandro Christian, Wessels, Johannes Peter, Wiechula, Jens, Wikne, Jon, Wilk, Grzegorz Andrzej, Bhat, Mohammad Asif, Wilkinson, Jeremy John, Willems, Guido Alexander, Willsher, Emily Jade, Windelband, Bernd Stefan, Winn, Michael Andreas, Witt, William Edward, Wright, Josephina Rae, Wu, Yitao, Xu, Ran, Yalcin Kuzu, Serpil, Bhatt, Himani, Yamaguchi, Yorito, Yamakawa, Kosei, Yang, Shiming, Yano, Satoshi, Yin, Zhongbao, Yokoyama, Hiroki, Yoo, In Kwon, Yoon, Jin Hee, Yuan, Shiming, Yuncu, Alperen, Acharya, S., Adamova, D., Adler, A., Adolfsson, J., Aggarwal, M. M., Rinella, G. A., Agnello, M., Agrawal, N., Ahammed, Z., Ahmad, S., Ahn, S. U., Akbar, Z., Akindinov, A., Al-Turany, M., Alam, S. N., Albuquerque, D. S. D., Aleksandrov, D., Alessandro, B., Alfanda, H. M., Molina, R. A., Ali, B., Ali, Y., Alici, A., Alizadehvandchali, N., Alkin, A., Alme, J., Alt, T., Altenkamper, L., Altsybeev, I., Anaam, M. N., Andrei, C., Andreou, D., Andronic, A., Angeletti, M., Anguelov, V., Anson, C., Anticic, T., Antinori, F., Antonioli, P., Apadula, N., Aphecetche, L., Appelshauser, H., Arcelli, S., Arnaldi, R., Arratia, M., Arsene, I. C., Arslandok, M., Augustinus, A., Averbeck, R., Aziz, S., Azmi, M. D., Badala, A., Baek, Y. W., Bagnasco, S., Bai, X., Bailhache, R., Bala, R., Balbino, A., Baldisseri, A., Ball, M., Balouza, S., Banerjee, D., Barbera, R., Barioglio, L., Barnafoldi, G. G., Barnby, L. S., Barret, V., Bartalini, P., Bartels, C., Barth, K., Bartsch, E., Baruffaldi, F., Bastid, N., Basu, S., Batigne, G., Batyunya, B., Bauri, D., Alba, J. L. B., Bearden, I. G., Beattie, C., Bedda, C., Behera, N. K., Belikov, I., Hechavarria, A. D. C. B., Bellini, F., Bellwied, R., Belyaev, V., Bencedi, G., Beole, S., Bercuci, A., Berdnikov, Y., Berenyi, D., Bertens, R. A., Berzano, D., Besoiu, M. G., Betev, L., Bhasin, A., Bhat, I. R., Bhat, M. A., Bhatt, H., Bhattacharjee, B., Bianchi, A., Bianchi, L., Bianchi, N., Bielcik, J., Bielcikova, J., Bilandzic, A., Biro, G., Biswas, R., Biswas, S., Blair, J. T., Blau, D., Blume, C., Boca, G., Bock, F., Bogdanov, A., Boi, S., Bok, J., Boldizsar, L., Bolozdynya, A., Bombara, M., Bonomi, G., Borel, H., Borissov, A., Bossi, H., Botta, E., Bratrud, L., Braun-Munzinger, P., Bregant, M., Broz, M., Bruna, E., Bruno, G. E., Buckland, M. D., Budnikov, D., Buesching, H., Bufalino, S., Bugnon, O., Buhler, P., Buncic, P., Buthelezi, Z., Butt, J. B., Bysiak, S. A., Caffarri, D., Caliva, A., Villar, E. C., Camacho, J. M. M., Camacho, R. S., Camerini, P., Canedo, F. D. M., Capon, A. A., Carnesecchi, F., Caron, R., Castellanos, J. C., Castro, A. J., Casula, E. A. R., Catalano, F., Sanchez, C. C., Chakraborty, P., Chandra, S., Chang, W., Chapeland, S., Chartier, M., Chattopadhyay, S., Chauvin, A., Cheshkov, C., Cheynis, B., Barroso, V. C., Chinellato, D. D., Cho, S., Chochula, P., Chowdhury, T., Christakoglou, P., Christensen, C. H., Christiansen, P., Chujo, T., Cicalo, C., Cifarelli, L., Cilladi, L. D., Cindolo, F., Ciupek, M. R., Clai, G., Cleymans, J., Colamaria, F., Colella, D., Collu, A., Colocci, M., Concas, M., Balbastre, G. C., del Valle, Z. C., Contin, G., Contreras, J. G., Cormier, T. M., Morales, Y. C., Cortese, P., Cosentino, M. R., Costa, F., Costanza, S., Crochet, P., Cuautle, E., Cui, P., Cunqueiro, L., Dabrowski, D., Dahms, T., Dainese, A., Damas, F. P. A., Danisch, M. C., Danu, A., Das, D., Das, I., Das, P., Das, S., Dash, A., Dash, S., De, S., De Caro, A., de Cataldo, G., de Cuveland, J., De Falco, A., De Gruttola, D., De Marco, N., De Pasquale, S., Deb, S., Degenhardt, H. F., Deja, K. R., Deloff, A., Delsanto, S., Deng, W., Dhankher, P., Di Bari, D., Di Mauro, A., Diaz, R. A., Dietel, T., Dillenseger, P., Ding, Y., Divia, R., Dixit, D. U., Djuvsland, O., Dmitrieva, U., Dobrin, A., Donigus, B., Dordic, O., Dubey, A. K., Dubla, A., Dudi, S., Dukhishyam, M., Dupieux, P., Ehlers, R. J., Eikeland, V. N., Elia, D., Erazmus, B., Erhardt, F., Erokhin, A., Ersdal, M. R., Espagnon, B., Eulisse, G., Evans, D., Evdokimov, S., Fabbietti, L., Faggin, M., Faivre, J., Fan, F., Fantoni, A., Fasel, M., Fecchio, P., Feliciello, A., Feofilov, G., Tellez, A. F., Ferrero, A., Ferretti, A., Festanti, A., Feuillard, V. J. G., Figiel, J., Filchagin, S., Finogeev, D., Fionda, F. M., Fiorenza, G., Flor, F., Flores, A. N., Foertsch, S., Foka, P., Fokin, S., Fragiacomo, E., Frankenfeld, U., Fuchs, U., Furget, C., Furs, A., Girard, M. F., Gaardhoje, J. J., Gagliardi, M., Gago, A. M., Gal, A., Galvan, C. D., Ganoti, P., Garabatos, C., Garcia, J. R. A., Garcia-Solis, E., Garg, K., Gargiulo, C., Garibli, A., Garner, K., Gasik, P., Gauger, E. F., Ducati, M. B. G., Germain, M., Ghosh, J., Ghosh, P., Ghosh, S. K., Giacalone, M., Gianotti, P., Giubellino, P., Giubilato, P., Glaenzer, A. M. C., Glassel, P., Ramirez, A. G., Gonzalez, V., Gonzalez-Trueba, L. H., Gorbunov, S., Gorlich, L., Goswami, A., Gotovac, S., Grabski, V., Graczykowski, L. K., Graham, K. L., Greiner, L., Grelli, A., Grigoras, C., Grigoriev, V., Grigoryan, A., Grigoryan, S., Groettvik, O. S., Grosa, F., Grosse-Oetringhaus, J. F., Grosso, R., Guernane, R., Guittiere, M., Gulbrandsen, K., Gunji, T., Gupta, A., Gupta, R., Guzman, I. B., Haake, R., Habib, M. K., Hadjidakis, C., Hamagaki, H., Hamar, G., Hamid, M., Hannigan, R., Haque, M. R., Harlenderova, A., Harris, J. W., Harton, A., Hasenbichler, J. A., Hassan, H., Hassan, Q. U., Hatzifotiadou, D., Hauer, P., Havener, L. B., Hayashi, S., Heckel, S. T., Hellbar, E., Helstrup, H., Herghelegiu, A., Herman, T., Hernandez, E. G., Corral, G. H., Herrmann, F., Hetland, K. F., Hillemanns, H., Hills, C., Hippolyte, B., Hohlweger, B., Honermann, J., Horak, D., Hornung, A., Hornung, S., Hosokawa, R., Hristov, P., Huang, C., Hughes, C., Huhn, P., Humanic, T. J., Hushnud, H., Husova, L. A., Hussain, N., Hussain, S. A., Hutter, D., Iddon, J. P., Ilkaev, R., Ilyas, H., Inaba, M., Innocenti, G. M., Ippolitov, M., Isakov, A., Islam, M. S., Ivanov, M., Ivanov, V., Izucheev, V., Jacak, B., Jacazio, N., Jacobs, P. M., Jadlovska, S., Jadlovsky, J., Jaelani, S., Jahnke, C., Jakubowska, M. J., Janik, M. A., Janson, T., Jercic, M., Jevons, O., Jin, M., Jonas, F., Jones, P. G., Jung, J., Jung, M., Jusko, A., Kalinak, P., Kalweit, A., Kaplin, V., Kar, S., Uysal, A. K., Karatovic, D., Karavichev, O., Karavicheva, T., Karczmarczyk, P., Karpechev, E., Kazantsev, A., Kebschull, U., Keidel, R., Keil, M., Ketzer, B., Khabanova, Z., Khan, A. M., Khan, S., Khanzadeev, A., Kharlov, Y., Khatun, A., Khuntia, A., Kileng, B., Kim, B., Kim, D., Kim, D. J., Kim, E. J., Kim, H., Kim, J., Kim, J. S., Kim, M., Kim, S., Kim, T., Kirsch, S., Kisel, I., Kiselev, S., Kisiel, A., Klay, J. L., Klein, C., Klein, J., Klein, S., Klein-Bosing, C., Kleiner, M., Kluge, A., Knichel, M. L., Knospe, A. G., Kobdaj, C., Kohler, M. K., Kollegger, T., Kondratyev, A., Kondratyeva, N., Kondratyuk, E., Konig, J., Konigstorfer, S. A., Konopka, P. J., Kornakov, G., Koska, L., Kovalenko, O., Kovalenko, V., Kowalski, M., Kralik, I., Kravcakova, A., Kreis, L., Krivda, M., Krizek, F., Gajdosova, K. K., Kruger, M., Kryshen, E., Krzewicki, M., Kubera, A. M., Kucera, V., Kuhn, C., Kuijer, P. G., Kumar, L., Kundu, S., Kurashvili, P., Kurepin, A., Kurepin, A. B., Kuryakin, A., Kushpil, S., Kvapil, J., Kweon, M. J., Kwon, J. Y., Kwon, Y., La Pointe, S. L., La Rocca, P., Lai, Y. S., Lamanna, M., Langoy, R., Lapidus, K., Lardeux, A., Larionov, P., Laudi, E., Lavicka, R., Lazareva, T., Lea, R., Leardini, L., Lee, J., Lee, S., Lehner, S., Lehrbach, J., Lemmon, R. C., Monzon, I. L., Lesser, E. D., Lettrich, M., Levai, P., Li, X., Li, X. L., Lien, J., Lietava, R., Lim, B., Lindenstruth, V., Lindner, A., Lippmann, C., Lisa, M. A., Liu, A., Liu, J., Liu, S., Llope, W. J., Lofnes, I. M., Loginov, V., Loizides, C., Loncar, P., Lopez, J. A., Lopez, X., Torres, E. L., Luhder, J. R., Lunardon, M., Luparello, G., Ma, Y. G., Maevskaya, A., Mager, M., Mahmood, S. M., Mahmoud, T., Maire, A., Majka, R. D., Malaev, M., Malik, Q. W., Malinina, L., Mal'Kevich, D., Malzacher, P., Mandaglio, G., Manko, V., Manso, F., Manzari, V., Mao, Y., Marchisone, M., Mares, J., Margagliotti, G. V., Margotti, A., Marin, A., Markert, C., Marquard, M., Martin, C. D., Martin, N. A., Martinengo, P., Martinez, J. L., Martinez, M. I., Garcia, G. M., Masciocchi, S., Masera, M., Masoni, A., Massacrier, L., Masson, E., Mastroserio, A., Mathis, A. M., Matonoha, O., Matuoka, P. F. T., Matyja, A., Mayer, C., Mazzaschi, F., Mazzilli, M., Mazzoni, M. A., Mechler, A. F., Meddi, F., Melikyan, Y., Menchaca-Rocha, A., Mengke, C., Meninno, E., Menon, A. S., Meres, M., Mhlanga, S., Miake, Y., Micheletti, L., Migliorin, L. C., Mihaylov, D. L., Mikhaylov, K., Mishra, A. N., Miskowiec, D., Modak, A., Mohammadi, N., Mohanty, A. P., Mohanty, B., Khan, M. M., Moravcova, Z., Mordasini, C., Moreira De Godoy, D. A., Moreno, L. A. P., Morozov, I., Morsch, A., Mrnjavac, T., Muccifora, V., Mudnic, E., Muhlheim, D., Muhuri, S., Mulligan, J. D., Mulliri, A., Munhoz, M. G., Munzer, R. H., Murakami, H., Murray, S., Musa, L., Musinsky, J., Myers, C. J., Myrcha, J. W., Naik, B., Nair, R., Nandi, B. K., Nania, R., Nappi, E., Naru, M. U., Nassirpour, A. F., Nattrass, C., Nayak, R., Nayak, T. K., Nazarenko, S., Neagu, A., Negrao De Oliveira, R. A., Nellen, L., Nesbo, S. V., Neskovic, G., Nesterov, D., Neumann, L. T., Nielsen, B. S., Nikolaev, S., Nikulin, S., Nikulin, V., Noferini, F., Nomokonov, P., Norman, J., Novitzky, N., Nowakowski, P., Nyanin, A., Nystrand, J., Ogino, M., Ohlson, A., Oleniacz, J., Da Silva, A. C. O., Oliver, M. H., Oppedisano, C., Velasquez, A. O., Oskarsson, A., Otwinowski, J., Oyama, K., Pachmayer, Y., Pacik, V., Padhan, S., Pagano, D., Paic, G., Pan, J., Panebianco, S., Pareek, P., Park, J., Parkkila, J. E., Parmar, S., Pathak, S. P., Paul, B., Pazzini, J., Pei, H., Peitzmann, T., Peng, X., Pereira, L. G., Da Costa, H. P., Peresunko, D., Perez, G. M., Perrin, S., Pestov, Y., Petracek, V., Petrovici, M., Pezzi, R. P., Piano, S., Pikna, M., Pillot, P., Pinazza, O., Pinsky, L., Pinto, C., Pisano, S., Pistone, D., Ploskon, M., Planinic, M., Pliquett, F., Poghosyan, M. G., Polichtchouk, B., Poljak, N., Pop, A., Porteboeuf-Houssais, S., Pozdniakov, V., Prasad, S. K., Preghenella, R., Prino, F., Pruneau, C. A., Pshenichnov, I., Puccio, M., Putschke, J., Qiu, S., Quaglia, L., Quishpe, R. E., Ragoni, S., Raha, S., Rajput, S., Rak, J., Rakotozafindrabe, A., Ramello, L., Rami, F., Ramirez, S. A. R., Raniwala, R., Raniwala, S., Rasanen, S. S., Rath, R., Ratza, V., Ravasenga, I., Read, K. F., Redelbach, A. R., Redlich, K., Rehman, A., Reichelt, P., Reidt, F., Ren, X., Renfordt, R., Rescakova, Z., Reygers, K., Riabov, A., Riabov, V., Richert, T., Richter, M., Riedler, P., Riegler, W., Riggi, F., Ristea, C., Rode, S. P., Cahuantzi, M. R., Roed, K., Rogalev, R., Rogochaya, E., Rohr, D., Rohrich, D., Rojas, P. F., Rokita, P. S., Ronchetti, F., Rosano, A., Rosas, E. D., Roslon, K., Rossi, A., Rotondi, A., Roy, A., Roy, P., Rueda, O. V., Rui, R., Rumyantsev, B., Rustamov, A., Ryabinkin, E., Ryabov, Y., Rybicki, A., Rytkonen, H., Saarimaki, O. A. M., Sadek, R., Sadhu, S., Sadovsky, S., Safarik, K., Saha, S. K., Sahoo, B., Sahoo, P., Sahoo, R., Sahoo, S., Sahu, P. K., Saini, J., Sakai, S., Sambyal, S., Samsonov, V., Sarkar, D., Sarkar, N., Sarma, P., Sarti, V. M., Sas, M. H. P., Scapparone, E., Schambach, J., Scheid, H. S., Schiaua, C., Schicker, R., Schmah, A., Schmidt, C., Schmidt, H. R., Schmidt, M. O., Schmidt, M., Schmidt, N. V., Schmier, A. R., Schukraft, J., Schutz, Y., Schwarz, K., Schweda, K., Scioli, G., Scomparin, E., Seger, J. E., Sekiguchi, Y., Sekihata, D., Selyuzhenkov, I., Senyukov, S., Serebryakov, D., Sevcenco, A., Shabanov, A., Shabetai, A., Shahoyan, R., Shaikh, W., Shangaraev, A., Sharma, A., Sharma, H., Sharma, M., Sharma, N., Sharma, S., Sheibani, O., Shigaki, K., Shimomura, M., Shirinkin, S., Shou, Q., Sibiriak, Y., Siddhanta, S., Siemiarczuk, T., Silvermyr, D., Simatovic, G., Simonetti, G., Singh, B., Singh, R., Singh, V. K., Singhal, V., Sinha, T., Sitar, B., Sitta, M., Skaali, T. B., Slupecki, M., Smirnov, N., Snellings, R. J. M., Soncco, C., Song, J., Songmoolnak, A., Soramel, F., Sorensen, S., Sputowska, I., Stachel, J., Stan, I., Steffanic, P. J., Stenlund, E., Stiefelmaier, S. F., Stocco, D., Storetvedt, M. M., Stritto, L. D., Suaide, A. A. P., Sugitate, T., Suire, C., Suleymanov, M., Suljic, M., Sultanov, R., Sumbera, M., Sumberia, V., Sumowidagdo, S., Swain, S., Szabo, A., Szarka, I., Tabassam, U., Taghavi, S. F., Taillepied, G., Takahashi, J., Tambave, G. J., Tang, S., Tarhini, M., Tarzila, M. G., Tauro, A., Munoz, G. T., Telesca, A., Terlizzi, L., Terrevoli, C., Thakur, D., Thakur, S., Thomas, D., Thoresen, F., Tieulent, R., Tikhonov, A., Timmins, A. R., Toia, A., Topilskaya, N., Toppi, M., Torales-Acosta, F., Torres, S. R., Trifiro, A., Tripathy, S., Tripathy, T., Trogolo, S., Trombetta, G., Tropp, L., Trubnikov, V., Trzaska, W. H., Trzcinski, T. P., Trzeciak, B. A., Tumkin, A., Turrisi, R., Tveter, T. S., Ullaland, K., Umaka, E. N., Uras, A., Usai, G. L., Vala, M., Valle, N., Vallero, S., van der Kolk, N., van Doremalen, L. V. R., van Leeuwen, M., Vyvre, P. V., Varga, D., Varga, Z., Varga-Kofarago, M., Vargas, A., Vasileiou, M., Vasiliev, A., Doce, O. V., Vechernin, V., Vercellin, E., Limon, S. V., Vermunt, L., Vernet, R., Vertesi, R., Vickovic, L., Vilakazi, Z., Baillie, O. V., Vino, G., Vinogradov, A., Virgili, T., Vislavicius, V., Vodopyanov, A., Volkel, B., Volkl, M. A., Voloshin, K., Voloshin, S. A., Volpe, G., von Haller, B., Vorobyev, I., Voscek, D., Vrlakova, J., Wagner, B., Weber, M., Weber, S. G., Wegrzynek, A., Wenzel, S. C., Wessels, J. P., Wiechula, J., Wikne, J., Wilk, G., Wilkinson, J., Willems, G. A., Willsher, E., Windelband, B., Winn, M., Witt, W. E., Wright, J. R., Wu, Y., Xu, R., Yalcin, S., Yamaguchi, Y., Yamakawa, K., Yang, S., Yano, S., Yin, Z., Yokoyama, H., Yoo, I. -K., Yoon, J. H., Yuan, S., Yuncu, A., Yurchenko, V., Zaccolo, V., Zaman, A., Zampolli, C., Zanoli, H. J. C., Zardoshti, N., Zarochentsev, A., Zavada, P., Zaviyalov, N., Zbroszczyk, H., Zhalov, M., Zhang, S., Zhang, X., Zhang, Z., Zherebchevskii, V., Zhi, Y., Zhou, D., Zhou, Y., Zhou, Z., Zhu, J., Zhu, Y., Zichichi, A., Zinovjev, G., Zurlo, N., Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique de Clermont (LPC), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Centre de Calcul de l'IN2P3 (CC-IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), ALICE, Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), S. Acharya, D. Adamová, A. Adler, J. Adolfsson, M. M. Aggarwal, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. U. Ahn, Z. Akbar, A. Akindinov, M. Al-Turany, S. N. Alam, D. S. D. Albuquerque, D. Aleksandrov, B. Alessandro, H. M. Alfanda, R. Alfaro Molina, B. Ali, Y. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, T. Alt, L. Altenkamper, I. Altsybeev, M. N. Anaam, C. Andrei, D. Andreou, A. Andronic, M. Angeletti, V. Anguelov, C. Anson, T. Antičić, F. Antinori, P. Antonioli, N. Apadula, L. Aphecetche, H. Appelshäuser, S. Arcelli, R. Arnaldi, M. Arratia, I. C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, S. Aziz, M. D. Azmi, A. Badalà, Y. W. Baek, S. Bagnasco, X. Bai, R. Bailhache, R. Bala, A. Balbino, A. Baldisseri, M. Ball, S. Balouza, D. Banerjee, R. Barbera, L. Barioglio, G. G. Barnaföldi, L. S. Barnby, V. Barret, P. Bartalini, C. Bartels, K. Barth, E. Bartsch, F. Baruffaldi, N. Bastid, S. Basu, G. Batigne, B. Batyunya, D. Bauri, J. L. Bazo Alba, I. G. Bearden, C. Beattie, C. Bedda, N. K. Behera, I. Belikov, A. D. C. Bell Hechavarria, F. Bellini, R. Bellwied, V. Belyaev, G. Bencedi, S. Beole, A. Bercuci, Y. Berdnikov, D. Berenyi, R. A. Bertens, D. Berzano, M. G. Besoiu, L. Betev, A. Bhasin, I. R. Bhat, M. A. Bhat, H. Bhatt, B. Bhattacharjee, A. Bianchi, L. Bianchi, N. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, G. Biro, R. Biswas, S. Biswas, J. T. Blair, D. Blau, C. Blume, G. Boca, F. Bock, A. Bogdanov, S. Boi, J. Bok, L. Boldizsár, A. Bolozdynya, M. Bombara, G. Bonomi, H. Borel, A. Borissov, H. Bossi, E. Botta, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, E. Bruna, G. E. Bruno, M. D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, O. Bugnon, P. Buhler, P. Buncic, Z. Buthelezi, J. B. Butt, S. A. Bysiak, D. Caffarri, A. Caliva, E. Calvo Villar, J. M. M. Camacho, R. S. Camacho, P. Camerini, F. D. M. Canedo, A. A. Capon, F. Carnesecchi, R. Caron, J. Castillo Castellanos, A. J. Castro, E. A. R. Casula, F. Catalano, C. Ceballos Sanchez, P. Chakraborty, S. Chandra, W. Chang, S. Chapeland, M. Chartier, S. Chattopadhyay, S. Chattopadhyay, A. Chauvin, C. Cheshkov, B. Cheynis, V. Chibante Barroso, D. D. Chinellato, S. Cho, P. Chochula, T. Chowdhury, P. Christakoglou, C. H. Christensen, P. Christiansen, T. Chujo, C. Cicalo, L. Cifarelli, L. D. Cilladi, F. Cindolo, M. R. Ciupek, G. Clai, J. Cleymans, F. Colamaria, D. Colella, A. Collu, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J. G. Contreras, T. M. Cormier, Y. Corrales Morales, P. Cortese, M. R. Cosentino, F. Costa, S. Costanza, P. Crochet, E. Cuautle, P. Cui, L. Cunqueiro, D. Dabrowski, T. Dahms, A. Dainese, F. P. A. Damas, M. C. Danisch, A. Danu, D. Das, I. Das, P. Das, P. Das, S. Das, A. Dash, S. Dash, S. De, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, S. De Pasquale, S. Deb, H. F. Degenhardt, K. R. Deja, A. Deloff, S. Delsanto, W. Deng, P. Dhankher, D. Di Bari, A. Di Mauro, R. A. Diaz, T. Dietel, P. Dillenseger, Y. Ding, R. Divià, D. U. Dixit, Ø. Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, O. Dordic, A. K. Dubey, A. Dubla, S. Dudi, M. Dukhishyam, P. Dupieux, R. J. Ehlers, V. N. Eikeland, D. Elia, B. Erazmus, F. Erhardt, A. Erokhin, M. R. Ersdal, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, A. Fantoni, M. Fasel, P. Fecchio, A. Feliciello, G. Feofilov, A. Fernández Téllez, A. Ferrero, A. Ferretti, A. Festanti, V. J. G. Feuillard, J. Figiel, S. Filchagin, D. Finogeev, F. M. Fionda, G. Fiorenza, F. Flor, A. N. Flores, S. Foertsch, P. Foka, S. Fokin, E. Fragiacomo, U. Frankenfeld, U. Fuchs, C. Furget, A. Furs, M. Fusco Girard, J. J. Gaardhøje, M. Gagliardi, A. M. Gago, A. Gal, C. D. Galvan, P. Ganoti, C. Garabatos, J. R. A. Garcia, E. Garcia-Solis, K. Garg, C. Gargiulo, A. Garibli, K. Garner, P. Gasik, E. F. Gauger, M. B. Gay Ducati, M. Germain, J. Ghosh, P. Ghosh, S. K. Ghosh, M. Giacalone, P. Gianotti, P. Giubellino, P. Giubilato, A. M. C. Glaenzer, P. Glässel, A. Gomez Ramirez, V. Gonzalez, L. H. González-Trueba, S. Gorbunov, L. Görlich, A. Goswami, S. Gotovac, V. Grabski, L. K. Graczykowski, K. L. Graham, L. Greiner, A. Grelli, C. Grigoras, V. Grigoriev, A. Grigoryan, S. Grigoryan, O. S. Groettvik, F. Grosa, J. F. Grosse-Oetringhaus, R. Grosso, R. Guernane, M. Guittiere, K. Gulbrandsen, T. Gunji, A. Gupta, R. Gupta, I. B. Guzman, R. Haake, M. K. Habib, C. Hadjidakis, H. Hamagaki, G. Hamar, M. Hamid, R. Hannigan, M. R. Haque, A. Harlenderova, J. W. Harris, A. Harton, J. A. Hasenbichler, H. Hassan, Q. U. Hassan, D. Hatzifotiadou, P. Hauer, L. B. Havener, S. Hayashi, S. T. Heckel, E. Hellbär, H. Helstrup, A. Herghelegiu, T. Herman, E. G. Hernandez, G. Herrera Corral, F. Herrmann, K. F. Hetland, H. Hillemanns, C. Hills, B. Hippolyte, B. Hohlweger, J. Honermann, D. Horak, A. Hornung, S. Hornung, R. Hosokawa, P. Hristov, C. Huang, C. Hughes, P. Huhn, T. J. Humanic, H. Hushnud, L. A. Husova, N. Hussain, S. A. Hussain, D. Hutter, J. P. Iddon, R. Ilkaev, H. Ilyas, M. Inaba, G. M. Innocenti, M. Ippolitov, A. Isakov, M. S. Islam, M. Ivanov, V. Ivanov, V. Izucheev, B. Jacak, N. Jacazio, P. M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M. J. Jakubowska, M. A. Janik, T. Janson, M. Jercic, O. Jevons, M. Jin, F. Jonas, P. G. Jones, J. Jung, M. Jung, A. Jusko, P. Kalinak, A. Kalweit, V. Kaplin, S. Kar, A. Karasu Uysal, D. Karatovic, O. Karavichev, T. Karavicheva, P. Karczmarczyk, E. Karpechev, A. Kazantsev, U. Kebschull, R. Keidel, M. Keil, B. Ketzer, Z. Khabanova, A. M. Khan, S. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, B. Kileng, B. Kim, B. Kim, D. Kim, D. J. Kim, E. J. Kim, H. Kim, J. Kim, J. S. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, T. Kim, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J. L. Klay, C. Klein, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M. L. Knichel, A. G. Knospe, C. Kobdaj, M. K. Köhler, T. Kollegger, A. Kondratyev, N. Kondratyeva, E. Kondratyuk, J. Konig, S. A. Konigstorfer, P. J. Konopka, G. Kornakov, L. Koska, O. Kovalenko, V. Kovalenko, M. Kowalski, I. Králik, A. Kravčáková, L. Kreis, M. Krivda, F. Krizek, K. Krizkova Gajdosova, M. Krüger, E. Kryshen, M. Krzewicki, A. M. Kubera, V. Kučera, C. Kuhn, P. G. Kuijer, L. Kumar, S. Kundu, P. Kurashvili, A. Kurepin, A. B. Kurepin, A. Kuryakin, S. Kushpil, J. Kvapil, M. J. Kweon, J. Y. Kwon, Y. Kwon, S. L. La Pointe, P. La Rocca, Y. S. Lai, M. Lamanna, R. Langoy, K. Lapidus, A. Lardeux, P. Larionov, E. Laudi, R. Lavicka, T. Lazareva, R. Lea, L. Leardini, J. Lee, S. Lee, S. Lehner, J. Lehrbach, R. C. Lemmon, I. León Monzón, E. D. Lesser, M. Lettrich, P. Lévai, X. Li, X. L. Li, J. Lien, R. Lietava, B. Lim, V. Lindenstruth, A. Lindner, C. Lippmann, M. A. Lisa, A. Liu, J. Liu, S. Liu, W. J. Llope, I. M. Lofnes, V. Loginov, C. Loizides, P. Loncar, J. A. Lopez, X. Lopez, E. López Torres, J. R. Luhder, M. Lunardon, G. Luparello, Y. G. Ma, A. Maevskaya, M. Mager, S. M. Mahmood, T. Mahmoud, A. Maire, R. D. Majka, M. Malaev, Q. W. Malik, L. Malinina, D. Mal’Kevich, P. Malzacher, G. Mandaglio, V. Manko, F. Manso, V. Manzari, Y. Mao, M. Marchisone, J. Mareš, G. V. Margagliotti, A. Margotti, A. Marín, C. Markert, M. Marquard, C. D. Martin, N. A. Martin, P. Martinengo, J. L. Martinez, M. I. Martínez, G. Martínez García, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, E. Masson, A. Mastroserio, A. M. Mathis, O. Matonoha, P. F. T. Matuoka, A. Matyja, C. Mayer, F. Mazzaschi, M. Mazzilli, M. A. Mazzoni, A. F. Mechler, F. Meddi, Y. Melikyan, A. Menchaca-Rocha, C. Mengke, E. Meninno, A. S. Menon, M. Meres, S. Mhlanga, Y. Miake, L. Micheletti, L. C. Migliorin, D. L. Mihaylov, K. Mikhaylov, A. N. Mishra, D. Miśkowiec, A. Modak, N. Mohammadi, A. P. Mohanty, B. Mohanty, M. Mohisin Khan, Z. Moravcova, C. Mordasini, D. A. Moreira De Godoy, L. A. P. Moreno, I. Morozov, A. Morsch, T. Mrnjavac, V. Muccifora, E. Mudnic, D. Mühlheim, S. Muhuri, J. D. Mulligan, A. Mulliri, M. G. Munhoz, R. H. Munzer, H. Murakami, S. Murray, L. Musa, J. Musinsky, C. J. Myers, J. W. Myrcha, B. Naik, R. Nair, B. K. Nandi, R. Nania, E. Nappi, M. U. Naru, A. F. Nassirpour, C. Nattrass, R. Nayak, T. K. Nayak, S. Nazarenko, A. Neagu, R. A. Negrao De Oliveira, L. Nellen, S. V. Nesbo, G. Neskovic, D. Nesterov, L. T. Neumann, B. S. Nielsen, S. Nikolaev, S. Nikulin, V. Nikulin, F. Noferini, P. Nomokonov, J. Norman, N. Novitzky, P. Nowakowski, A. Nyanin, J. Nystrand, M. Ogino, A. Ohlson, J. Oleniacz, A. C. Oliveira Da Silva, M. H. Oliver, C. Oppedisano, A. Ortiz Velasquez, A. Oskarsson, J. Otwinowski, K. Oyama, Y. Pachmayer, V. Pacik, S. Padhan, D. Pagano, G. Paić, J. Pan, S. Panebianco, P. Pareek, J. Park, J. E. Parkkila, S. Parmar, S. P. Pathak, B. Paul, J. Pazzini, H. Pei, T. Peitzmann, X. Peng, L. G. Pereira, H. Pereira Da Costa, D. Peresunko, G. M. Perez, S. Perrin, Y. Pestov, V. Petráček, M. Petrovici, R. P. Pezzi, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, D. Pistone, M. Płoskoń, M. Planinic, F. Pliquett, M. G. Poghosyan, B. Polichtchouk, N. Poljak, A. Pop, S. Porteboeuf-Houssais, V. Pozdniakov, S. K. Prasad, R. Preghenella, F. Prino, C. A. Pruneau, I. Pshenichnov, M. Puccio, J. Putschke, S. Qiu, L. Quaglia, R. E. Quishpe, S. Ragoni, S. Raha, S. Rajput, J. Rak, A. Rakotozafindrabe, L. Ramello, F. Rami, S. A. R. Ramirez, R. Raniwala, S. Raniwala, S. S. Räsänen, R. Rath, V. Ratza, I. Ravasenga, K. F. Read, A. R. Redelbach, K. Redlich, A. Rehman, P. Reichelt, F. Reidt, X. Ren, R. Renfordt, Z. Rescakova, K. Reygers, A. Riabov, V. Riabov, T. Richert, M. Richter, P. Riedler, W. Riegler, F. Riggi, C. Ristea, S. P. Rode, M. Rodríguez Cahuantzi, K. Røed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, P. F. Rojas, P. S. Rokita, F. Ronchetti, A. Rosano, E. D. Rosas, K. Roslon, A. Rossi, A. Rotondi, A. Roy, P. Roy, O. V. Rueda, R. Rui, B. Rumyantsev, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, H. Rytkonen, O. A. M. Saarimaki, R. Sadek, S. Sadhu, S. Sadovsky, K. Šafařík, S. K. Saha, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahoo, P. K. Sahu, J. Saini, S. Sakai, S. Sambyal, V. Samsonov, D. Sarkar, N. Sarkar, P. Sarma, V. M. Sarti, M. H. P. Sas, E. Scapparone, J. Schambach, H. S. Scheid, C. Schiaua, R. Schicker, A. Schmah, C. Schmidt, H. R. Schmidt, M. O. Schmidt, M. Schmidt, N. V. Schmidt, A. R. Schmier, J. Schukraft, Y. Schutz, K. Schwarz, K. Schweda, G. Scioli, E. Scomparin, J. E. Seger, Y. Sekiguchi, D. Sekihata, I. Selyuzhenkov, S. Senyukov, D. Serebryakov, A. Sevcenco, A. Shabanov, A. Shabetai, R. Shahoyan, W. Shaikh, A. Shangaraev, A. Sharma, A. Sharma, H. Sharma, M. Sharma, N. Sharma, S. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, D. Silvermyr, G. Simatovic, G. Simonetti, B. Singh, R. Singh, R. Singh, R. Singh, V. K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T. B. Skaali, M. Slupecki, N. Smirnov, R. J. M. Snellings, C. Soncco, J. Song, A. Songmoolnak, F. Soramel, S. Sorensen, I. Sputowska, J. Stachel, I. Stan, P. J. Steffanic, E. Stenlund, S. F. Stiefelmaier, D. Stocco, M. M. Storetvedt, L. D. Stritto, A. A. P. Suaide, T. Sugitate, C. Suire, M. Suleymanov, M. Suljic, R. Sultanov, M. Šumbera, V. Sumberia, S. Sumowidagdo, S. Swain, A. Szabo, I. Szarka, U. Tabassam, S. F. Taghavi, G. Taillepied, J. Takahashi, G. J. Tambave, S. Tang, M. Tarhini, M. G. Tarzila, A. Tauro, G. Tejeda Muñoz, A. Telesca, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, D. Thomas, F. Thoresen, R. Tieulent, A. Tikhonov, A. R. Timmins, A. Toia, N. Topilskaya, M. Toppi, F. Torales-Acosta, S. R. Torres, A. Trifiró, S. Tripathy, T. Tripathy, S. Trogolo, G. Trombetta, L. Tropp, V. Trubnikov, W. H. Trzaska, T. P. Trzcinski, B. A. Trzeciak, A. Tumkin, R. Turrisi, T. S. Tveter, K. Ullaland, E. N. Umaka, A. Uras, G. L. Usai, M. Vala, N. Valle, S. Vallero, N. van der Kolk, L. V. R. van Doremalen, M. van Leeuwen, P. Vande Vyvre, D. Varga, Z. Varga, M. Varga-Kofarago, A. Vargas, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, V. Vechernin, E. Vercellin, S. Vergara Limón, L. Vermunt, R. Vernet, R. Vértesi, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, G. Vino, A. Vinogradov, T. Virgili, V. Vislavicius, A. Vodopyanov, B. Volkel, M. A. Völkl, K. Voloshin, S. A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, D. Voscek, J. Vrláková, B. Wagner, M. Weber, S. G. Weber, A. Wegrzynek, S. C. Wenzel, J. P. Wessels, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G. A. Willems, E. Willsher, B. Windelband, M. Winn, W. E. Witt, J. R. Wright, Y. Wu, R. Xu, S. Yalcin, Y. Yamaguchi, K. Yamakawa, S. Yang, S. Yano, Z. Yin, H. Yokoyama, I.-K. Yoo, J. H. Yoon, S. Yuan, A. Yuncu, V. Yurchenko, V. Zaccolo, A. Zaman, C. Zampolli, H. J. C. Zanoli, N. Zardoshti, A. Zarochentsev, P. Závada, N. Zaviyalov, H. Zbroszczyk, M. Zhalov, S. Zhang, X. Zhang, Z. Zhang, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, Z. Zhou, J. Zhu, Y. Zhu, A. Zichichi, G. Zinovjev & N. Zurlo, Helsinki Institute of Physics, Sub Subatomic Physics (SAP), Afd Subatomic Physics (SAP), Sub Algemeen Physics Education, and Subatomic Physics
- Subjects
EXCHANGE-POTENTIAL APPROACH ,Strange quark ,ALICE Collaboration ,Hadron ,Nuclear Theory ,Strong interaction ,hadron collisions ,Position and momentum space ,hiukkasfysiikka ,nucl-ex ,7. Clean energy ,01 natural sciences ,VDP::Fysikk: 430 ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Hadron-Hadron scattering (experiments) ,scattering [hadron] ,p p scattering ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,scattering [p p] ,Nuclear Experiment (nucl-ex) ,Experimental nuclear physics ,NUCLEON ,Nuclear Experiment ,VDP::Physics: 430 ,Physics ,Multidisciplinary ,Large Hadron Collider ,strong interaction ,lattice [space-time] ,Publisher Correction ,PRIRODNE ZNANOSTI. Fizika ,BARYON-BARYON SCATTERING ,CERN LHC Coll ,LHC ,ddc:500 ,Nucleon ,Particle Physics - Experiment ,discrete [space-time] ,Quark ,Particle physics ,CERN Lab ,General Science & Technology ,FOS: Physical sciences ,short-range ,Hadron, strong interaction, LHC ,114 Physical sciences ,Fysikk: 430 [VDP] ,Article ,hadron scattering ,quark ,ultrarelativistic proton–proton collisions, LHC, ALICE ,0103 physical sciences ,Nuclear Physics - Experiment ,General ,010306 general physics ,Physics: 430 [VDP] ,interaction [hadron hadron] ,hep-ex ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,effect [strong interaction] ,hadron-hadron interaction ,strong interaction: effect ,space-time: discrete ,space-time: lattice ,correlation ,NATURAL SCIENCES. Physics ,Baryon ,Hypernuclei ,Neutron Stars ,Strangeness ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,hadron ,Experimental particle physics - Abstract
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons3–6 and so high-quality measurements exist only for hadrons containing up and down quarks7. Here we demonstrate that measuring correlations in the momentum space between hadron pairs8–12 produced in ultrarelativistic proton–proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of proton–omega baryon correlations, the effect of the strong interaction for this hadron–hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations13,14. The large number of hyperons identified in proton–proton collisions at the LHC, together with accurate modelling15 of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction., Correlations in momentum space between hadrons created by ultrarelativistic proton–proton collisions at the CERN Large Hadron Collider provide insights into the strong interaction, particularly the short-range dynamics of hyperons—baryons that contain strange quarks.
- Published
- 2020
14. Cluster radioactivity of neutron-deficient nuclei in trans-tin region
- Author
-
Jianzhong Gu, Yanzhao Wang, Yonghao Gao, and Jianpo Cui
- Subjects
Physics ,Multidisciplinary ,Isotope ,010308 nuclear & particles physics ,Q value ,Science ,Nuclear Theory ,Charge number ,01 natural sciences ,Article ,Semi-empirical mass formula ,Theoretical nuclear physics ,Neutron number ,0103 physical sciences ,Cluster (physics) ,Medicine ,Neutron ,Atomic number ,Experimental nuclear physics ,Atomic physics ,010306 general physics ,Nuclear Experiment - Abstract
The possibility of cluster radioactivity (CR) of the neutron-deficient nuclei in the trans-tin region is explored by using the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), and several sets of analytic formulas. It is found that the minimal half-lives are at Nd = 50 (Nd is the neutron number of the daughter nucleus) for the same kind cluster emission because of the Q value (released energy) shell effect at Nd = 50. Meanwhile, it is shown that the half-lives of α-like (Ae = 4n, Ze = Ne. Ze and Ne are the charge number and neutron number of the emitted cluster, respectively.) cluster emissions leading to the isotopes with Zd = 50 (Zd is the proton number of the daughter nucleus) are easier to measure than those of non-α-like (Ae = 4n + 2) cases due to the large Q values in α-like cluster emission processes. Finally, some α-like CR half-lives of the Nd = 50 nuclei and their neighbours are predicted, which are useful for searching for the new CR in future experiments.
- Published
- 2020
15. Effect of electron and X-ray irradiation on microbiological and chemical parameters of chilled turkey
- Author
-
Ulyana Bliznyuk, Valentina Avdyukhina, Polina Borshchegovskaya, Timofey Bolotnik, Victoria Ipatova, Zoya Nikitina, Alexander Nikitchenko, Igor Rodin, Felix Studenikin, Alexander Chernyaev, and Dmitry Yurov
- Subjects
Reaction kinetics and dynamics ,Multidisciplinary ,Mass spectrometry ,Science ,Nuclear physics ,food and beverages ,Predictive markers ,Biochemistry ,Article ,Biophysical chemistry ,Medicine ,Experimental nuclear physics ,Biomarkers - Abstract
The purpose of this work was to compare the effect of electron and X-ray irradiation on microbiological content and volatile organic compounds in chilled turkey meat. Dose ranges which significantly suppress the pathogenic microflora while maintaining the organoleptic properties of the turkey meat are different for electron and X-ray irradiation. According to the study it is recommended to treat chilled turkey using X-ray irradiation with the dose ranging from 0.5 to 0.75 kGy, while in electron irradiation permissible doses should be within 0.25–1 kGy. Three main groups of volatile compounds: alcohols, ketones, and aldehydes—were found in irradiated and non-irradiated samples of turkey meat. It was found that the total amount of aldehydes, which are responsible for the formation of a specific odor of irradiated meat products, increases exponentially with the increase in the absorbed dose for both types of irradiation. It was established that acetone can be used as a potential marker of the fact of exposure of low-fat meat products to ionizing radiation.
- Published
- 2022
16. Measurements of Beyond Standard Model Interactions with the UCNA and nEDM@SNS Experiments
- Author
-
Sun, Xuan
- Subjects
Neutron Decay ,Physics ,Neutron Electric Dipole Moment ,Beta Decay ,Neutron Physics ,Dark Matter Decay of the Neutron ,Fundamental Symmetry Measurements ,Beyond Standard Model Interactions ,Experimental Nuclear Physics - Abstract
Ultracold neutrons (UCNs) are neutrons that have been cooled such that their kinetic energy is on the order of their gravitational potential energy. Experimentally, ultracold neutrons are valuable because at these energies they are trappable and provide experimenters with long observation times. In fact, their observation times are on the order of the free neutron decay lifetime --- allowing direct observation of neutron ��-decay. Many contemporary experiments measuring high-precision processes involving neutrons use UCNs. Two such experiments are UCNA and nEDM@SNS, both of which form the basis of this work. UCNA is an experiment that took place at Los Alamos National Laboratory. In this work, we analyze the 2010-2013 UCNA datasets on neutron ��-decay using UCNs. These datasets were originally designed to measure the asymmetry parameter, A, in neutron ��-decay. However, there was also sensitivity to another physical parameter in the neutron ��-decay rate: the Fierz interference term, b. The Fierz interference term in neutron ��-decay acts as a probe of beyond Standard Model (SM) physics interactions, specifically scalar and tensor couplings in the weak interaction. Due to the vector - axial-vector nature of the weak interaction in the SM, any non-zero measurements of b would be indicative of new, beyond SM couplings. In this work, we present the extraction of the Fierz interference term as measured by neutron ��-decay for the 2010, 2011-2012, and 2012-2013 UCNA datasets. We present these measurements using two methods: a direct extraction by measuring shape distortions in the ��-decay electron spectrum, and an energy dependence in the asymmetry, A0. These two methods across the three datasets yield six new measurements of b from neutron ��-decay data. Our final result is the weighted average of the three asymmetry-extracted b results. The UCNA datasets were also sensitive to another type of beyond SM interaction: neutron decaying to dark matter with an accompanying positron-electron pair (first proposed in [FG18a]. This decay channel was originally proposed in order to resolve the discrepancy between two measurement methods of the neutron lifetime: bottle experiments which measure neutron population as a function of time, and beam experiments which measure the decay protons from conventional neutron ��-decay. Due to the experimental setup of the UCNA apparatus, the UCNA dataset was sensitive to such a decay channel. Using the 2012-2013 UCNA dataset which had functioning timing data, we effectively rule out this decay channel as the sole explanation for the neutron lifetime discrepancy for ��� 84% of the available decay phase space. Furthermore, we set branching ratio limits on this decay channel as compared to the conventional weak interaction mediated decay. The last project in this work is the construction of a large scale magnet for the nEDM@SNS experiment. The nEDM@SNS experiment is an experiment designed to measure the neutron electric dipole moment (nEDM) and will take place at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory (ORNL). This experiment will take place in 2027 and make a leading precision measurement on the nEDM. Part of the experiment is the magnetic system and, within that system, the B0 magnet which will provide a DC holding field to UCNs within the experiment's measurement volume. The assembly procedure for constructing the B0 magnet is detailed and intermediate quality checks as well as a post-construction room temperature magnetic field map are presented. The preliminary results indicate that the completed B0 magnet satisfies the specifications and will be useable in the nEDM@SNS experiment.
- Published
- 2022
- Full Text
- View/download PDF
17. Optically stimulated luminescence dating using quartz
- Author
-
Jintang Qin, Kristina Jørkov Thomsen, Jan-Pieter Buylaert, Lee J. Arnold, Andrew S. Murray, Guillaume Guérin, Rachel Smedley, Ashok K. Singhvi, Aarhus University [Aarhus], University of Adelaide, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), State Key Laboratory of Earthquake Dynamics, China Earthquake Administration (CEA), AMOPH Division, University of Liverpool, National Natural Science Foundation of China (NSFC41671008)., European Project: 639904,H2020,ERC-2014-STG,RELOS(2015), European Project: 851793,QuinaWorld, Technical University of Denmark [Lyngby] (DTU), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Accuracy and precision ,Materials science ,Optically stimulated luminescence ,genetic structures ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Mineralogy ,General Medicine ,010502 geochemistry & geophysics ,Palaeoclimate ,01 natural sciences ,Signal ,General Biochemistry, Genetics and Molecular Biology ,Crystal ,Geochemistry ,Geophysics ,13. Climate action ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Specific energy ,Experimental nuclear physics ,Dose rate ,Condensed-matter physics ,Quartz ,Energy (signal processing) ,0105 earth and related environmental sciences - Abstract
Optically stimulated luminescence (OSL) signals from quartz can be used to determine when sedimentary archives were deposited. OSL dating uses the accumulation of energy stored in a crystal structure to measure time. This stored energy is absorbed from ionizing radiation, and is released (reset) by heat or daylight. The total specific energy (dose) absorbed since the last resetting is measured using OSL, and divided by the rate of storage (dose rate) to give the time elapsed from the last heating or daylight exposure. In this Primer, quartz OSL dating is introduced and the signal resetting processes outlined. We describe the origins and quantification of the dose rate and the daylight-sensitive OSL signal most appropriate to dose estimation. The most widely used dose measurement method is then discussed, together with quality-control procedures. A broad set of geological and archaeological studies are used to illustrate the wide range of potential applications, and we describe the challenges arising from different deposition environments and summarize evidence for the precision and accuracy of published ages. Uncertainties and minimum reporting are discussed together with methodological limitations, particularly when applied to young and old sediments. Finally, we highlight the anticipated future developments in the field. Optically stimulated luminescence dating uses the amount of energy stored in a crystal to measure time. Applying this technique to quartz enables sedimentary deposition processes to be derived. In this Primer, the technique of optically stimulated luminescence dating with quartz is introduced, including commonly used methods, limitations and applications.
- Published
- 2021
18. 4D-imaging of drip-line radioactivity by detecting proton emission from Ni-54m pictured with ACTAR TPC
- Author
-
M. Versteegen, J. Giovinazzo, Dirk Rudolph, O. Sorlin, P. Ascher, T. Roger, A. Arokia Raj, B. Fernández-Domínguez, J. Piot, Daniel Cox, M. Caamaño-Fresco, H. Alvarez-Pol, O. Kamalou, J. C. Thomas, B. Mauss, J. Pancin, M. Gerbaux, L. Cáceres, C. Stodel, J. Lois-Fuentes, J. Pibernat, B. Blank, S. Grévy, A. Mentana, B. A. Brown, G. F. Grinyer, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Grand Accélérateur National d'Ions Lourds (GANIL), and Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Proton ,Physics::Instrumentation and Detectors ,Science ,Nuclear Theory ,ACTIVE TARGET ,General Physics and Astronomy ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Techniques and instrumentation ,Nuclear physics ,Quantum state ,0103 physical sciences ,Quantum system ,Experimental nuclear physics ,Proton emission ,010306 general physics ,Wave function ,Nuclear Experiment ,Quantum tunnelling ,Physics ,Multidisciplinary ,Science & Technology ,010308 nuclear & particles physics ,Nuclear shell model ,General Chemistry ,NUCLEAR-PHYSICS ,Multidisciplinary Sciences ,Theoretical nuclear physics ,Atomic nucleus ,SHELL-MODEL ,Physics::Accelerator Physics ,Science & Technology - Other Topics ,SYSTEM - Abstract
Proton radioactivity was discovered exactly 50 years ago. First, this nuclear decay mode sets the limit of existence on the nuclear landscape on the neutron-deficient side. Second, it comprises fundamental aspects of both quantum tunnelling as well as the coupling of (quasi)bound quantum states with the continuum in mesoscopic systems such as the atomic nucleus. Theoretical approaches can start either from bound-state nuclear shell-model theory or from resonance scattering. Thus, proton-radioactivity guides merging these types of theoretical approaches, which is of broader relevance for any few-body quantum system. Here, we report experimental measurements of proton-emission branches from an isomeric state in 54mNi, which were visualized in four dimensions in a newly developed detector. We show that these decays, which carry an unusually high angular momentum, ℓ = 5 and ℓ = 7, respectively, can be approximated theoretically with a potential model for the proton barrier penetration and a shell-model calculation for the overlap of the initial and final wave functions., Proton radioactivity is useful for studying nuclear structure. Here the authors report two proton emission branches from the 10+ state isomer of 54mNi by using a time projection chamber.
- Published
- 2021
19. Heavy-ion production of 77Br and 76Br
- Author
-
Sean R. McGuinness, John Wilkinson, and Graham F. Peaslee
- Subjects
Multidisciplinary ,Bromine ,Materials science ,Science ,Radiochemistry ,Nuclear physics ,Coulomb barrier ,chemistry.chemical_element ,Article ,Chromium ,chemistry ,Deuterium ,Valley of stability ,Medicine ,Production (economics) ,Heavy ion ,Irradiation ,Experimental nuclear physics - Abstract
Many radioisotopes with potential medical applications are difficult to produce routinely, especially those on the proton-rich side of the valley of stability. Current production methods typically use light-ion (protons or deuteron) reactions on materials of similar mass to the target radioisotope, which limits the elemental target material available and may require the use of targets with poor thermal properties (as is the case for the production of radiobromine). These reactions may also create significant amounts of proton-rich decay products which require chemical separation from the desired product in a highly radioactive environment. A promising alternative method using heavy-ion fusion-evaporation reactions for the production of the medically relevant bromine radioisotopes 76Br (t1/2 = 16.2 h) and 77Br (t1/2 = 57.0 h) is presented. Heavy-ion beams of 28Si and 16O were used to bombard natural chromium and copper targets just above the Coulomb barrier at the University of Notre Dame's Nuclear Science Laboratory to produce these bromine and precursor radioisotopes by fusion-evaporation reactions. Production yields for these reactions were measured and compared to PACE4 calculations. In addition to using more robust targets for irradiation, a simple physical–chemical separation method is proposed that will lead to very high radiopurity yields. A summary of accelerator facility requirements needed for routine production of these radioisotopes is also presented.
- Published
- 2021
20. Hybrid halide perovskite neutron detectors
- Author
-
Márton Kollár, Steven Lilley, László Forró, Bálint Náfrádi, Endre Horváth, Christy J. Kinane, Gábor Náfrádi, Andreas Pautz, Pavel Frajtag, Pavao Andričević, and Andrzej Sienkiewicz
- Subjects
Solar cells ,Materials science ,Electronic properties and materials ,Astrophysics::High Energy Astrophysical Phenomena ,Science ,X-ray detector ,Radiation ,Article ,x-ray-detectors ,Electronic devices ,Neutron detection ,Neutron ,Experimental nuclear physics ,Perovskite (structure) ,single-crystals ,Multidisciplinary ,business.industry ,diodes ,Neutron temperature ,Sensors and biosensors ,Medicine ,Optoelectronics ,Charge carrier ,gadolinium ,Electric current ,business ,performance - Abstract
Interest in fast and easy detection of high-energy radiation (x-, γ-rays and neutrons) is closely related to numerous practical applications ranging from biomedicine and industry to homeland security issues. In this regard, crystals of hybrid halide perovskite have proven to be excellent detectors of x- and γ-rays, offering exceptionally high sensitivities in parallel to the ease of design and handling. Here, we demonstrate that by assembling a methylammonium lead tri-bromide perovskite single crystal (CH3NH3PbBr3 SC) with a Gadolinium (Gd) foil, one can very efficiently detect a flux of thermal neutrons. The neutrons absorbed by the Gd foil turn into γ-rays, which photo-generate charge carriers in the CH3NH3PbBr3 SC. The induced photo-carriers contribute to the electric current, which can easily be measured, providing information on the radiation intensity of thermal neutrons. The dependence on the beam size, bias voltage and the converting distance is investigated. To ensure stable and efficient charge extraction, the perovskite SCs were equipped with carbon electrodes. Furthermore, other types of conversion layers were also tested, including borated polyethylene sheets as well as Gd grains and Gd2O3 pellets directly engulfed into the SCs. Monte Carlo N-Particle (MCNP) radiation transport code calculations quantitatively confirmed the detection mechanism herein proposed.
- Published
- 2021
21. Time-domain based evaluation of detection efficiency in liquid scintillation counting
- Author
-
Philippe Cassette, Benoît Sabot, Krasimir Mitev, Chavdar Dutsov, Sofia University 'St. Kliment Ohridski', Laboratoire National Henri Becquerel (LNHB), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département d'instrumentation Numérique (DIN (CEA-LIST)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), This work is supported by the Bulgarian National Scientific Research Fund under contract KP-06-H38/9 from 06.12.19 (TDCX), and A part of the experiments for this work were performed during the stay of one of us (Ch. D.) at LNHB with a financial support from the French Laboratoire National de Métrologie et d’Essais (LNE)
- Subjects
0301 basic medicine ,Photomultiplier ,Photon ,Science ,Monte Carlo method ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Article ,Techniques and instrumentation ,Physics::Fluid Dynamics ,03 medical and health sciences ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0103 physical sciences ,beta-rays ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Time domain ,Experimental nuclear physics ,signal processing ,Monte Carlo ,nuclear instrumentation ,instrumentation ,Physics ,Scintillation ,Multidisciplinary ,010308 nuclear & particles physics ,photon ,Liquid scintillation counting ,Estimator ,simulation ,Computational physics ,scintillator ,030104 developmental biology ,radioactivity ,Calibration ,Kurtosis ,Medicine ,ionizing radiation ,liquid scintillation counting - Abstract
This work explores the distribution of time intervals between signals from the photomultiplier tubes (PMTs) of a liquid scintillation counting (LSC) system when a scintillation burst caused by an ionizing particle is detected. This distribution is termed the cross-correlation distribution and it is shown that it contains information about the probability to detect a scintillation event. A theoretical model that describes the cross-correlation distribution is derived. The model can be used to estimate the mean number of detected photons in a LSC measurement, which allows the calculation of the detection efficiency. The theoretical findings are validated by Monte Carlo simulations and by experiments with low-energy beta-emitting and electron-capture radionuclides ($$^3\hbox {H}$$ 3 H , $$^{14}\hbox {C}$$ 14 C , $$^{63}\hbox {Ni}$$ 63 Ni and $$^{55}\hbox {Fe}$$ 55 Fe ), with dedicated LSC systems and several commercial LSC cocktails. The results show that some of the parameters of the cross-correlation distribution such as the peak height or the kurtosis can be used as detection efficiency estimators or quenching indicators in LSC. Thus, although the time domain and the cross-correlation distribution have received little to no attention in the practice of LSC, they have the capacity to bring significant improvements in almost all LSC applications related to activity determination of low-energy beta-emitting and electron-capture radionuclides. The results also suggest concepts for the development of innovative LSC systems.
- Published
- 2021
22. Impact of n,γ-irradiation on organic complexes of rare earth metals
- Author
-
Eugeny V. Baranov, Georgy K. Fukin, Mikhail N. Bochkarev, Mikhail N. Ivin, V. A. Ilichev, Tatyana V. Balashova, Sergey V. Obolensky, Andrey A. Kukinov, and Alexey N. Trufanov
- Subjects
Photoluminescence ,Materials science ,chemistry.chemical_element ,lcsh:Medicine ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Spectral line ,Article ,Metal ,Molecule ,Neutron ,Irradiation ,Experimental nuclear physics ,lcsh:Science ,Multidisciplinary ,lcsh:R ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Cerium ,chemistry ,Organometallic chemistry ,visual_art ,Absorbed dose ,visual_art.visual_art_medium ,Physical chemistry ,lcsh:Q ,0210 nano-technology - Abstract
The complexes of La, Ce, Nd, Sm, Eu, Tb and Yb with benzoxazolyl-phenolate, benzothiazolyl-phenolate, benzoxazolyl-naphtholate, benzothiazolyl-naphtholate and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione ligands were treated with n,γ-irradiation upon a sustained (45 h, absorbed dose of 120 krad, flux of neutrons 5·1013 n/cm2) and a pulse mode (3 ms, absorbed dose of 130 krad, flux of neutrons 3.6·1013 n/cm2). It was found that main characteristics of the compounds (shape of substance, color, IR absorption and photoluminescent spectra) have not changed. With an example of cerium complex [Ce(OON)3]2 it was revealed that the molecular structure of compounds after strong pulse irradiation also does not changed. However, computer simulations of neutron exposure on the same complexes showed significant shift of metal atoms and ligands. Possible reasons for the detected discrepancy between experimental and calculated data are discussed.
- Published
- 2019
23. Experimental limit on an exotic parity-odd spin- and velocity-dependent interaction using an optically polarized vapor
- Author
-
Pinghan Chu, Shaun Newman, Young Jin Kim, and Igor Savukov
- Subjects
0301 basic medicine ,Atomic Physics (physics.atom-ph) ,Physics beyond the Standard Model ,Science ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Electron ,General Biochemistry, Genetics and Molecular Biology ,Article ,High Energy Physics - Experiment ,Physics - Atomic Physics ,03 medical and health sciences ,High Energy Physics - Experiment (hep-ex) ,Symmetry breaking ,Experimental nuclear physics ,lcsh:Science ,Boson ,Physics ,Multidisciplinary ,Parity (physics) ,Atomic and molecular interactions with photons ,General Chemistry ,Fermion ,021001 nanoscience & nanotechnology ,Magnetic field ,030104 developmental biology ,lcsh:Q ,Atomic physics ,0210 nano-technology ,Nucleon - Abstract
Exotic spin-dependent interactions between fermions have recently attracted attention in relation to theories beyond the Standard Model. The exotic interactions can be mediated by hypothetical fundamental bosons which may explain several unsolved mysteries in physics. Here we expand this area of research by probing an exotic parity-odd spin- and velocity-dependent interaction between the axial-vector electron coupling and the vector nucleon coupling for polarized electrons. This experiment utilizes a high-sensitivity atomic magnetometer, based on an optically polarized vapor that is a source of polarized electrons, and a solid-state mass containing unpolarized nucleons. The atomic magnetometer can detect an effective magnetic field induced by the exotic interaction between unpolarized nucleons and polarized electrons. We set an experimental limit on the electron-nucleon coupling \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}} \, < \, 10^{ - 30}$$\end{document}gAegVN, Symmetry breaking is an important process in fundamental understanding of matter and dark matter. Here the authors discuss an experimental bound on an exotic parity odd spin- and velocity-dependent interaction between electron and nucleon by using a sensitive spin-exchange relaxation-free atomic magnetometer.
- Published
- 2019
24. Author Correction: Measurement of the neutron charge radius and the role of its constituents
- Author
-
M. Paolone, H. Atac, Nikolaos Sparveris, Constantinou M, and Z. E. Meziani
- Subjects
Physics ,Multidisciplinary ,Science ,Published Erratum ,General Physics and Astronomy ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology ,Nuclear physics ,Theoretical nuclear physics ,Charge radius ,Neutron ,Experimental nuclear physics ,Author Correction - Abstract
The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, [Formula: see text]. The precise measurement of the neutron's charge radius thus emerges as an essential part of unraveling its structure. Here we report on a [Formula: see text] measurement, based on the extraction of the neutron electric form factor, [Formula: see text], at low four-momentum transfer squared (Q
- Published
- 2021
25. Precision measurements on oxygen formation in stellar helium burning with gamma-ray beams and a Time Projection Chamber
- Author
-
Robin Smith, Sarah Stern, Moshe Gai, Deran Schweitzer, and Mohammad Ahmed
- Subjects
Physics ,Multidisciplinary ,Time projection chamber ,Stellar mass ,Science ,Detector ,Gamma ray ,General Physics and Astronomy ,chemistry.chemical_element ,Resonance ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology ,Article ,Computational physics ,chemistry ,Nuclear astrophysics ,Experimental nuclear physics ,Stellar evolution ,Helium - Abstract
The carbon/oxygen (C/O) ratio at the end of stellar helium burning is the single most important nuclear input to stellar evolution theory. However, it is not known with sufficient accuracy, due to large uncertainties in the cross-section for the fusion of helium with 12C to form 16O, denoted as 12C(α, γ)16O. Here we present results based on a method that is significantly different from the experimental efforts of the past four decades. With data measured inside one detector and with vanishingly small background, angular distributions of the 12C(α, γ)16O reaction were obtained by measuring the inverse 16O(γ, α)12C reaction with gamma-beams and a Time Projection Chamber (TPC) detector. We agree with current world data for the total reaction cross-section and further evidence the strength of our method with accurate angular distributions measured over the 1− resonance at Ecm ~ 2.4 MeV. Our technique promises to yield results that will surpass the quality of the currently available data., Presence of oxygen in the universe can provide information to stellar mass evolution. Here the authors report their method for the measurements of carbon to oxygen ratio and cross-section of the reaction-capture of helium-4 by carbon-12, to produce oxygen-16.
- Published
- 2021
26. Reminiscences of Wit Busza and 41 years of [formula omitted] physics.
- Author
-
Tannenbaum, Michael J.
- Subjects
- *
COLLISIONS (Nuclear physics) , *PARTICLE physics , *ATOMIC collisions , *COLLISIONS (Physics) , *NUCLEAR physics , *NUCLEAR science - Abstract
One of the more memorable (and easiest) proposal to deal with when I served on Bob Wilson’s Program Advisory Committee at NAL (Now Fermilab) from 1972 to 1975 was Proposal-178, “A study of the average multiplicity and multiplicity distributions in hadron–nucleus collisions at high energies”, with only 4 authors, Wit Busza, Jerry Friedman, Henry Kendall and Larry Rosenson, as presented at the PAC meeting by Wit. What I remember was that he discussed only ONE 5 inch photomultiplier with a Cherenkov radiator in the beam to make this measurement of production of charged particles with angles up to 30° in various nuclei, 40 h requested. This turned out to be a “seminal” experiment leading to the Wounded Nucleon and other participant models. Subsequent p ( d ) + A experiments from the AGS to RHIC, as well as alpha–alpha measurements at the CERN-ISR, will be discussed together with the various ‘participants’ that they revealed. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
27. Measuring the α-particle charge radius with muonic helium-4 ions
- Author
-
Sandrine Galtier, Julian J. Krauth, Andreas Knecht, Andreas Dax, D. Taqqu, Thomas Graf, Paul Indelicato, Yi-Wei Liu, Karsten Schuhmann, Andreas Voss, F. Mulhauser, Pedro Amaro, Malte Hildebrandt, D. S. Covita, L.M.P. Fernandes, Boris Naar, F. D. Amaro, Theodor W. Hänsch, Marwan Abdou Ahmed, José Paulo Santos, Andrea L. Gouvea, Lucile Julien, Randolf Pohl, Johannes Götzfried, F. Nez, Beatrice Franke, Jorge Machado, Tobias Nebel, C.M.B. Monteiro, J.F.C.A. Veloso, Joaquim M. F. dos Santos, François Biraben, Franz Kottmann, Marc Diepold, Csilla I. Szabo, Jens Hartmann, Jan Vogelsang, Klaus Kirch, Aldo Antognini, Tzu-Ling Chen, Birgit Weichelt, LaserLaB Vrije Universiteit Amsterdam (LaserLaB), Vrije Universiteit Amsterdam [Amsterdam] (VU), Max-Planck-Institute for Quantum Optics, Institut für Physik [Mainz], Johannes Gutenberg - Universität Mainz (JGU), Institute for Particle Physics and Astrophysics [ETH Zürich] (IPA), Department of Physics [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Paul Scherrer Institute (PSI), Institut für Strahlwerkzeuge, Universität of Stuttgart, Department of Physics [Coimbra], University of Coimbra [Portugal] (UC), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Laboratoire Kastler Brossel (LKB [Collège de France]), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Collège de France (CdF (institution)), National Tsing Hua University [Hsinchu] (NTHU), Universidade de Aveiro, TRIUMF [Vancouver], Atmosphère, Optique et Spectroscopie (ATMOS), Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Ludwig-Maximilians-Universität München (LMU), Theiss Research, Lund University [Lund], Atoms, Molecules, Lasers, LaserLaB - Physics of Light, DF – Departamento de Física, and LIBPhys-UNL
- Subjects
Physics ,[PHYS]Physics [physics] ,Multidisciplinary ,Muon ,Proton ,010308 nuclear & particles physics ,Nuclear structure ,Atomic spectroscopy ,Electron ,01 natural sciences ,7. Clean energy ,Article ,Ion ,[SPI]Engineering Sciences [physics] ,Charge radius ,0103 physical sciences ,[CHIM]Chemical Sciences ,Physics::Atomic Physics ,Exotic atoms and molecules ,Atomic physics ,Experimental nuclear physics ,010306 general physics ,Spectroscopy ,General - Abstract
The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnified in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S–2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering1, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle2,3,4,5, in line with recent determinations of the proton charge radius6,7,8,9, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties., Nature, 589 (7843), ISSN:0028-0836, ISSN:1476-4687
- Published
- 2021
28. Coherent X-ray−optical control of nuclear excitons
- Author
-
Kilian Peter Heeg, Andreas Kaldun, Stephan Goerttler, Cornelius Strohm, Rajagopalan Subramanian, Dominik Lentrodt, Hans-Christian Wille, Rudolf Rüffer, Ralf Röhlsberger, Johann Haber, Christoph H. Keitel, Christian D. Ott, Thomas Pfeifer, and Jörg Evers
- Subjects
Quantum dynamics ,Quantum physics ,Phase (waves) ,02 engineering and technology ,Electron ,Research group J. Evers – Division C. H. Keitel ,01 natural sciences ,Article ,Ultrafast photonics ,X-rays ,0103 physical sciences ,ddc:530 ,Experimental nuclear physics ,010306 general physics ,Spectroscopy ,Quantum ,Quantum optics ,Physics ,Multidisciplinary ,021001 nanoscience & nanotechnology ,NUCLEAR FORWARD SCATTERING ,QUANTUM OPTICS ,Coherent control ,Temporal resolution ,MOSSBAUER ,ddc:500 ,Atomic physics ,0210 nano-technology - Abstract
Nature / Physical science 590(7846), 401 - 404 (2021). doi:10.1038/s41586-021-03276-x, Coherent control of quantum dynamics is key to a multitude of fundamental studies and applications. In the visible or longer-wavelength domains, near-resonant light fields have become the primary tool with which to control electron dynamics. Recently, coherent control in the extreme-ultraviolet range was demonstrated, with a few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 5–10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to their recoilless absorption and emission of light, and spectroscopy of these resonances is widely used to study the magnetic, structural and dynamical properties of matter. It has been shown that the power and scope of Mössbauer spectroscopy can be greatly improved using various control techniques. However, coherent control of atomic nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here we demonstrate such control, and use the tunable phase between two X-ray pulses to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission. We present a method of shaping single pulses delivered by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a temporal stability of the phase control on the few-zeptosecond timescale. Our results unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey spectroscopy and spin-echo-like techniques, which should not only advance nuclear quantum optics, but also help to realize X-ray clocks and frequency standards. In the long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, which is a long-standing challenge in Mössbauer science., Published by Macmillan28177, London
- Published
- 2021
29. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography
- Author
-
Muhsin Mohammed, Monika Pawlik-Niedźwiecka, Tomasz Kozik, S. S. Choudhary, Szymon Parzych, K. Kacprzak, R. Y. Shopa, Catalina Curceanu, Aleksander Gajos, Eryk Czerwiński, Lech Raczyński, J. Chhokar, Szymon Niedźwiecki, Wojciech Wiślicki, Marek Gorgol, Ewa Stępień, Michał Silarski, Wojciech Krzemien, Andrzej Sienkiewicz, Bożena Jasińska, Grzegorz Korcyl, Sushil K. Sharma, Paweł Moskal, F. Tayefi, N. Chug, Łukasz Kapłon, Konrad Klimaszewski, H. Karimi, Magdalena Skurzok, J. Raj, Ewelina Kubicz, Paweł Kowalski, N. Krawczyk, Kamil Dulski, Jacek Goworek, D. Kisielewska, M. Dadgar, and Beatrix C. Hiesmayr
- Subjects
Particle physics ,Photon ,CPT symmetry ,Science ,Physics::Medical Physics ,General Physics and Astronomy ,FOS: Physical sciences ,Imaging techniques ,General Biochemistry, Genetics and Molecular Biology ,Article ,High Energy Physics - Experiment ,Positronium ,High Energy Physics - Experiment (hep-ex) ,Physics::Atomic and Molecular Clusters ,Experimental nuclear physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Spin-½ ,Physics ,Multidisciplinary ,Annihilation ,Operator (physics) ,High Energy Physics::Phenomenology ,General Chemistry ,Symmetry (physics) ,High Energy Physics::Experiment ,Experimental particle physics ,Lepton - Abstract
Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron-positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10^{-4}, with an over threefold improvement on the previous measurement., Comment: This is a preprint of an article published in Nature Communications. The final version is available at https://rdcu.be/cCQqq
- Published
- 2021
30. Measurement of the proton spin structure at long distances
- Author
-
P. Eugenio, J. Brock, N. Dashyan, I. Bedlinskiy, S. Choi, P. Nadel-Turonski, A. Hobart, M. Defurne, S. E. Kuhn, Latifa Elouadrhiri, P. Chatagnon, M. Ripani, C. D. Keith, D. Bulumulla, Aditya R. Khanal, S. Adhikari, B. McKinnon, T. Holmstrom, V. Mokeev, G. V. Fedotov, H. S. Jo, L. Guo, Alessandro Rizzo, Andrea Bianconi, L. Barion, M. Mirazita, K. Livingston, M. Hattawy, N. Markov, G. Rosner, Simon Širca, S. Fegan, Y. Ghandilyan, Jie Zhang, P. Bosted, Michael Paolone, C. Carlin, M. Guidal, M. L. Seely, E. Pasyuk, D. P. Watts, F. Bossu, Laura Clark, S. Niccolai, N. Guler, M. Holtrop, B. Yale, R. A. Schumacher, P. Rossi, W. Phelps, V. Mascagna, S. Joosten, Axel Schmidt, Alexandre Deur, Luciano Pappalardo, Nikolaos Sparveris, V. Crede, I. I. Strakovsky, W. Kim, Fatiha Benmokhtar, M. Ehrhart, D. I. Glazier, V. P. Kubarovsky, T. A. Forest, O. Pogorelko, Z. W. Zhao, J. Rowley, S. Stepanyan, A. I. Ostrovidov, K. Park, Krishna Neupane, R. De Vita, A. El Alaoui, Y. Ilieva, Nicholas Zachariou, D. G. Ireland, C. W. Kim, H. Avakian, C. Mullen, W. K. Brooks, A. Kripko, Andrea Celentano, Volker D. Burkert, A. S. Biselli, J. C. Carvajal, V. Sulkosky, H. Atac, Karl Slifer, M. Leali, F. Sabatié, L. Venturelli, Y. G. Sharabian, X. Zheng, M. Bondì, H. Voskanyan, P. Lenisa, W. J. Briscoe, I. J. D. MacGregor, M. Contalbrigo, S. K. Phillips, T. Mineeva, T. B. Hayward, Friedrich Klein, Brian Raue, J. Poudel, N. Tyler, C. Djalali, G. Ciullo, M. Osipenko, Y. Prok, D. S. Carman, X. Wei, K. A. Griffioen, E. Voutier, Dustin Keller, S. Strauch, L. Lanza, R. W. Gothe, Michael Wood, T. Chetry, K. Hafidi, R. Dupre, M. Battaglieri, Gerard Gilfoyle, E. L. Isupov, V. A. Drozdov, S. Boiarinov, H. Kang, U. Shrestha, F.-X. Girod, K. P. Adhikari, H. Hakobyan, J. Ritman, S. Diehl, C. Salgado, R. G. Fersch, M. Ungaro, E. Long, J. P. Chen, D. Heddle, P. L. Cole, D. G. Meekins, A. D'Angelo, K. Hicks, L. El Fassi, K. Joo, M. Khandaker, M. J. Amaryan, A. Filippi, K. L. Giovanetti, Larry Weinstein, L. Marsicano, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and CLAS
- Subjects
polarizabilities ,Photon ,Proton ,High Energy Physics::Lattice ,Nuclear Theory ,General Physics and Astronomy ,polarized target ,polarized beam ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,High Energy Physics - Experiment ,Theoretical Nuclear Physics ,Experimental Nuclear Physics ,High Energy Physics - Experiment (hep-ex) ,effective field theory ,Economica ,Proton spin crisis ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Experimental particle Physics ,order ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Spin-½ ,Quantum chromodynamics ,Physics ,Settore FIS/04 ,nucleon ,virtual compton-scattering ,chiral perturbation-theory ,sum-rule ,moments ,evolution ,sum rule ,kinematics ,Quantum electrodynamics ,nuclear matter ,Nucleon ,nucleon: structure ,Strong interaction ,FOS: Physical sciences ,Socio-culturale ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,p: spin ,PE2_2 ,momentum transfer: low ,PE2_1 ,CLAS ,0103 physical sciences ,quantum chromodynamics ,ddc:530 ,010306 general physics ,PE2_3 ,quark gluon ,Coupling constant ,nuclear force ,scattering ,Ambientale ,Physics::Accelerator Physics ,nucleon: spin ,High Energy Physics::Experiment ,experimental results - Abstract
Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV$^2$. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, e.g. in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov-Drell-Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections., Published version. 10 pages, 5 figures. 20 pages of supplementary material (data tables and a figure)
- Published
- 2021
31. Evidence of a sudden increase in the nuclear size of proton-rich silver-96
- Author
-
R. F. Garcia Ruiz, A. Zadvornaya, M. Hukkanen, L. Al Ayoubi, Bradley Cheal, K. Chrysalidis, R. Mathieson, P. Imgram, A. de Roubin, Iain Moore, L. Canete, Mark Bissell, Anu Kankainen, Ilkka Pohjalainen, Tommi Eronen, S. Geldhof, C. S. Devlin, S. Kujanpää, Á. Koszorús, Markus Kortelainen, C. Delafosse, Dmitrii Nesterenko, M. Reponen, Paul Campbell, R. P. de Groote, M. Vilen, O. Beliuskina, W. Gins, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), and Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
CHARGE RADII ,EFFICIENCY ,Proton ,Science ,SYMMETRY ,Nuclear Theory ,General Physics and Astronomy ,IONIZATION SPECTROSCOPY ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Effective nuclear charge ,Article ,Nuclear physics ,Charge radius ,MOMENTS ,0103 physical sciences ,experimental nuclear physics ,Neutron ,Nuclear Physics - Experiment ,Physics::Atomic Physics ,BETA-DECAY ,Experimental nuclear physics ,010306 general physics ,LASER SPECTROSCOPY ,Nuclear Experiment ,Physics ,RESONANCE IONIZATION ,isotoopit ,Multidisciplinary ,Science & Technology ,Isotope ,010308 nuclear & particles physics ,General Chemistry ,Radius ,ION-SOURCE ,Multidisciplinary Sciences ,Theoretical nuclear physics ,Neutron number ,theoretical nuclear physics ,Science & Technology - Other Topics ,ISOTOPES ,Density functional theory ,ydinfysiikka - Abstract
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with the measurement of the charge radius of 96Ag (N = 49). The results provide a challenge for nuclear theory: calculations are unable to reproduce the pronounced discontinuity in the charge radii as one moves below N = 50. The technical advancements in this work open the N = Z region below 100Sn for further optical studies, which will lead to more comprehensive input for nuclear theory development., Laser spectroscopic measurements of isotopes near the doubly-magic 100-Sn are challenging due to difficulties in their production. Here the authors measure the ground state charge radius of the proton-rich 96-Ag isotope and find a discontinuity in the nuclear size when crossing the neutron number N equal to 50.
- Published
- 2021
32. Data driven theory for knowledge discovery in the exact sciences with applications to thermonuclear fusion
- Author
-
Pasquale Gaudio, Michela Gelfusa, Jesús Vega, M. Lungaroni, A. Murari, and Emmanuele Peluso
- Subjects
Theoretical computer science ,Thermonuclear fusion ,data analysis ,knowledge discovery ,lcsh:Medicine ,nonlinear system ,01 natural sciences ,Magnetically confined plasmas ,Characterization and analytical techniques ,Article ,010305 fluids & plasmas ,Data-driven ,Set (abstract data type) ,Knowledge extraction ,0103 physical sciences ,Information theory and computation ,Experimental nuclear physics ,uncertainty ,lcsh:Science ,010306 general physics ,Complement (set theory) ,Settore FIS/01 ,Multidisciplinary ,Mathematical model ,lcsh:R ,Settore ING-IND/18 - Fisica dei Reattori Nucleari ,Identification (information) ,Nonlinear system ,lcsh:Q ,physics - Abstract
In recent years, the techniques of the exact sciences have been applied to the analysis of increasingly complex and non-linear systems. The related uncertainties and the large amounts of data available have progressively shown the limits of the traditional hypothesis driven methods, based on first principle theories. Therefore, a new approach of data driven theory formulation has been developed. It is based on the manipulation of symbols with genetic computing and it is meant to complement traditional procedures, by exploring large datasets to find the most suitable mathematical models to interpret them. The paper reports on the vast amounts of numerical tests that have shown the potential of the new techniques to provide very useful insights in various studies, ranging from the formulation of scaling laws to the original identification of the most appropriate dimensionless variables to investigate a given system. The application to some of the most complex experiments in physics, in particular thermonuclear plasmas, has proved the capability of the methodology to address real problems, even highly nonlinear and practically important ones such as catastrophic instabilities. The proposed tools are therefore being increasingly used in various fields of science and they constitute a very good set of techniques to bridge the gap between experiments, traditional data analysis and theory formulation.
- Published
- 2020
33. A simple digital delay for nuclear physics experiments.
- Author
-
Marques, J.G. and Cruz, C.
- Subjects
- *
NUCLEAR physics , *EMITTER-coupled logic circuits , *ELECTRIC circuits , *ANGULAR correlations (Nuclear physics) , *ELECTRIC oscillators , *SPECTROMETERS - Abstract
Abstract: A simple high precision digital delay for nuclear physics experiments was developed using fast ECL electronics. The circuit uses an oscillator synchronized with the signal to be delayed and a presettable counter. It is capable of delaying a negative NIM signal by 2µs with a precision better than 50ps. The circuit was developed for use in slow-fast coincidence units for Perturbed Angular Correlation spectrometers but it is not limited to this application. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
34. Quantification of dissolved O
- Author
-
Kurt, Livo, Manika, Prasad, and Trent R, Graham
- Subjects
Geophysics ,Marine chemistry ,Freshwater ecology ,Experimental nuclear physics ,Article - Abstract
Effects of dissolved paramagnetic oxygen (O2) in water on 1H nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) experiments is evaluated at a 1H Larmor frequency of 2 MHz. Dissolution of O2 into water significantly reduces the 1H transverse relaxation coefficient (T2). For deoxygenated water, T2 is 3388 ms, water at ambient atmospheric conditions (7.4 mg/L O2) exhibits a T2 of 2465 ms, and dissolution of 2710 mg/L O2 further reduces T2 to 36 ms. The results were fit with an empirical model to facilitate prediction of T2 times for bulk water as a function of paramagnetic oxygen concentrations in solution. Dissolved O2 also greatly influences 1H NMR CPMG experiments of confined water in a model system composed of Berea sandstone. For this system, 90 mg/L O2 in H2O enhances T2 relaxation of bulk water such that the relaxation time is comparable to physically confined water in the sandstone pores. Given the sensitivity of NMR T2 coefficients to paramagnetic oxygen, low-field NMR-based characterization of fluid and porous media structure requires control of dissolved oxygen, as geospatial variation in the partial pressure of O2 alone is expected to perturb fluid and pore relaxation times by up to 60 and 36%, respectively.
- Published
- 2020
35. Data for training and testing radiation detection algorithms in an urban environment
- Author
-
Andrew D. Nicholson, Douglas E. Peplow, Daniel E. Archer, Michael J. Willis, Brian J. Quiter, James Ghawaly, Christine M. Anderson-Cook, and Kary Myers
- Subjects
Statistics and Probability ,Data Descriptor ,Computer science ,Special nuclear material ,Process (computing) ,Training (meteorology) ,Experimental data ,Scientific data ,Nuclear material ,Library and Information Sciences ,Characterization and analytical techniques ,Particle detector ,Computer Science Applications ,Education ,Identification (information) ,lcsh:Q ,Experimental nuclear physics ,Statistics, Probability and Uncertainty ,lcsh:Science ,Algorithm ,Urban environment ,Information Systems - Abstract
The detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background., Measurement(s) gamma ray photon detection events • radiation detection data Technology Type(s) Monte Carlo particle transport model • computational modeling technique Sample Characteristic - Environment city Sample Characteristic - Location State of Tennessee Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12654065
- Published
- 2020
36. Performance demonstration of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging
- Author
-
Tadashi Watabe, Jun Kataoka, Jun Hatazawa, Yuwei Liu, Eku Shimosegawa, Akihisa Omata, Hiroki Kato, Keiko Matsunaga, Atsushi Toyoshima, Shogo Sato, Takashi Kamiya, Takahiro Teramoto, Eri Kuriyama, Kazuya Fujieda, and Kazuhiro Ooe
- Subjects
0301 basic medicine ,Photon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,lcsh:Medicine ,Imaging techniques ,Scintillator ,Article ,Imaging phantom ,03 medical and health sciences ,0302 clinical medicine ,Optics ,Angular resolution ,Experimental nuclear physics ,lcsh:Science ,Physics ,Multidisciplinary ,Molecular medicine ,business.industry ,lcsh:R ,Gamma ray ,Compton scattering ,030104 developmental biology ,Radionuclide therapy ,Cancer imaging ,lcsh:Q ,Pinhole (optics) ,business ,030217 neurology & neurosurgery - Abstract
X-ray and gamma-ray imaging are technologies with several applications in nuclear medicine, homeland security, and high-energy astrophysics. However, it is generally difficult to realize simultaneous wide-band imaging ranging from a few tens of keV to MeV because different interactions between photons and the detector material occur, depending on the photon energies. For instance, photoabsorption occurs below 100 keV, whereas Compton scattering dominates above a few hundreds of keV. Moreover, radioactive sources generally emit both X-ray and gamma-ray photons. In this study, we develop a “hybrid” Compton camera that can simultaneously achieve X-ray and gamma-ray imaging by combining features of “Compton” and “pinhole” cameras in a single detector system. Similar to conventional Compton cameras, the detector consists of two layers of scintillator arrays with the forward layer acting as a scatterer for high-energy photons (> 200 keV) and an active pinhole for low-energy photons ($$^{241}$$ 241 Am (60 keV) and $$^{137}$$ 137 Cs (662 keV) in the same field of view, achieving an angular resolution of 10$$^\circ $$ ∘ (FWHM) for both sources. In addition, imaging of $$^{211}$$ 211 At was conducted for the application in future nuclear medicine, particularly radionuclide therapy. The initial demonstrative images of the $$^{211}$$ 211 At phantom were reconstructed using the pinhole mode (using 79 keV) and Compton mode (using 570 keV), exhibiting significant similarities in source-position localization. We also verified that a mouse injected with 1 MBq of $$^{211}$$ 211 At can be imaged via pinhole-mode measurement in an hour.
- Published
- 2020
37. Laser spectroscopy of indium Rydberg atom bunches by electric field ionization
- Author
-
J. Billowes, Xiaofei Yang, C. M. Ricketts, A. R. Vernon, B. S. Cooper, Fredrik Gustafsson, H. A. Perrett, R. F. Garcia Ruiz, Thomas Elias Cocolios, Qianqian Wang, F. J. Waso, Gerda Neyens, B. K. Sahoo, and Kieran Flanagan
- Subjects
CHARGE RADII ,Atomic Physics (physics.atom-ph) ,Optical spectroscopy ,lcsh:Medicine ,FOS: Physical sciences ,INFRARED-SPECTRUM ,01 natural sciences ,Article ,Physics - Atomic Physics ,symbols.namesake ,Ionization ,PHOTOIONIZATION ,0103 physical sciences ,Atom ,Nuclear Physics - Experiment ,Sensitivity (control systems) ,Physics::Atomic Physics ,Experimental nuclear physics ,010306 general physics ,lcsh:Science ,Hyperfine structure ,Physics ,Multidisciplinary ,Science & Technology ,010308 nuclear & particles physics ,SELECTIVE DETECTION ,lcsh:R ,IONIZER ,RESONANCE ,SERIES ,Multidisciplinary Sciences ,STATES ,Field desorption ,Excited state ,Rydberg atom ,Rydberg formula ,symbols ,NEUTRAL GALLIUM ,Science & Technology - Other Topics ,ISOTOPES ,lcsh:Q ,Atomic physics ,Electronic structure of atoms and molecules - Abstract
This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg states using pulsed lasers, the field ionization technique demonstrates increased sensitivity for isotope separation and measurement of atomic parameters over previous non-resonant laser ionization methods. The setup was tested at the Collinear Resonance Ionization Spectroscopy experiment at ISOLDE-CERN to perform high-resolution measurements of transitions in the indium atom from the $$\text {5s}^2\text {5d}\,^2\text {D}_{5/2}$$5s25d2D5/2 and $$\text {5s}^2\text {5d}\,^2\text {D}_{3/2}$$5s25d2D3/2 states to $$\text {5s}^2n$$5s2np $$^2$$2P and $$\text {5s}^2n\text {f}\,^2$$5s2nf2F Rydberg states, up to a principal quantum number of $$n=72$$n=72. The extracted Rydberg level energies were used to re-evaluate the ionization potential of the indium atom to be $$46,670.107(4)\,\hbox {cm}^{-1}$$46,670.107(4)cm-1. The nuclear magnetic dipole and nuclear electric quadrupole hyperfine structure constants and level isotope shifts of the $$\text {5s}^2\text {5d}\,^2\text {D}_{5/2}$$5s25d2D5/2 and $$\text {5s}^2\text {5d}\,^2\text {D}_{3/2}$$5s25d2D3/2 states were determined for $$^{113,115}$$113,115In. The results are compared to calculations using relativistic coupled-cluster theory. A good agreement is found with the ionization potential and isotope shifts, while disagreement of hyperfine structure constants indicates an increased importance of electron correlations in these excited atomic states. With the aim of further increasing the detection sensitivity for measurements on exotic isotopes, a systematic study of the field-ionization arrangement implemented in the work was performed at the same time and an improved design was simulated and is presented. The improved design offers increased background suppression independent of the distance from field ionization to ion detection.
- Published
- 2020
38. Immunity of nanoscale magnetic tunnel junctions with perpendicular magnetic anisotropy to ionizing radiation
- Author
-
Mikael Nilsson, Patrick M. Braganca, Han Kyu Lee, Jen-Ru Chen, Ilya Krivorotov, Eric Montoya, Lei Wan, Hsin-Wei Tseng, Ozdal Boyraz, En Yang, Randy Ngelale, and Nader Bagherzadeh
- Subjects
Materials science ,Magnetoresistance ,lcsh:Medicine ,02 engineering and technology ,Radiation ,01 natural sciences ,Article ,Computer Science::Hardware Architecture ,Magnetic properties and materials ,Electronic and spintronic devices ,0103 physical sciences ,Irradiation ,Experimental nuclear physics ,lcsh:Science ,Quantum tunnelling ,010302 applied physics ,Multidisciplinary ,Spintronics ,business.industry ,lcsh:R ,Spin-transfer torque ,Neutron radiation ,021001 nanoscience & nanotechnology ,Magnetic field ,Optoelectronics ,lcsh:Q ,0210 nano-technology ,business - Abstract
Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component, the nanoscale magnetic tunneling junction (MTJ), is thought to be radiation hard, making it attractive for space and nuclear technology applications. However, studies on the effects of ionizing radiation on the STT-MRAM writing process are lacking for MTJs with perpendicular magnetic anisotropy (pMTJs) required for scalable applications. Particularly, the question of the impact of extreme total ionizing dose on perpendicular magnetic anisotropy, which plays a crucial role on thermal stability and critical writing current, remains open. Here we report measurements of the impact of high doses of gamma and neutron radiation on nanoscale pMTJs used in STT-MRAM. We characterize the tunneling magnetoresistance, the magnetic field switching, and the current-induced switching before and after irradiation. Our results demonstrate that all these key properties of nanoscale MTJs relevant to STT-MRAM applications are robust against ionizing radiation. Additionally, we perform experiments on thermally driven stochastic switching in the gamma ray environment. These results indicate that nanoscale MTJs are promising building blocks for radiation-hard non-von Neumann computing.
- Published
- 2020
39. Spectroscopy of short-lived radioactive molecules
- Author
-
Alex Brinson, Mark Bissell, A. R. Vernon, R. F. Garcia Ruiz, B. S. Cooper, K. Chrysalidis, Gerda Neyens, Klaus Wendt, R. Â. P. de Groote, Shane Wilkins, J. Billowes, Xiaofei Yang, Robert Berger, Á. Koszorús, C. L. Binnersley, Frank Wienholtz, T. A. Isaev, Lutz Schweikhard, Thomas Elias Cocolios, Thomas F. Giesen, Alexander A. Breier, S. Franchoo, C. M. Ricketts, Fredrik Gustafsson, H. A. Perrett, Kieran Flanagan, Sebastian Rothe, Institut de Physique Nucléaire d'Orsay (IPNO), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
spektroskopia ,collinear ,nucl-ex ,01 natural sciences ,010305 fluids & plasmas ,Radium ,chemistry.chemical_compound ,Ionization ,Experimental nuclear physics ,Nuclear Experiment ,Physics ,Multidisciplinary ,Large Hadron Collider ,Stable isotope ratio ,new physics ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,hep-th ,molekyylit ,hep-ph ,radium ,electron: electric moment ,Nuclear Physics - Theory ,radioactivity ,many-body problem ,Electronic structure of atoms and molecules ,Atomic physics ,ydinfysiikka ,Particle Physics - Theory ,exceptional ,nucl-th ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Monofluoride ,ResearchInstitutes_Networks_Beacons/photon_science_institute ,chemistry.chemical_element ,nucleus: structure function ,Electronic structure ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Photon Science Institute ,Article ,0103 physical sciences ,ionization ,Molecule ,Nuclear Physics - Experiment ,010306 general physics ,Spectroscopy ,enhancement ,Particle Physics - Phenomenology ,stability ,sensitivity ,laser ,chemistry ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Exotic atoms and molecules ,nucleus: deformation - Abstract
Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecules containing octupole-deformed radium isotopes10,11. However, the study of RaF has been impeded by the lack of stable isotopes of radium. Here we present an experimental approach to studying short-lived radioactive molecules, which allows us to measure molecules with lifetimes of just tens of milliseconds. Energetically low-lying electronic states were measured for different isotopically pure RaF molecules using collinear resonance ionisation at the ISOLDE ion-beam facility at CERN. Our results provide evidence of the existence of a suitable laser-cooling scheme for these molecules and represent a key step towards high-precision studies in these systems. Our findings will enable further studies of short-lived radioactive molecules for fundamental physics research., Measurements of low-energy electronic states of radium monofluoride validate predictions of the use of this short-lived radioactive molecule in exploring fundamental physics and provide evidence of its suitability for laser cooling.
- Published
- 2020
40. The observation of vibrating pear-shapes in radon nuclei
- Author
-
M. Zielińska, L. G. Pedersen, M. Bowry, N. Warr, M. Seidlitz, Liam Gaffney, P. E. Garrett, M. Lozano, A. Illana, D. Rosiak, V. Virtanen, R. D. Page, J. M. Keatings, P. Reiter, M. Stryjczyk, K. Wrzosek-Lipska, B. Siebeck, N. A. Kelly, D. T. Joss, H. De Witte, David O'Donnell, P. Van Duppen, J. Sinclair, K. Abrahams, S. Vinals, Sebastian Rothe, C. Raison, J. Ojala, M. Komorowska, B. S. Nara Singh, P. A. Butler, T.M. Shneidman, C. Henrich, A. Goldkuhle, J. Cederkäll, Timothy Chupp, J. Konki, Jose Rodriguez, P. Spagnoletti, J. F. Smith, G. de Angelis, Karl Johnston, Marcus Scheck, T. Kröll, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Science and Technology Facilities Council (UK), Federal Ministry of Education and Research (Germany), National Science Centre (Poland), European Commission, Research Foundation - Flanders, Belgian Science Policy Office, Russian Foundation for Basic Research, and SCOAP
- Subjects
Physics beyond the Standard Model ,Science ,Nuclear Theory ,General Physics and Astronomy ,chemistry.chemical_element ,Radon ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Radium ,Quantum state ,0103 physical sciences ,CP: violation ,ground state ,Nuclear Physics - Experiment ,Physics::Atomic Physics ,Experimental nuclear physics ,lcsh:Science ,010306 general physics ,numerical calculations ,Nuclear Experiment ,Physics ,Multidisciplinary ,Isotope ,010308 nuclear & particles physics ,new physics ,nucleus ,radon ,General Chemistry ,Publisher Correction ,radium ,exotic nuclei ,electric moment ,chemistry ,radioactivity ,Moment (physics) ,Atomic nucleus ,CP violation ,lcsh:Q ,Exotic atoms and molecules ,Atomic physics ,ydinfysiikka - Abstract
6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0, There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we observed the low-lying quantum states in Rn and Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment., The support of the ISOLDE Collaboration and technical teams is acknowledged. This work was supported by the following Research Councils and Grants: Science and Technology Facilities Council (STFC; UK) grants ST/ P004598/1, ST/L005808/1; Federal Ministry of Education and Research (BMBF; Germany) grants 05P18RDCIA, 05P15PKCIA and 05P18PKCIA and the “Verbundprojekt 05P2018”; National Science Centre (Poland) grant 2015/18/M/ST2/00523; European Union’s Horizon 2020 Framework research and innovation programme 654002 (ENSAR2); Marie Skłodowska-Curie COFUND grant (EU-CERN) 665779; Research Foundation Flanders (FWO, Belgium), by GOA/2015/010 (BOF KU Leuven) and the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12); RFBR(Russia) grant 17-52-12015.
- Published
- 2020
41. Demonstration of cooling by the Muon Ionization Cooling Experiment
- Author
-
Bogomilov, M., Tsenov, R., Vankova-Kirilova, G., Song, Y.P., Tang, J.Y., Li, Z.H., Bertoni, R., Bonesini, M., Chignoli, F., Mazza, R., Palladino, V., de Bari, A., Orestano, D., Tortora, L., Kuno, Y., Sakamoto, H., Sato, A., Ishimoto, S., Chung, M., Sung, C.K., Filthaut, F., Jokovic, D., Maletic, D., Savic, M., Jovancevic, N., Nikolov, J., Vretenar, M., Ramberger, S., Asfandiyarov, R., Blondel, A., Drielsma, F., Karadzhov, Y., Charnley, G., Collomb, N., Dumbell, K., Gallagher, A., Grant, A., Griffiths, S., Hartnett, T., Martlew, B., Moss, A., Muir, A., Mullacrane, I., Oates, A., Owens, P., Stokes, G., Warburton, P., White, C., Adams, D., Bayliss, V., Boehm, J., Bradshaw, T.W., Brown, C., Courthold, M., Govans, J., Hills, M., Lagrange, J.-B., Macwaters, C., Nichols, A., Preece, R., Ricciardi, S., Rogers, C., Stanley, T., Tarrant, J., Tucker, M., Watson, S., Wilson, A., Bayes, R., Nugent, J.C., Soler, F.J.P., Gamet, R., Cooke, P., Blackmore, V.J., Colling, D., Dobbs, A., Dornan, P., Franchini, P., Hunt, C., Jurj, P.B., Kurup, A., Long, K., Martyniak, J., Middleton, S., Pasternak, J., Uchida, M.A., Cobb, J.H., Booth, C.N., Hodgson, P., Langlands, J., Overton, E., Pec, V., Smith, P.J., Wilbur, S., Chatzitheodoridis, G.T., Dick, A.J., Ronald, K., Whyte, C.G., Young, A.R., Boyd, S., Greis, J.R., Lord, T., Pidcott, C., Taylor, I., Ellis, M., Gardener, R.B.S., Kyberd, P., Nebrensky, J.J., Palmer, M., Witte, H., Adey, D., Bross, A.D., Bowring, D., Hanlet, P., Liu, A., Neuffer, D., Popovic, M., Rubinov, P., DeMello, A., Gourlay, S., Lambert, A., Li, D., Luo, T., Prestemon, S., Virostek, S., Freemire, B., Kaplan, D.M., Mohayai, T.A., Rajaram, D., Snopok, P., Torun, Y., Cremaldi, L.M., Sanders, D.A., Summers, D.J., Coney, L.R., Hanson, G.G., Heidt, C., Bogomilov, M., Tsenov, R., Vankova-Kirilova, G., Song, Y. P., Tang, J. Y., Li, Z. H., Bertoni, R., Bonesini, M., Chignoli, F., Mazza, R., Palladino, V., de Bari, A., Orestano, D., Tortora, L., Kuno, Y., Sakamoto, H., Sato, A., Ishimoto, S., Chung, M., Sung, C. K., Filthaut, F., Jokovic, D., Maletic, D., Savic, M., Jovancevic, N., Nikolov, J., Vretenar, M., Ramberger, S., Asfandiyarov, R., Blondel, A., Drielsma, F., Karadzhov, Y., Boyd, S., Greis, J. R., Lord, T., Pidcott, C., Taylor, I., Charnley, G., Collomb, N., Dumbell, K., Gallagher, A., Grant, A., Griffiths, S., Hartnett, T., Martlew, B., Moss, A., Muir, A., Mullacrane, I., Oates, A., Owens, P., Stokes, G., Warburton, P., White, C., Adams, D., Bayliss, V., Boehm, J., Bradshaw, T. W., Brown, C., Courthold, M., Govans, J., Hills, M., Lagrange, J. -B., Macwaters, C., Nichols, A., Preece, R., Ricciardi, S., Rogers, C., Stanley, T., Tarrant, J., Tucker, M., Watson, S., Wilson, A., Bayes, R., Nugent, J. C., Soler, F. J. P., Chatzitheodoridis, G. T., Dick, A. J., Ronald, K., Whyte, C. G., Young, A. R., Gamet, R., Cooke, P., Blackmore, V. J., Colling, D., Dobbs, A., Dornan, P., Franchini, P., Hunt, C., Jurj, P. B., Kurup, A., Long, K., Martyniak, J., Middleton, S., Pasternak, J., Uchida, M. A., Cobb, J. H., Booth, C. N., Hodgson, P., Langlands, J., Overton, E., Pec, V., Smith, P. J., Wilbur, S., Ellis, M., Gardener, R. B. S., Kyberd, P., Nebrensky, J. J., Demello, A., Gourlay, S., Lambert, A., Li, D., Luo, T., Prestemon, S., Virostek, S., Palmer, M., Witte, H., Adey, D., Bross, A. D., Bowring, D., Liu, A., Neuffer, D., Popovic, M., Rubinov, P., Freemire, B., Hanlet, P., Kaplan, D. M., Mohayai, T. A., Rajaram, D., Snopok, P., Torun, Y., Cremaldi, L. M., Sanders, D. A., Summers, D. J., Coney, L. R., Hanson, G. G., Heidt, C., Particle Physics and Astronomy Research Council (PPARC), The Royal Society, Commission of the European Communities, Council for the Central Laboratory of the Research Councils' (CCLRC), Science and Technology Facilities Council (STFC), and Imperial College Trust
- Subjects
Physics::Instrumentation and Detectors ,General Science & Technology ,Library science ,01 natural sciences ,7. Clean energy ,Article ,PHYSICS ,DESIGN ,0103 physical sciences ,media_common.cataloged_instance ,Ionization cooling ,High Energy Physics ,Physics::Atomic Physics ,European union ,Experimental nuclear physics ,010306 general physics ,QC ,media_common ,physics.acc-ph ,Multidisciplinary ,Science & Technology ,010308 nuclear & particles physics ,hep-ex ,MICE collaboration ,Chinese academy of sciences ,Accelerators and Storage Rings ,Mechanical engineering ,Multidisciplinary Sciences ,Experimental High Energy Physics ,Science & Technology - Other Topics ,Physics::Accelerator Physics ,Christian ministry ,High Energy Physics::Experiment ,Experimental particle physics ,Particle Physics - Experiment - Abstract
The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such ‘tertiary’ beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton–antilepton collisions at extremely high energies and provide well characterized neutrino beams1–6. Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness7,8. Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect9–11. The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced footprint6., Ionization cooling, a technique that delivers high-brightness muon beams for the study of phenomena at energy scales beyond those of the Large Hadron Collider, is demonstrated by the Muon Ionization Cooling Experiment.
- Published
- 2020
42. Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
- Author
-
T. Miyagi, Mark Bissell, Klaus Wendt, Shane Wilkins, Á. Koszorús, C. L. Binnersley, Kara Marie Lynch, A. R. Vernon, Paul-Gerhard Reinhard, Jason D. Holt, J. Billowes, R. P. de Groote, T. Day Goodacre, G. J. Farooq-Smith, Sebastian Rothe, D. V. Fedorov, Thomas Elias Cocolios, Witold Nazarewicz, R. F. Garcia Ruiz, Gerda Neyens, Ziye Xu, Kieran Flanagan, H. H. Stroke, S. Franchoo, Xiaofei Yang, W. Gins, Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Nuclear Theory ,nucl-th ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Astrophysics::High Energy Astrophysical Phenomena ,General Physics and Astronomy ,FOS: Physical sciences ,kupari ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,01 natural sciences ,7. Clean energy ,Effective nuclear charge ,Nuclear physics ,Nuclear Theory (nucl-th) ,0103 physical sciences ,experimental nuclear physics ,Neutron ,Nuclear Physics - Experiment ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Mass number ,isotoopit ,Isotope ,010308 nuclear & particles physics ,Nuclear matter ,13. Climate action ,Neutron number ,Nuclear Physics - Theory ,theoretical nuclear physics ,Atomic number ,ydinfysiikka ,Nuclear density - Abstract
Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than the trend of their even-neutron neighbours suggests. This OES effect varies with the number of protons and neutrons and poses a significant challenge for nuclear theory [5-7]. Here, we examine this problem with new measurements of the charge radii of short-lived copper isotopes up to the very exotic $^{78}$Cu $(Z=29, N=49)$, produced at only 20 ions/s, using the highly-sensitive Collinear Resonance Ionisation Spectroscopy (CRIS) method at ISOLDE-CERN. Due to the presence of a single proton outside of the closed Z=28 shell, these measurements provide crucial insights into the single-particle proton structure and how this affects the charge radii. We observe an unexpected reduction in the OES for isotopes approaching the $N=50$ shell gap. To describe the data, we applied models based on nuclear Density Functional Theory [2,8] (DFT) and ab-initio Valence-Space In-Medium Similarity Renormalization Group (VS-IMSRG) theory [9,10]. Through these comparisons, we demonstrate a relation between the global behavior of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects due to the odd neutron, naturally emerge from the VS-IMSRG calculations.
- Published
- 2020
43. Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather
- Author
-
Juan Carlos Castro-Palacio, P. Fernández de Córdoba, V. A. Kolombet, Antonio Mocholi-Salcedo, Felix Scholkmann, G. Verdú, V. Milián-Sánchez, F. Mocholí, M. E. Iglesias-Martínez, and V. A. Panchelyuga
- Subjects
Work (thermodynamics) ,Space weather ,Nuclear physics ,lcsh:Medicine ,INGENIERIA NUCLEAR ,01 natural sciences ,Capacitance ,Article ,law.invention ,TECNOLOGIA ELECTRONICA ,law ,0103 physical sciences ,Point (geometry) ,Experimental nuclear physics ,lcsh:Science ,Faraday cage ,010303 astronomy & astrophysics ,Physics ,Multidisciplinary ,010308 nuclear & particles physics ,lcsh:R ,Computational physics ,Earth's magnetic field ,Decay rates variability ,Capacitance variability ,FISICA APLICADA ,Magnetospheric physics ,lcsh:Q ,Nuclear astrophysics ,MATEMATICA APLICADA ,Radioactive decay - Abstract
[EN] For several years, reports have been published about fluctuations in measured radioactive decay time-series and in some instances linked to astrophysical as well as classical environmental influences. Anomalous behaviors of radioactive decay measurement and measurement of capacitance inside and outside a modified Faraday cage were documented by our group in previous work. In the present report, we present an in-depth analysis of our measurement with regard to possible correlations with space weather, i.e. the geomagnetic activity (GMA) and cosmic-ray activity (CRA). Our analysis revealed that the decay and capacitance time-series are statistically significantly correlated with GMA and CRA when specific conditions are met. The conditions are explained in detail and an outlook is given on how to further investigate this important finding. Our discovery is relevant for all researchers investigating radioactive decay measurements since they point out that the space weather condition during the measurement is relevant for partially explaining the observed variability., This work has been partially financed by: grant no. 20170764 (Equipos de deteccion, regulacion e informacion en el sector de los sistemas inteligentes de transporte (ITS). Nuevos modelos y ensayos de compatibilidad y verificacion de funcionamiento) (Spain), by grant no. RTI2018-102256-B-I00 (Spain), by the Generalitat Valenciana (Spain) under project Bioingenieria de las Radiaciones Ionizantes. Biorad (PROMETEO/2018/035) and the project MEMO RADION (IDIFEDER/2018/038) co-financed by the Programa Operativo del Fondo Social Europeo 2014-2020", and by grant No.075-00845-20-01 (Russia).
- Published
- 2020
44. Addendum: The observation of vibrating pear-shapes in radon nuclei
- Author
-
T.M. Shneidman, P. E. Garrett, Jose Rodriguez, H. De Witte, David O'Donnell, M. Stryjczyk, D. Rosiak, Timothy Chupp, Th. Kröll, P. Reiter, B. Siebeck, J. Sinclair, P. Spagnoletti, J. F. Smith, V. Virtanen, Karl Johnston, N. A. Kelly, J. M. Keatings, Marcus Scheck, Liam Gaffney, C. Raison, Joonas Konki, L. G. Pedersen, K. Wrzosek-Lipska, M. Lozano, G. de Angelis, A. Illana, J. Ojala, Sebastian Rothe, Robert Page, Joakim Cederkäll, D. T. Joss, M. Zielińska, P. Van Duppen, M. Komorowska, M. Seidlitz, K. Abrahams, A. Goldkuhle, M. Bowry, P. A. Butler, N. Warr, S. Vinals, C. Henrich, and B. S. Nara Singh
- Subjects
0301 basic medicine ,PEAR ,Multidisciplinary ,Science ,General Physics and Astronomy ,chemistry.chemical_element ,Addendum ,Radon ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Archaeology ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,030104 developmental biology ,chemistry ,lcsh:Q ,Exotic atoms and molecules ,Experimental nuclear physics ,lcsh:Science ,0210 nano-technology ,Geology - Abstract
5 pags., 4 figs., 1 tab. -- Addendum to: Nature Communications https://doi.org/10.1038/s41467-019-10494-5, published online 6 June 2019.
- Published
- 2020
45. Cross section measurements of 151Eu(3He,5n) reaction: new opportunities for medical alpha emitter 149Tb production
- Author
-
R. A. Aliev, M. G. Voronuk, A. A. Ogloblin, A. N. Moiseeva, G. Ya. Starodub, S. T. Latushkin, N. S. Gustova, N. V. Aksenov, V. N. Unezhev, and V. A. Zagryadskiy
- Subjects
Range (particle radiation) ,Multidisciplinary ,Materials science ,Isotope ,lcsh:R ,Radiochemistry ,lcsh:Medicine ,Article ,030218 nuclear medicine & medical imaging ,Nuclear chemistry ,03 medical and health sciences ,0302 clinical medicine ,Stack (abstract data type) ,Impurity ,030220 oncology & carcinogenesis ,Yield (chemistry) ,lcsh:Q ,Irradiation ,Experimental nuclear physics ,lcsh:Science ,FOIL method ,Common emitter - Abstract
Method for production of alpha emitter 149Tb by irradiation of 151Eu with 70 MeV 3He nuclei is proposed. For the first time, the cross sections for the formation of isotopes 149,150,151,152Tb were measured experimentally using a stack foil technique in the 3He particles energy range 70 → 12 MeV. The thick target yield of 149Tb is 39 MBq/μAh, or 230 MBq/μA 149Tb at saturation. The optimal energy range from the point of view of radioisotopic purity is 70 → 40 MeV. At these conditions about 150 MBq/μA 149Tb can be produced in 8 hours irradiation, which is sufficient for therapeutic applications. The main impurities are 150Tb (~100% in activity) and 151Tb (~30% in activity). The proposed method surpasses its counterparts by the high content of the target isotope in the natural mixture and the simplicity of the radiochemical separation of 149Tb from the bulk target material.
- Published
- 2020
46. Electromagnetic character of the competitive γγ/γ-decay from
- Author
-
P-A, Söderström, L, Capponi, E, Açıksöz, T, Otsuka, N, Tsoneva, Y, Tsunoda, D L, Balabanski, N, Pietralla, G L, Guardo, D, Lattuada, H, Lenske, C, Matei, D, Nichita, A, Pappalardo, and T, Petruse
- Subjects
Theoretical nuclear physics ,Nuclear Theory ,Experimental nuclear physics ,Article - Abstract
Second-order processes in physics is a research topic focusing attention from several fields worldwide including, for example, non-linear quantum electrodynamics with high-power lasers, neutrinoless double-β decay, and stimulated atomic two-photon transitions. For the electromagnetic nuclear interaction, the observation of the competitive double-γ decay from 137mBa has opened up the nuclear structure field for detailed investigation of second-order processes through the manifestation of off-diagonal nuclear polarisability. Here, we confirm this observation with an 8.7σ significance, and an improved value on the double-photon versus single-photon branching ratio as 2.62 × 10−6(30). Our results, however, contradict the conclusions from the original experiment, where the decay was interpreted to be dominated by a quadrupole-quadrupole component. Here, we find a substantial enhancement in the energy distribution consistent with a dominating octupole-dipole character and a rather small quadrupole-quadrupole component in the decay, hindered due to an evolution of the internal nuclear structure. The implied strongly hindered double-photon branching in 137mBa opens up the possibility of the double-photon branching as a feasible tool for nuclear-structure studies on off-diagonal polarisability in nuclei where this hindrance is not present., Second order effects can play an important role in highlighting nuclear structure properties. Here, the authors show how the second-order nuclear transitions in the form of double-gamma decay in 137Ba help understanding atomic nuclei.
- Published
- 2019
47. Dick Crane's California Days.
- Author
-
Holbrow, Charles H.
- Subjects
- *
NUCLEAR physicists , *PHYSICISTS , *NUCLEAR physics - Abstract
Horace Richard Crane (1907-2007) was born and educated in California. His childhood was full of activities that helped him become an outstanding experimental physicist. As a graduate student at the California Institute of Technology (1930-1934), he had the good fortune to work with Charles C. Lauritsen (1892-1968) just as he introduced accelerator-based nuclear physics to Caltech. They shared the euphoric excitement of opening up a new field with simple, ingenious apparatus and experiments. This work prepared Crane for his career at the University of Michigan (1935-1973) where in the 1950s, after making the first measurement of the electron's magnetic moment, he devised the g−2 technique and made the first measurement of the anomaly in the electron's magnetic moment. A man of direct, almost laconic style, he made lasting contributions to the exposition of physics to the general public and to its teaching in high schools, community colleges, four-year colleges, and universities. I tell how he became a physicist and describe some of his early achievements. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
48. Particle accelerators in Mexico.
- Author
-
De la Paz Ramos Lara, Maria
- Subjects
- *
PARTICLE accelerators , *PARTICLE acceleration , *NUCLEAR physics , *RESEARCH - Abstract
The first Van de Graaff particle accelerator in Latin America was installed at the Universidad Nacional Autónoma de México (UNAM) in 1952. This event marked the beginning of experimental nuclear physics, exclusively for peaceful purposes, in Mexico. The acquisition of this accelerator was fundamental for placing other accelerators into operation, which were used for both research and the resolution of national problems. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
49. The rush to accelerate: Early stages of nuclear physics research in Australia.
- Author
-
Home, R. W.
- Subjects
- *
NUCLEAR physics , *RESEARCH , *PARTICLE accelerators , *PHYSICISTS , *SCIENCE - Abstract
From the mid- 1930s, Australian physicists, though few in number, sought to join the exciting new field of research then opening up in experimental nuclear physics. Such research was already, however, largely based on the use of particle accelerators, and to acquire one demanded money and resources on a scale unprecedented in Australian scientific experience. Australian attempts during the period 1935-1960 to build accelerators or to acquire them by other means are described. The difficulties that Australian physicists faced in this connection and the strategies by which they sought to overcome them are considered. Three stages of development are identified: an initial period of small-scale initiatives in the 1930s, a postwar period of "do-it-yourself" accelerator building, and finally a growing practice of buying machines "off the shelf" from commercial suppliers. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
50. Evolution of native defects in ZnO nanorods irradiated with hydrogen ion
- Author
-
Aiji Wang, Qingyun Tu, Tengfei Wu, Zilin Liu, Yinshu Wang, Zhenglong Wu, Bowen Lv, Guangfu Wang, and Li Zheng
- Subjects
Materials science ,Photoluminescence ,Silicon ,Passivation ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,Physics::Optics ,lcsh:Medicine ,chemistry.chemical_element ,02 engineering and technology ,Photochemistry ,01 natural sciences ,Fluence ,Article ,Ion ,Condensed Matter::Materials Science ,Crystallinity ,0103 physical sciences ,Irradiation ,Experimental nuclear physics ,lcsh:Science ,010302 applied physics ,Nanoscale materials ,Multidisciplinary ,Nanowires ,lcsh:R ,021001 nanoscience & nanotechnology ,chemistry ,lcsh:Q ,Nanorod ,0210 nano-technology - Abstract
This work reports the study on the evolution of native defects in ZnO nanorods irradiated with hydrogen ion. ZnO nanorod arrays grown vertically on silicon substrates were irradiated by 180 keV H+ ions to a total fluence of 8.50 × 1015 ions/cm2. The X-ray diffraction spectra, photoluminescence spectra before and after irradiation and the real-time ionoluminescence spectra of the nanorod arrays during the irradiating process were measured. Formation and evolution of defects during H+ ion irradiation and effects of irradiation on the crystal structure and optical property were studied. Blue shift of exciton emission, shrink of lattice c and improvement of the crystallinity of ZnO nanorods after irradiation were observed. Simple surface passivation of the nanorods could improve the radiation resistance. Formation and evolution of the defects during H+ ion irradiation could be clarified into four stages and the related models are provided.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.