1. Gaussian semiflexible rings under angular and dihedral restrictions
- Author
-
Thomas Guérin, Raphaël Voituriez, Olivier Bénichou, Alexander Blumen, Maxim Dolgushev, Theoretical Polymer Physics, University of Freiburg [Freiburg], Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Deutsche Forschungsgemeinschaft (DFG) : Grant No. Bl 142/11-1, DAAD : PROCOPE program (Project No. 55853833), Fonds der Chemischen Industrie, Campus France (Project No. 28252XE), European Project: 277998,EC:FP7:ERC,ERC-2011-StG_20101014,FPTOPT(2011), European Project: 295302,EC:FP7:PEOPLE,FP7-PEOPLE-2011-IRSES,SPIDER(2012), and Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Physics ,Ring (mathematics) ,Quantitative Biology::Biomolecules ,010304 chemical physics ,Polymers ,Gaussian ,Molecular Conformation ,Normal Distribution ,Closure (topology) ,General Physics and Astronomy ,Molecular Dynamics Simulation ,Dihedral angle ,Curvature ,01 natural sciences ,Displacement (vector) ,Normal distribution ,symbols.namesake ,Molecular dynamics ,Classical mechanics ,Computational chemistry ,0103 physical sciences ,symbols ,Physical and Theoretical Chemistry ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,010306 general physics - Abstract
International audience; Semiflexible polymer rings whose bonds obey both angular and dihedral restrictions [M. Dolgushev and A. Blumen, J. Chem. Phys.138, 204902 (2013)], are treated under exact closure constraints. This allows us to obtain semianalytic results for their dynamics, based on sets of Langevin equations. The dihedral restrictions clearly manifest themselves in the behavior of the mean-square monomer displacement. The determination of the equilibrium ring conformations shows that the dihedral constraints influence the ring curvature, leading to compact folded structures. The method for imposing such constraints in Gaussian systems is very general and it allows to account for heterogeneous (site-dependent) restrictions. We show it by considering rings in which one site differs from the others.
- Published
- 2014
- Full Text
- View/download PDF