1. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster
- Author
-
María Bogaerts-Márquez, Sara Guirao-Rico, Mathieu Gautier, Josefa González, European Society for Evolutionary Biology, European Research Council, European Drosophila Population Genomics Consortium, Universitat Pompeu Fabra [Barcelona] (UPF), Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, European Drosophila Population Genomics Consortium (DrosEU), Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), European Project: 647900,H2020,ERC-2014-CoG,DROSADAPTATION(2016), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
0106 biological sciences ,0301 basic medicine ,Rain ,[SDV]Life Sciences [q-bio] ,Genome, Insect ,Population ,Single-nucleotide polymorphism ,genome‐environment ,Wind ,Biology ,010603 evolutionary biology ,01 natural sciences ,Genome ,Africa, Southern ,03 medical and health sciences ,genetic adaptation ,Genetics ,Animals ,education ,Allele frequency ,Ecology, Evolution, Behavior and Systematics ,Organism ,Genetic association ,education.field_of_study ,Temperature ,Genome-environment ,15. Life on land ,biology.organism_classification ,Adaptation, Physiological ,Europe ,030104 developmental biology ,Drosophila melanogaster ,13. Climate action ,Evolutionary biology ,North America ,DNA Transposable Elements ,Genetic adaptation ,Original Article ,ORIGINAL ARTICLES ,Adaptation ,genome-environment ,transposable elements ,Transposable elements ,allele frequency ,Ecological Genomics - Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%–51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation., We acknowledge the support from the European Drosophila Population Genomics Consortium (DrosEU), which is funded by a Special Topics Network (STN) grant from the European Society of Evolutionary Biology (ESEB). We also thank Thomas Flatt for comments on the manuscript. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900).
- Published
- 2021