21 results on '"Exact diagonalization method"'
Search Results
2. Magnetic properties of GaAs parabolic quantum dot in the presence of donor impurity under the influence of external tilted electric and magnetic fields
- Author
-
Amal Abu Alia, Mohammad K. Elsaid, and Ayham Shaer
- Subjects
magnetic properties ,exact diagonalization method ,external fields ,donor impurity ,quantum dot ,Science (General) ,Q1-390 - Abstract
The dependence of the magnetization and magnetic susceptibility of donor impurity in parabolic GaAs (Gallium Arsenide) quantum dot has been investigated, at finite temperature under the influence of external tilted electric and magnetic fields. Based on the effective mass approximation, the Hamiltonian of an electron confined in a parabolic quantum dot in the presence of donor impurity which is presented in electric and magnetic fields has been solved by employing the numerical diagonalization method of the Hamiltonian matrix. All the energy matrix elements have been obtained in analytical form. We have shown the variations of the statistical energy and binding energy of donor impurity with the electric and magnetic field strengths and tilt electric field angle. The computed results show that the electrical field can tune the magnetic properties of the QD GaAs medium by flipping the sign of its magnetic susceptibility from diamagnetic (χ 0).
- Published
- 2019
- Full Text
- View/download PDF
3. The magnetization and magnetic susceptibility of GaAs Gaussian quantum dot with donor impurity in a magnetic field.
- Author
-
Elsaid, Mohammad, Ali, Mohamoud, and Shaer, Ayham
- Subjects
- *
MAGNETIC impurities , *MAGNETIC susceptibility , *MAGNETIC fields , *QUANTUM dots , *MAGNETIZATION , *QUANTUM dot synthesis - Abstract
We present a theoretical study to investigate the effect of donor impurity on the magnetization (M) and the magnetic susceptibility (χ) of single electron quantum dot (QD) with Gaussian confinement in the presence of a magnetic field. We solve the Hamiltonian of this system, including the spin, by using the exact diagonalization method. The ground state binding energy (BE) of an electron has been shown as a function of QD radius and confinement potential depth. The behaviors of the magnetization and the magnetic susceptibility of a QD have been studied as a function of temperature, confinement potential depth, quantum radius and magnetic field. We have shown the effect of donor impurity on the magnetization and magnetic susceptibility curves of Gaussian quantum dot (GQD). [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure.
- Author
-
Abuzaid, Samah, Shaer, Ayham, and Elsaid, Mohammad
- Subjects
- *
MAGNETIC fields , *GROUND state energy , *MAGNETIC flux density , *BINDING energy , *AUDITING standards - Abstract
In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and magnetic field strength. We found that the ground state donor binding energy (BE) calculated at ωc =2R * and * ω = 5.421R , decreases from BE=7.59822 R * to BE=2.85165 R * , as we change the impurity position from d=0.0 a* to d=0.5 a* , respectively .In addition, the combined effects of pressure and temperature on the binding energy, as a function of magnetic field strength and impurity position, had been shown using the effective-mass approximation. The numerical results show that the donor impurity binding energy enhances with increasing the pressure while it decreases as the temperature decreases. [ABSTRACT FROM AUTHOR]
- Published
- 2019
5. Magnetic properties of GaAs parabolic quantum dot in the presence of donor impurity under the influence of external tilted electric and magnetic fields.
- Author
-
Alia, Amal Abu, Elsaid, Mohammad K., and Shaer, Ayham
- Abstract
The dependence of the magnetization and magnetic susceptibility of donor impurity in parabolic GaAs (Gallium Arsenide) quantum dot has been investigated, at finite temperature under the influence of external tilted electric and magnetic fields. Based on the effective mass approximation, the Hamiltonian of an electron confined in a parabolic quantum dot in the presence of donor impurity which is presented in electric and magnetic fields has been solved by employing the numerical diagonalization method of the Hamiltonian matrix. All the energy matrix elements have been obtained in analytical form. We have shown the variations of the statistical energy and binding energy of donor impurity with the electric and magnetic field strengths and tilt electric field angle. The computed results show that the electrical field can tune the magnetic properties of the QD GaAs medium by flipping the sign of its magnetic susceptibility from diamagnetic (χ < 0) to paramagnetic (χ > 0). [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
6. Theory of MMX-Chain Compounds
- Author
-
Yonemitsu, Kenji, Yamashita, Masahiro, editor, and Okamoto, Hiroshi, editor
- Published
- 2013
- Full Text
- View/download PDF
7. The effects of pressure and temperature on the exchange energy of a parabolic quantum dot under a magnetic field.
- Author
-
Bzour, Faten, Shaer, Ayham, and Elsaid, Mohammad K.
- Abstract
The combined effects of pressure and temperature on the energy levels of a parabolic GaAs quantum dot under a magnetic field have been studied. The exact diagonalization method was used to solve the two-electron quantum dot Hamiltonian and to obtain the eigenenergies. In addition, we investigated the effects of pressure and temperature on the singlet-triplet exchange energy ( J = E T − E s ) of the quantum dot as a function of a magnetic field. The magnetic field-parabolic confinement ( ω c − ω 0 ) phase diagram of the quantum dot was calculated. The comparisons show that our results are in very good agreement with the previously published works. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
8. Magnon-bound-state hierarchy for the two-dimensional transverse-field Ising model in the ordered phase.
- Author
-
Nishiyama, Yoshihiro
- Subjects
- *
MAGNONS , *BOUND states , *ISING model , *FERROMAGNETIC materials , *CRITICAL point (Thermodynamics) - Abstract
In the ordered phase for an Ising ferromagnet, the magnons are attractive to form a series of bound states with the mass gaps, m 2 < m 3 < … . Each ratio m 2 , 3 , … / m 1 ( m 1 : the single-magnon mass) is expected to be a universal constant in the vicinity of the critical point. In this paper, we devote ourselves to the ( 2 + 1 ) -dimensional counterpart, for which the universal hierarchical character remains unclear. We employed the exact diagonalization method, which enables us to calculate the dynamical susceptibility via the continued-fraction expansion. Thereby, we observe a variety of signals including m 2 , 3 , 4 , and the spectrum is analyzed with the finite-size-scaling method to estimate the universal mass-gap ratios. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
9. Influence of lateral electric field on intraband optical absorption in concentric double quantum rings.
- Author
-
Baghramyan, H.M., Barseghyan, M.G., Laroze, D., and Kirakosyan, A.A.
- Subjects
- *
ELECTRIC fields , *LIGHT absorption , *QUANTUM rings , *ABSORPTION coefficients , *ELECTRON energy states - Abstract
The influence of lateral electric field on one-electron states and intraband absorption in two-dimensional concentric double quantum rings is investigated. The confining potential of the rings is modeled as a double harmonic central potential. Using the exact diagonalization technique, we calculate the dependence of the electron energy spectrum as a function of the electric field strength as well as the inner ring radius. Also, different values of confinement strength are considered. Selection rule is obtained for intraband transitions, caused by the direction of incident light polarization. The intraband absorption coefficient is calculated for different values of electric field strength, inner ring radius, confinement strength and incident light polarization direction. The combined influence of electric field strength and change of confining strength show that while the increment of the first one leads only to blueshift of absorption spectrum, the augment of the second one makes the redshift. In addition, both blueshift and redshift of the spectrum have been obtained with the enlargement of inner ring radius. Finally, we show that the absorption spectrum undergoes redshift by changing the polarization of incident light from x - to y -axis. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
10. Magnetic properties of GaAs parabolic quantum dot in the presence of donor impurity under the influence of external tilted electric and magnetic fields
- Author
-
Ayham Shaer, Mohammad K. Elsaid, and Amal Abu Alia
- Subjects
Materials science ,donor impurity ,external fields ,02 engineering and technology ,01 natural sciences ,010305 fluids & plasmas ,Gallium arsenide ,Magnetization ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,Impurity ,0103 physical sciences ,lcsh:Science (General) ,Condensed matter physics ,Condensed Matter::Other ,quantum dot ,exact diagonalization method ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Magnetic susceptibility ,Magnetic field ,chemistry ,Quantum dot ,Condensed Matter::Strongly Correlated Electrons ,magnetic properties ,0210 nano-technology ,Parabolic quantum dot ,lcsh:Q1-390 - Abstract
The dependence of the magnetization and magnetic susceptibility of donor impurity in parabolic GaAs (Gallium Arsenide) quantum dot has been investigated, at finite temperature under the influence of external tilted electric and magnetic fields. Based on the effective mass approximation, the Hamiltonian of an electron confined in a parabolic quantum dot in the presence of donor impurity which is presented in electric and magnetic fields has been solved by employing the numerical diagonalization method of the Hamiltonian matrix. All the energy matrix elements have been obtained in analytical form. We have shown the variations of the statistical energy and binding energy of donor impurity with the electric and magnetic field strengths and tilt electric field angle. The computed results show that the electrical field can tune the magnetic properties of the QD GaAs medium by flipping the sign of its magnetic susceptibility from diamagnetic (χ 0).
- Published
- 2019
11. Impurity-related intraband absorption in coupled quantum dot-ring structure under lateral electric field.
- Author
-
Barseghyan, M.G., Baghramyan, H.M., Laroze, D., Bragard, J., and Kirakosyan, A.A.
- Subjects
- *
QUANTUM dots , *ELECTRIC fields , *ABSORPTION , *THICKNESS measurement , *GALLIUM arsenide , *GALLIUM aluminum arsenide , *METAL inclusions - Abstract
The effects of a lateral electric field on intraband absorption in GaAs / GaAlAs two-dimensional coupled quantum dot-ring structure with an on-center hydrogenic donor impurity are investigated. The confining potential of the system consists of two parabolas with various confinement energies. The calculations are made using the exact diagonalization technique. A selection rule for intraband transitions was found for x -polarized incident light. The absorption spectrum mainly exhibits a redshift with the increment of electric field strength. On the other hand, the absorption spectrum can exhibit either a blue- or redshift depending on the values of confinement energies of dot and ring. Additionally, electric field changes the energetic shift direction influenced by the variation of barrier thickness of the structure. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
12. Magnetoexciton in nonuniform quantum ring with crater-shaped central hole.
- Author
-
García, L.F., Rodríguez-Prada, F.A., and Mikhailov, I.D.
- Subjects
- *
MAGNETICS , *EXCITON theory , *NON-uniform motion , *QUANTUM rings , *ELECTRON-hole recombination , *ROTATIONAL motion - Abstract
Abstract: We study the spectral properties of magnetoexciton in a non-uniform crater-shaped quantum dot that is modeled by a thin layer, whose thickness increases linearly with different slopes in different radial directions between the central hole and the outer border. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron and hole can be found exactly in an analytical form and they can be used subsequently as base functions in the framework of the diagonalization method to study the spectral properties of the magnetoexciton confined in a non-uniform quantum ring. It is found that some lower energy levels of the magnetic exciton show Aharonov–Bohm behavior in spite that the electrostatic attraction and the structural non-uniformity have the tendency to supress it. We attribute this result to the tunneling of the particles in their rotational movement along the crater rim induced by the external magnetic field, through the potential barriers generated by the electron–hole interaction and the additional confinement due to the presence of the structural non-uniformities. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
13. Wave function factorization of shell-model ground states
- Author
-
Papenbrock, T., Gross, Carl J., editor, Nazarewicz, Witold, editor, and Rykaczewski, Krzysztof P., editor
- Published
- 2005
- Full Text
- View/download PDF
14. Spin frustration, charge ordering, and enhanced antiferromagnetism in TMTTF2SbF6
- Author
-
Yoshimi, Kazuyoshi, Seo, Hitoshi, Ishibashi, Shoji, and Brown, Stuart E.
- Subjects
- *
ELECTRIC charge , *ANTIFERROMAGNETISM , *DENSITY functionals , *NUCLEAR spin , *ELECTRIC insulators & insulation , *ENERGY levels (Quantum mechanics) - Abstract
Abstract: We theoretically investigate the effects of charge order and spin frustration on the spin ordering in TMTTF salts. Using first-principles band calculations, we find that a diagonal inter-chain transfer integral t q1, which causes spin frustration between the inter-chain dimers in the dimer-Mott insulating state, strongly depends on the choice of anion. Within the numerical Lanczos exact diagonalization method, we show that the ferroelectric charge order changes the role of t q1 from the spin frustration to the enhancement of the two-dimensionality in spin sector. The results indicate that t q1 assists the cooperative behavior between charge order and antiferromagnetic state observed in TMTTF2SbF6. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
15. NUMERICAL STUDY OF THE ELECTRONIC STATES IN HOLE- AND ELECTRON-DOPED HIGH-TC CUPRATES.
- Author
-
Tohyama, Takami
- Subjects
- *
PARTICLES (Nuclear physics) , *BOUNDARY value problems , *NUCLEAR physics , *DIFFERENTIAL equations , *COMPLEX variables , *MATHEMATICAL physics - Abstract
We examine the electronic states in the hole- and electron-doped cuprates by using the t-t′-t″-J model. Numerically exact diagonalization method is employed for a 20-site square lattice under twisted boundary conditions. The density of states in the underdoped region clearly shows a pseudogap behavior near the Fermi level in both hole and electron dopings. In hole doping, the edge of the pseudogap in the occupied side exhibits a large weight that comes from a flat band near k=(π,0). In contrast, the weight near the gap edge in electron doping is larger for the unoccupied side than for the occupied side. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
16. Quantum phases and thermodynamics of a frustrated spin-1/2 ladder with alternate Ising-Heisenberg rung interactions.
- Author
-
Saniur Rahaman S, Sahoo S, and Kumar M
- Abstract
We study a frustrated two-leg spin ladder with alternate isotropic Heisenberg and Ising rung exchange interactions, whereas, interactions along legs and diagonals are Ising-type. All the interactions in the ladder are anti-ferromagnetic in nature and induce frustration in the system. This model shows four interesting quantum phases: (i) stripe rung ferromagnetic (SRFM), (ii) stripe rung ferromagnetic with edge singlet (SRFM-E), (iii) anisotropic antiferromagnetic (AAFM), and (iv) stripe leg ferromagnetic (SLFM) phase. We construct a quantum phase diagram for this model and show that in stripe rung ferromagnet (SRFM), the same type of sublattice spins (either isotropic S -type or discrete anisotropic σ -type spins) are aligned in the same direction. Whereas, in anisotropic antiferromagnetic phase, both S and σ -type of spins are anti-ferromagnetically aligned with each other, two nearest S spins along the rung form an anisotropic singlet bond whereas two nearest σ spins form an Ising bond. In large Heisenberg rung exchange interaction limit, spins on each leg are ferromagnetically aligned, but spins on different legs are anti-ferromagnetically aligned. The thermodynamic quantities like specific heat C
v ( T ), magnetic susceptibility χ ( T ) and thermal entropy S ( T ) are also calculated using the transfer matrix method for various phases. The magnetic gap in the SRFM and the SLFM can be noticed from χ ( T ) and Cv ( T ) curves., (© 2021 IOP Publishing Ltd.)- Published
- 2021
- Full Text
- View/download PDF
17. Few-electron quantum-dot spintronics
- Author
-
Melnikov, D.V., Kim, J., Zhang, L.-X., Leburton, J.-P., Narlikar, A.V., book editor, and Fu, Y.Y., book editor
- Published
- 2010
- Full Text
- View/download PDF
18. Geometry, chirality, topology and electron-electron interactions in the quadruple quantum dot molecule
- Author
-
Isil Ozfidan, Marek Korkusinski, Anna H. Trojnar, and Pawel Hawrylak
- Subjects
Electron-electron interactions ,Hubbard model ,Topological phase ,Geometry ,Electron ,Topology ,Matrix elements ,Stereochemistry ,Quantum mechanics ,Materials Chemistry ,Semiconductor quantum dots ,Gauge theory ,Chirality ,Extended Hubbard model ,Quantum tunnelling ,Spin-½ ,Physics ,Exact diagonalization method ,General Chemistry ,Molecules ,Condensed Matter Physics ,Chirality (electromagnetism) ,Stars ,Number of electrons ,Electronic transport ,Quantum dot ,Electronic properties ,Fermi statistics ,Ground state ,Quantum dot molecules - Abstract
We present a theory of electronic properties of a quadruple quantum dot molecule (QQD) which focuses on geometry, chirality, and electron-electron interactions. The QQD is described by the extended Hubbard model solved using exact diagonalization method in real and Fourier space. The energy spectrum of a QQD is analysed as a function of the number of electrons Ne, for ring, linear, or star geometry. We discuss the interplay of chirality, topology, and Fermi statistics for a half-filled ring QQD charged with either additional electron or hole. We show that the chirality leads to the appearance of a topological phase and an effective gauge field stabilizing the spin polarised state. The spin polarised state with extra electron (hole) and spin unpolarised state at half-filling lead to spin blockade in transport through the ring-like QQD but not through a linear nor star QQD molecule. We demonstrate that the ground state can be tuned between a total spin S=1/2 and S=3/2 by changing the strength of on-site interactions or tuning the tunnelling matrix element. © 2013 Elsevier Ltd. All rights reserved.
- Published
- 2013
- Full Text
- View/download PDF
19. Ab initio study of free and deposited transition metal clusters
- Author
-
Sahoo, Sanjubala, Entel, Peter (Akademische Betreuung), and Entel, Peter
- Subjects
Fakultät für Physik ,magnetic anisotropy ,thermodynamic properties ,structure and magnetism ,ddc:53 ,clusters as catalyst ,Density functional theory calculations ,transition metal clusters ,ddc:530 ,exact diagonalization method ,Physik (inkl. Astronomie) - Abstract
Transition metal (TM) clusters occupy an important role in the class of materials projected for nano applications. In addition to the unusual properties due to their cluster form, TM clusters have the advantage of developing magnetic moments. The goal of this thesis is to study the properties of clusters and cluster related phenomena. Physical properties of clusters are suitable platform to study quantum effects, which becomes prominent at such low dimensions. Thus, it is essential to study the properties of clusters using first-principles methods because they cannot be easily handeled by empirical approaches. The present thesis deals with the density functional theory total energy formalism through the Kohn-Sham approach. The many-body correlation effects are accounted for the generalized gradient approximation (GGA) which has been successful in describing the properties of materials, especially metals. The ground state structure of various sizes of elemental and binary TM clusters is studied. One of the main observation is that the icosahedron is one of the most stable geometries for 13-atom elemental (Fe, Co, Ni) clusters. For large Fe clusters with regular icosahedron geometry, the core of the cluster relaxes towards the cuboctahedral geometry. For all sizes, after geometrical optimization, we find slight structural distortions. This is associated with the physics of Jahn-Teller effect. We observe that the Jahn-Teller effect is more prominent in Fe clusters as compared to Ni and Co clusters. Also, the evolution of magnetic moment with cluster size is studied. The clusters show enhanced magnetic moment which is inversely related to the cluster size. The magnetic moment versus cluster size obtained from calculations match very well with the experimental results. One of the main goals of studying binary cluster is to understand the site-specific occupation of atomic species in a multi-component (here binary) cluster. This is achieved this by studying the competition between chemical ordering and segregation for binary Fe-(Co, Ni, Pt) and Co-(Pt, Mn) icosahedral clusters. The energetically favorable distribution of constituent elements in binary cluster is examined for different compositions. Using the lowest energy structure so obtained, the composition-dependent mixing energy is studied. It is observed that the qualitative behavior of mixing energy with respect to composition for 13-atom Fe-Ni clusters is very similar to that of the bulk alloy. It is found that Ni atoms tend to occupy the surface sites on a cluster (segregation tendency) for Fe-rich and Ni-rich compositions. This appears to be a common trend which has been verified for both 13- and 55-atom clusters. Owing to heavy computational demand, we have verified the trend at some specific compositions for 55-atom clusters. Magnetic properties like the orbital magnetic moment and the magnetic anisotropy are studied for free and deposited clusters. 13- and 55-atom icosahedral clusters of Fe, Ni and Co are deposited on the substrates like Pt(111) and Pt(001) for these studies. Both the free clusters and the deposited clusters are observed to exhibit large magnetic anisotropy as compared to that of the respective bulk metals. The angle (angle between magnetization and the spin-quantization axis) dependent anisotropy energy is calculated from DFT and then fitted to the classical Heisenberg model containing an anisotropy term. Large values of magnetic anisotropy energy are found for relaxed clusters as compared to perfect clusters because of the structural symmetry-breaking. In addition to its structural and magnetic properties, transition metal clusters are attractive candidates for catalysis. In principle, the catalysis can be studied by estimating the activation energy barrier of various paths of a reaction by nudged elastic band method. There are studies in literature of the catalytic properties of TM clusters (for example Fe and Pt) for the oxidation of carbon monoxide to carbon-dioxide on graphene surface. We have attempted to study the oxidation of carbon monoxide on graphene surface. The goal is to understand the role of TM clusters in reducing the activation barrier of the chemical reaction and to derive the possible reaction paths. Presently, the proper site for adsorption of CO molecule on free and graphene-supported TM clusters are identified within the accuracy of GGA. From another aspect, we tried to extrapolate the magnetic properties of clusters to finite temperature using the exact diagonalization technique. We have only studied the magnetic properties of 4- and 13-atom clusters. The exact diagonalization method is applied to the quantum Heisenberg Hamiltonian with nearest-neighbor spin-interactions. The role of dipolar interaction and local uniaxial anisotropy terms in the Heisenberg Hamiltonian are taken into account which has non-negligible contribution for clusters. We observe discontinuities in the magnetization with change in external magnetic field for clusters with antiferromagnetic interactions, which is unlike for clusters with ferromagnetic interaction. The ground state and the temperature-dependent spin-spin correlation functions are also studied. The findings of these studies for elemental and binary clusters like the size-dependent structural and magnetic properties, the composition-dependent atomic distributions of multi-component clusters (segregation), magnetic anisotropy of free and supported TM clusters are expected to shed light on the understanding of physics of clusters in general and may be helpful for experimentalists. Übergangsmetallcluster nehmen einen wichtigen Platz in der Klasse der Materialien für Anwendungen im Nanobereich ein. Übergangsmetallcluster besitzen, zusätzlich zu weiteren ungewöhnlichen Eigenschaften aufgrund ihrer Cluster-Form, den Vorteil magnetische Momente zu entwickeln. Das Ziel dieser Arbeit ist die Eigenschaften von Clustern und der damit zusammenhängenden Phänomene zu untersuchen. Die physikalischen Eigenschaften von Clustern sind eine geeignete Grundlage um Quanteneffekte zu studieren, die in niedrigen Dimensionen dominieren. Da sich die Eigenschaften der Cluster nicht mit empirischen Ansätzen einfach beschreiben lassen ist es notwendig, parameterfreie first-principles Methoden zu verwenden. In dieser Arbeit kommt der Dichtefunktional Gesamtenergieformalismus im Rahmen des Kohn-Sham-Ansatzes zum Einsatz. Die Vielteilchen-Korrelations-effekte werden im Rahmen der verallgemeinerten Gradienten Approximation (GGA) behandelt, die sehr erfolgreich für die Beschreibung von Materialien, insbesondere Metalle, eingesetzt wird. Im Rahmen dieser Arbeit wurden die Grundzustandsstrukturen von elementaren und binären Übergangsmetallclustern verschiedener Größen untersucht. Eine der wichtigsten Beobachtungen ist hierbei, dass die ikosaedrische Geometrie eine der stabilsten Formen für elementare 13-Atom (Fe, Co, Ni) Cluster ist. Für alle untersuchten Größen sind leichte strukturelle Verzerrungen präsent, die auf dem Jahn-Teller-Effekt beruhen. Dieser tritt stärker in Fe-Clustern als in Ni- und Co-Clustern auf. Für größere Fe-Cluster mit regelmäßiger ikosaedrischer Geometrie relaxiert der Kern des Clusters in Richtung einer kuboktaedrischen Geometrie. Ebenfalls untersucht wurde die Entwicklung des magnetischen Momentes mit der Clustergröße. Die Cluster besitzen ein erhöhtes magnetisches Moment, dessen Größe sich umgekehrt zur Clustergröße verhält. Der berechnete Zusammenhang stimmt gut mit experimentellen Resultaten überein. Ein weiteres wichtiges Ziel der Untersuchung binärer Cluster ist das Verständnis der gitterplatzspezifischen Besetzung der atomaren Spezies in mehrkomponentigen (hier binären) Clustern. Dazu wurde die Konkurrenz zwischen chemischer Ordnung und Segregation in binären Fe-(Co, Ni, Pt) und Co-(Pt, Mn) Clustern mit ikosaedrischer Struktur untersucht. Für verschiedene Zusammensetzungen wurde die energetisch günstigste Verteilung der konstituierenden Elemente berechnet. Aufbauend auf der so bestimmten Struktur mit der niedrigsten Energie, wurde das zusammensetzungsabhängige Mischungsverhalten der Elemente untersucht. Das qualitative Verhalten der Mischungsenergie eines 13-Atom Fe-Ni-Clusters stellt sich in Bezug auf die Zusammensetzung als sehr ähnlich zu dem des Festkörpers heraus. Dabei zeigt sich, dass Ni zur Besetzung der Oberflächenplätze (Segregationstendenz) im Fe-reichen wie auch im Ni-reichen Zusammensetzungsbereich tendiert. Das erscheint als allgemeiner Trend, der in dieser Arbeit für 13- und 55-Atom-Cluster verifiziert werden konnte. Ebenfalls untersucht wurden magnetische Eigenschaften wie das Bahnmoment und die magnetische Anisotropie für freie und deponierte Cluster. Hierzu wurden, ikosaedrische Cluster mit 13 und 55 Atomen bestehend aus Fe, Ni und Co auf Pt(111) und Pt(001) Substraten deponiert. Sowohl die freien, wie auch die deponierten Cluster zeichnen sich durch eine große magnetische Anisotropie im Vergleich zu den entsprechenden Festkörper-Materialien aus. Die winkelaufgelöste Anisotropie-Energie (gemeint ist der Winkel zwischen Magnetisierung und Spin-Quantisierungsachse) wurde im Rahmen der DFT berechnet. An diese Ergebnisse wurden die Parameter eines klassischen Heisenberg-Modells mit Anisotropieterm gefittet. Für relaxierte Cluster werden im Vergleich zu perfekten Strukturen aufgrund der strukturellen Symmetriebrechung große Anisotropie-Energien gefunden. Abgesehen von ihren strukturellen und magnetischen Eigenschaften sind Übergangsmetallcluster attraktive Kandidaten für katalytische Anwendungen. Im Prinzip können die katalytischen Eigenschaften durch Bestimmung der Aktivierungsbarriere für verschiedene Reaktionspfade im Rahmen der Nugded-elastic-band-Method untersucht werden. In der Literatur existieren Studien der katalytischen Eigenschaften von Übergangsmetallclustern (z.B. Fe oder Pt) im Bezug auf die Oxidation von Kohlenmonoxid zu Kohlendioxid. Im Rahmen dieser Arbeit wird die Oxidation von Kohlenmonoxid auf Graphen mit dem Ziel untersucht, die Rolle der Übergangsmetallcluster im Hinblick auf eine Reduzierung der Aktivierungsbarriere der chemischen Reaktion zu verstehen und mögliche Reaktionspfade abzuleiten. Bislang konnte der Adsoptionsplatz eines CO-Moleküls auf freien und Graphen-unterstützten Clustern im Rahmen der Genauigkeit der GGA bestimmt werden. Um die magnetischen Eigenschaften bei endlichen Temperaturen besser zu verstehen, wurden vier bis 13-Atom Cluster im Rahmen des quantenmechanischen Heisenbergmodells mit nächster-Nachbar-Spin-Wechselwirkung exakt diagonalisiert. Die Rolle der Dipolwechselwirkung und radialer Anisotro-pieterme, die nicht vernachlässigbare Beiträge für Cluster haben, wurden im Heisenberg-Hamiltonian berücksichtigt. Für antiferromagnetische Cluster wurden - im Gegensatz zu ferromagnetische wechselwirkenden Clustern - Unstetigkeiten in der Magnetisierung als Funktion des externen Magnetfeldes gefunden. Zusätzlich wurden für diese Cluster Grundzustand und temperaturabhängige Spin-Spin-Korrelationsfunktionen berechnet. Die Ergebnisse dieser Arbeit für elementare und binäre Cluster, wie die Größenabhängigkeit struktureller und magnetischer Eigenschaften, die zusammensetzungsabhängige Verteilung der Atome in mehrkomponentigen Clustern (Segregation), magnetische Anisotropie freischwebender und deponierter Übergangsmetallcluster können beitragen, das Verständnis der Clusterphysik im Allgemeinen voranzubringen und Hilfestellungen für experimentelle Arbeiten bieten.
- Published
- 2011
20. Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap
- Author
-
Deuretzbacher, Frank, Cremon, J.C., and Reimann, S.M.
- Subjects
Condensed Matter::Quantum Gases ,Boson systems ,Tonks-Girardeau gas ,Localized wave packets ,Ground state ,Interacting bosons ,Exact diagonalization method ,Crystalline materials ,Momentum distributions ,Wigner crystals ,Bose gas ,Two-regime ,Crystalline state ,Ground state properties ,Interaction energies ,Dipolar interaction ,ddc:530 ,Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik ,Dipole dipole interactions ,Quasi-one-dimensional ,Short-range correlations ,Bosons ,Dipole-dipole potential - Abstract
We study the ground state of few bosons with repulsive dipole-dipole interaction in a quasi-one-dimensional harmonic trap by means of the exact diagonalization method. Up to three interaction regimes are found, depending on the strength of the dipolar interaction and the ratio of transverse to axial oscillator lengths: a regime where the dipolar Bose gas resembles a system of weakly ?-interacting bosons, a second regime where the bosons are fermionized, and a third regime where the bosons form a Wigner crystal. In the first two regimes, the dipole-dipole potential can be replaced by a ? potential. In the crystalline state, the overlap between the localized wave packets is strongly reduced and all the properties of the boson system equal those of its fermionic counterpart. The transition from the Tonks-Girardeau gas to the solidlike state is accompanied by a rapid increase of the interaction energy and a considerable change of the momentum distribution, which we trace back to the different short-range correlations in the two interaction regimes. © 2010 The American Physical Society. Swedish Research Council Swedish Foundation for Strategic Research DFG/SFB/407 DFG/EXC/QUEST ESF/EUROQUASAR
- Published
- 2010
21. Electron-LA Phonon Interaction in a Quantum Dot
- Author
-
C. Hamaguchi, Nobuya Mori, and T. Ezaki
- Subjects
Physics ,Condensed matter physics ,Phonon ,Relaxation (NMR) ,phonon bottleneck ,quantum dot ,exact diagonalization method ,Electron ,Coulomb interaction ,Computer Graphics and Computer-Aided Design ,lcsh:QA75.5-76.95 ,Electron-phonon interaction ,symbols.namesake ,Pauli exclusion principle ,Hardware and Architecture ,Quantum dot ,Quantum mechanics ,Vibrational energy relaxation ,symbols ,lcsh:Electronic computers. Computer science ,Electrical and Electronic Engineering ,Ground state ,Quantum well - Abstract
Relaxation time due to electron-longitudinal-acoustic (LA) phonon interaction is calculated in a GaAs quantum dot (QD) with N electrons (from N = 1 to 4), where electrons in a narrow quantum well are confined by a parabolic confining potential, by using the exact eigen states of electrons. Although the energy levels become dense with increasing the number of electrons, the modification of the relaxation time is found to be not so strong, which attributes the fact that many electron eigen states consist of only a few dominant single electron states which limit the electron relaxation. By comparing relaxation process via intermediate states with the direct process, several fastest processes are found to be realized by relaxation through intermediate states between the initial state and the ground state. The effect of change in the quantum well width is also discussed.
- Published
- 1998
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.