39 results on '"Estelle Lebègue"'
Search Results
2. Single Electrochemical Impacts of Shewanella oneidensis MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface
- Author
-
Dr. Hassiba Smida, François‐Xavier Lefèvre, Dr. Christine Thobie‐Gautier, Dr. Mohammed Boujtita, Dr. Catarina M. Paquete, and Dr. Estelle Lebègue
- Subjects
Industrial electrochemistry ,TP250-261 ,Chemistry ,QD1-999 - Abstract
Abstract Invited for this issue's Front Cover is the Electrochemistry group of the CEISAM Laboratory at Nantes University (France). The cover picture illustrates the electrostatic attraction of the negatively‐charged electroactive Shewanella oneidensis bacterium onto the positively‐charged ultramicroelectrode surface polarized at the oxidation potential of ferrocyanide. Read the full text of the Research Article at 10.1002/celc.202200906.
- Published
- 2023
- Full Text
- View/download PDF
3. Trends in single-impact electrochemistry for bacteria analysis
- Author
-
Hassiba Smida, Arthur Langlard, Dorine Ameline, Christine Thobie-Gautier, Mohammed Boujtita, and Estelle Lebègue
- Subjects
Biochemistry ,Analytical Chemistry - Published
- 2023
- Full Text
- View/download PDF
4. Front Cover: Single Electrochemical Impacts of Shewanella oneidensis MR‐1 Bacteria for Living Cells Adsorption onto a Polarized Ultramicroelectrode Surface (ChemElectroChem 1/2023)
- Author
-
Hassiba Smida, François‐Xavier Lefèvre, Christine Thobie‐Gautier, Mohammed Boujtita, Catarina M. Paquete, and Estelle Lebègue
- Subjects
Electrochemistry ,Catalysis - Published
- 2022
- Full Text
- View/download PDF
5. Conjuring up a ghost: structural and functional characterization of FhuF, a ferric siderophore reductase from E. coli
- Author
-
Estelle Lebègue, T Cordeiro, Frédéric Barrière, Inês B. Trindade, G Hernandez, Mario Piccioli, Ricardo O. Louro, Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence (UniFI), 810856, H2020 Spreading Excellence and Widening Participation, CA15133, European Cooperation in Science and Technology, 40814ZE, Campus France, PD/BD/135187/2017, FCT– Fundação para a Ciência e a Tecnologia, I.P., Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI)
- Subjects
0301 basic medicine ,Models, Molecular ,Siderophore ,Subfamily ,FMN Reductase ,Stereochemistry ,Redox-Bohr effect ,Reductase ,Ferric-siderophore reductase ,Biochemistry ,2Fe–2S protein ,Inorganic Chemistry ,03 medical and health sciences ,chemistry.chemical_compound ,Protein Domains ,medicine ,Escherichia coli ,[CHIM]Chemical Sciences ,Cysteine ,Ferredoxin ,Ferrichrome ,Original Paper ,030102 biochemistry & molecular biology ,Chemistry ,Nuclear magnetic resonance spectroscopy ,Iron uptake ,Small molecule ,030104 developmental biology ,Ferric ,Oxidation-Reduction ,medicine.drug - Abstract
Graphic abstract Iron is a fundamental element for virtually all forms of life. Despite its abundance, its bioavailability is limited, and thus, microbes developed siderophores, small molecules, which are synthesized inside the cell and then released outside for iron scavenging. Once inside the cell, iron removal does not occur spontaneously, instead this process is mediated by siderophore-interacting proteins (SIP) and/or by ferric-siderophore reductases (FSR). In the past two decades, representatives of the SIP subfamily have been structurally and biochemically characterized; however, the same was not achieved for the FSR subfamily. Here, we initiate the structural and functional characterization of FhuF, the first and only FSR ever isolated. FhuF is a globular monomeric protein mainly composed by α-helices sheltering internal cavities in a fold resembling the “palm” domain found in siderophore biosynthetic enzymes. Paramagnetic NMR spectroscopy revealed that the core of the cluster has electronic properties in line with those of previously characterized 2Fe–2S ferredoxins and differences appear to be confined to the coordination of Fe(III) in the reduced protein. In particular, the two cysteines coordinating this iron appear to have substantially different bond strengths. In similarity with the proteins from the SIP subfamily, FhuF binds both the iron-loaded and the apo forms of ferrichrome in the micromolar range and cyclic voltammetry reveals the presence of redox-Bohr effect, which broadens the range of ferric-siderophore substrates that can be thermodynamically accessible for reduction. This study suggests that despite the structural differences between FSR and SIP proteins, mechanistic similarities exist between the two classes of proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s00775-021-01854-y.
- Published
- 2021
- Full Text
- View/download PDF
6. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms
- Author
-
Estelle Lebègue, Carole Farre, Catherine Jose, Joelle Saulnier, Florence Lagarde, Yves Chevalier, Carole Chaix, and Nicole Jaffrezic-Renault
- Subjects
vesicles ,polydiacetylene ,biosensing ,bacteria ,toxins ,virus ,peptides ,Chemical technology ,TP1-1185 - Abstract
Polydiacetylene (PDA) inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses) and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.
- Published
- 2018
- Full Text
- View/download PDF
7. Estelle Lebègue
- Author
-
Estelle Lebègue
- Subjects
General Chemistry ,Catalysis - Abstract
"Chemistry/science is fun because sometimes the experiments do not exactly follow the theory and we have to understand why … The best advice I have ever been given is that 100% of the people who get it have first submitted it …" Find out more about Estelle Lebègue in her Introducing … Profile.
- Published
- 2021
8. Detection of Bacterial Rhamnolipid Toxin by Redox Liposome Single Impact Electrochemistry
- Author
-
Justine Luy, Christine Thobie-Gautier, Estelle Lebègue, Dorine Ameline, and Mohammed Boujtita
- Subjects
Liposome ,Chemistry ,Potassium ferrocyanide ,Phosphatidylethanolamines ,Bacterial Toxins ,Rhamnolipid ,Phospholipid ,Electrochemical Techniques ,General Medicine ,General Chemistry ,Chronoamperometry ,Electrochemistry ,Redox ,Catalysis ,chemistry.chemical_compound ,Liposomes ,Pseudomonas aeruginosa ,Biophysics ,Glycolipids ,Lipid bilayer ,Oxidation-Reduction - Abstract
The detection of Rhamnolipid virulence factor produced by Pseudomonas aeruginosa involved in nosocomial infections is reported by using the redox liposome single impact electrochemistry. Redox liposomes based on 1,2-dimyristoyl-sn-glycero-3-phosphocholine as a pure phospholipid and potassium ferrocyanide as an encapsulated redox content are designed for using the interaction of the target toxin with the lipid membrane as a sensing strategy. The electrochemical sensing principle is based on the weakening of the liposomes lipid membrane upon interaction with Rhamnolipid toxin which leads upon impact at an ultramicroelectrode to the breakdown of the liposomes and the release/electrolysis of its encapsulated redox probe. We present as a proof of concept the sensitive and fast sensing of a submicromolar concentration of Rhamnolipid which is detected after less than 30 minutes of incubation with the liposomes, by the appearing of current spikes in the chronoamperometry measurement.
- Published
- 2021
- Full Text
- View/download PDF
9. Recent advances in single liposome electrochemistry
- Author
-
Hassiba Smida, Christine Thobie-Gautier, Mohammed Boujtita, and Estelle Lebègue
- Subjects
Electrochemistry ,Analytical Chemistry - Published
- 2022
- Full Text
- View/download PDF
10. Lipid Membrane Permeability of Synthetic Redox DMPC Liposomes Investigated by Single Electrochemical Collisions
- Author
-
Allen J. Bard, Estelle Lebègue, Frédéric Barrière, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), University of Texas at Austin [Austin], CHE-1405248, Division of Chemistry, F-0021, Welch Foundation, Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Liposome ,Chemistry ,010401 analytical chemistry ,technology, industry, and agriculture ,chemistry.chemical_element ,Electrochemical detection ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Redox ,0104 chemical sciences ,Analytical Chemistry ,Chemical engineering ,Permeability (electromagnetism) ,[CHIM]Chemical Sciences ,lipids (amino acids, peptides, and proteins) ,Lipid bilayer ,Carbon - Abstract
International audience; The electrochemical detection of synthetic redox DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) liposomes by single collisions at 10 μm diameter carbon and Pt ultramicroelectrodes (UMEs) is reported. To study the parameters influencing the lipid membrane opening/permeability, the electrochemical detection of single redox DMPC liposome collisions at polarized UMEs was investigated under different experimental conditions (addition of surfactant, temperature). The electrochemical responses recorded showed that the permeability of the DMPC lipid membrane (tuned by addition of Triton X-100 surfactant or by the increase of the solution temperature) is a key parameter for the liposome membrane electroporation process and hence for the release and oxidation of its redox content during the collision onto UMEs. The presence of ferrocenemethanol as an additional redox probe in the aqueous solution (at room temperature and without addition of surfactant) is also an interesting strategy to detect current spikes corresponding to single redox DMPC liposome collisions with KFe(CN)/KFe(CN) as the encapsulated aqueous redox probe.
- Published
- 2020
- Full Text
- View/download PDF
11. Redox active films of salicylic acid-based molecules as pH and ion sensors for monitoring ionophore activity in supported lipid deposits
- Author
-
Thomas Flinois, Frédéric Barrière, Estelle Lebègue, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Agence Nationale de la Recherche ANR-15-CE05-0003, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and ANR-15-CE05-0003,bioWATTS,membranes biomimétiques qui produire de l'énergie biologiquement inspiré(2015)
- Subjects
Nigericin ,salicylic acid ,General Chemical Engineering ,Potassium ,Sodium ,Inorganic chemistry ,chemistry.chemical_element ,redox active films ,02 engineering and technology ,ion sensors ,Glassy carbon ,010402 general chemistry ,01 natural sciences ,Chloride ,ionophores ,chemistry.chemical_compound ,Valinomycin ,valinomycin ,Electrochemistry ,medicine ,[CHIM]Chemical Sciences ,nigericin ,021001 nanoscience & nanotechnology ,cyclic voltammetry ,0104 chemical sciences ,lipid deposits ,chemistry ,pH sensors ,electrodeposition ,Cyclic voltammetry ,0210 nano-technology ,Salicylic acid ,medicine.drug - Abstract
International audience; *corresponding authors: frederic.barriere@univ-rennes1.fr and thomas.flinois@univ-rennes1.fr Abstract: 5-aminosalicylic acid and salicylic acid have been used to form redox active films onto glassy carbon electrodes through recurrent cyclic voltammetry. The variation of the formal potential of the film obtained from 5-aminosalicylic acid as a function of pH is linear over the entire pH range studied (pH 2 to 10) with a slope of-80 mV per pH unit. Salicylic acid-based redox active films permit the detection of sodium and potassium ions (with a slope of-10 mV per 1 mM of cation) and chloride (with a slope of +11 mV per 1 mM of chloride). A lipid deposit of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) onto these modified electrodes allowed the integration of ionophores (valinomycin and nigericin) and the monitoring of the pH and potassium ion concentration variation at the modified electrode / lipid deposit interface.
- Published
- 2019
- Full Text
- View/download PDF
12. Electrografted anthraquinone to monitor pH at the biofilm-anode interface in a wastewater microbial fuel cell
- Author
-
Nazua L. Costa, Germaine Olorounto, Estelle Lebègue, Frédéric Barrière, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Région Bretagne is thanked for funding a postdoc position under the Stratégie d′Attractivité Durable Program 2016 (project 9621)., Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, and Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
- Subjects
Cyclic voltammetry ,Bioelectric Energy Sources ,Anthraquinones ,02 engineering and technology ,Surfaces and Interfaces ,General Medicine ,Hydrogen-Ion Concentration ,Wastewater ,Interfacial pH sensors ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,6. Clean water ,0104 chemical sciences ,Aryldiazonium ,Electricigen bacteria ,Surface modification ,Colloid and Surface Chemistry ,Biofilms ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,1-aminoanthraquinone ,0210 nano-technology ,Electrodes ,Biotechnology - Abstract
International audience; Electrografted anthraquinone on graphite was used as a probe to monitor the pH change at the biofilm-electrode interface at the anode of a microbial fuel cell inoculated with wastewater. The grafting procedure was optimized so that the pH-dependent electrochemical response of the grafted quinone did not overlay with that of the electroactive biofilm. The variation of the formal potential of the grafted quinone as a function of pH was linear over the pH range 1-10 with a slope of - 64 mV. This allowed to monitor the interfacial pH change over three weeks of biofilm colonization of the electrode. During that time the interfacial pH decreased from neutrality to 5.3 while the anolyte only acidified down to pH 6.2. This finding is relevant as local pH change usually leads to alterations of the bioenergetics process of microbial communities and hence on the performance of bioelectrochemical devices.
- Published
- 2022
- Full Text
- View/download PDF
13. Electrochemical properties of pH-dependent flavocytochrome c3 from Shewanella putrefaciens adsorbed onto unmodified and catechol-modified edge plane pyrolytic graphite electrode
- Author
-
Nazua L. Costa, Ricardo O. Louro, Estelle Lebègue, Bruno M. Fonseca, Frédéric Barrière, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Universidade de Lisboa (ULISBOA), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Estelle Lebègue is supported by a Marie Skłodowska Curie Individual Fellowship through funding from the European Union's Horizon 2020 research and innovation programme, grant agreement No 745689. Bruno Fonseca was funded by Fundação para a Ciência e a Tecnologia (SFRH/BPD/93164/2013). This work has received funding at Universidade Nova de Lisboa from the European Union's Horizon 2020 WIDESPREAD-Twinning research and innovation programme under grant agreement No 810856. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) Portugal (PTDC/BBB-BQB/4178/2014, PTDC/BIA-BQM/30176/2017) and by Project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). The authors also thank the France-Portugal PHC PESSOA programme for support, project 40814ZE., Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade de Lisboa = University of Lisbon (ULISBOA), Molecular, Structural and Cellular Microbiology (MOSTMICRO), and Instituto de Tecnologia Química e Biológica António Xavier (ITQB)
- Subjects
Cyclic voltammetry ,General Chemical Engineering ,Inorganic chemistry ,02 engineering and technology ,Shewanella putrefaciens ,Fumarate reductase ,010402 general chemistry ,01 natural sciences ,Redox ,Electrode surface modification ,Shewanella frigidimarina ,Analytical Chemistry ,chemistry.chemical_compound ,Catechol pH probe ,pH-dependent redox activity ,Electrochemistry ,[CHIM]Chemical Sciences ,Pyrolytic carbon ,Shewanella oneidensis ,Flavocytochrome c3 ,Catechol ,biology ,Chemistry ,021001 nanoscience & nanotechnology ,biology.organism_classification ,equipment and supplies ,0104 chemical sciences ,Flavocytochrome c ,Chemical Engineering(all) ,bacteria ,0210 nano-technology - Abstract
The electroactivity of adsorbed flavocytochrome c3, a tetraheme FAD-containing flavoenzyme isolated from the bacterium Shewanella putrefaciens, is investigated by cyclic voltammetry at an edge plane pyrolytic graphite electrode before and after modification with grafted catechol serving as an efficient pH sensor based on a redox readout. Flavocytochrome c3 adsorption onto the unmodified or modified electrode surface is successfully achieved by cyclic voltammetry (100 consecutive cycles) in a flavocytochrome c3 solution containing polymyxin as co-adsorbate. The immobilized flavocytochrome c3 retains its electrochemical activity and its catalytic fumarate reductase activity. The redox activity of the protein arises from its FAD and four hemes cofactors. The experiments evidence that the hemes' redox potential of flavocytochrome c3 from Shewanella putrefaciens, for which no crystal structure is yet available, depend on pH which is at variance with data from the other strains Shewanella frigidimarina or Shewanella oneidensis. authorsversion published
- Published
- 2019
- Full Text
- View/download PDF
14. Electrochemical Behavior of Pyridinium and N -Methyl Pyridinium Cations in Aqueous Electrolytes for CO2 Reduction
- Author
-
Daniel Bélanger, Julia Agullo, and Estelle Lebègue
- Subjects
Electrolysis ,Aqueous solution ,General Chemical Engineering ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,Glassy carbon ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,General Energy ,chemistry ,law ,Pyridine ,Environmental Chemistry ,General Materials Science ,Pyridinium ,Methanol ,0210 nano-technology ,Platinum - Abstract
The electrochemical reduction of aqueous pyridinium and N-methyl pyridinium ions is investigated in the absence and presence of CO2 and electrolysis reaction products on glassy carbon, Au, and Pt electrodes are studied. Unlike pyridinium, N-methyl pyridinium is not electroactive at the Pt electrode. The electrochemical reduction of the two pyridine derivatives was found to be irreversible on glassy carbon. These results confirmed the essential role of the N-H bond of the pyridinium cation. In contrast, the electrochemical response of N-methyl pyridinium ion at the glassy carbon electrode suggests that a specific interaction occurs between the glassy carbon surface and the aromatic ring of the pyridinium derivative. For all electrodes, an enhancement of current was observed in the presence of CO2 . However, NMR spectroscopy of the solutions following electrolysis showed no formation of methanol or other possible byproducts of the reduction of CO2 in the presence of either pyridinium derivative ion.
- Published
- 2017
- Full Text
- View/download PDF
15. Communication-Electrochemical Single Nano-Impacts of Electroactive Shewanella Oneidensis Bacteria onto Carbon Ultramicroelectrode
- Author
-
Nazua L. Costa, Frédéric Barrière, Ricardo O. Louro, Estelle Lebègue, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), France-Portugal PHC PESSOA program [40814ZE], Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,020209 energy ,Potassium ,Inorganic chemistry ,Shewanella Oneidensis ,chemistry.chemical_element ,Ultramicroelectrode ,02 engineering and technology ,Electroactive Bacteria ,Electrochemistry ,Redox ,chemistry.chemical_compound ,Redox Probe ,Potassium phosphate ,0202 electrical engineering, electronic engineering, information engineering ,Materials Chemistry ,[CHIM]Chemical Sciences ,Electrochemical Single Nano-impacts ,Shewanella oneidensis ,Aqueous solution ,Carbon Ultramicroelectrode ,biology ,[SDE.IE]Environmental Sciences/Environmental Engineering ,Renewable Energy, Sustainability and the Environment ,Chemistry ,Condensed Matter Physics ,biology.organism_classification ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Chronoamperometry Measurements ,Ferricyanide ,[CHIM.OTHE]Chemical Sciences/Other - Abstract
International audience; Electrochemical single nano-impacts of electroactiveShewanella oneidensisbacteria at a 7 mu m diameter carbon fibre ultramicroelectrode in an aqueous potassium phosphate buffer (pH = 7.2) solution containing a redox active probe (potassium ferro- or ferricyanide) is reported. We present chronoamperometric measurements recorded at the ultramicroelectrode polarized at the potential of the steady-state current of the redox probe in solution (oxidation for K4Fe(CN)(6)or reduction for K3Fe(CN)(6)) in the presence of bacteria. The shape of current transients associated to single bacteria nano-impacts is compared and discussed as a function of the redox probe in solution and of the ultramicroelectrode applied potential.
- Published
- 2020
- Full Text
- View/download PDF
16. Millisecond Coulometry via Zeptoliter Droplet Collisions on an Ultramicroelectrode
- Author
-
Allen J. Bard, Lauren M. Strawsine, Estelle Lebègue, and Jeffrey E. Dick
- Subjects
Electrolysis ,Chemistry ,Dispersity ,Analytical chemistry ,Ultramicroelectrode ,02 engineering and technology ,Electron ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrochemistry ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,law.invention ,Coulometry ,chemistry.chemical_compound ,law ,0210 nano-technology ,Stoichiometry ,Tetrathiafulvalene - Abstract
We show that discrete collisions of zeptoliter emulsion droplets on an ultramicroelectrode (UME) can be used as individual controlled potential coulometry experiments, lasting between 100 and 500 milliseconds. By loading a highly hydrophobic toluene droplet with a hydrophobic analyte of interest and knowing the volume of the droplet to a high degree of precision, Faraday’s Law can be employed to calculate the number of electrons passed during the electrolysis. Monodisperse (±15 % of the average size) emulsion systems were created by ultrasonication followed by filtering through a 200 nm porous filter. Discrete droplet collision events were observed in the amperometric i-t curve. Each of these collisions are interpreted as individual coulometry experiments, implying that several bulk electrolyses can be carried out over the course of one collision experiment. Herein, we show calculations of the electron stoichiometry for the ferrocene oxidation reaction, which agrees well with the expected value of 1 electron. We further extend the methodology to more complicated systems, such as the oxidation of tetrathiafulvalene (TTF), tertiary aliphatic amines, such as tripropylamine (TPrA), and a 1,2-diphenylhydrazine (DPH) molecule. This electroanalytical methodology allows for fast, nanoscale electrolysis in low dielectric media.
- Published
- 2016
- Full Text
- View/download PDF
17. Electrochemical Properties of pH-Dependent Flavocytochrome C 3 from Shewanella Putrefaciens Adsorbed Onto Catechol-Modified Carbon Electrode
- Author
-
Bruno M. Fonseca, Frédéric Barrière, Estelle Lebègue, Nazua L. Costa, and Ricardo O. Louro
- Subjects
Catechol ,chemistry.chemical_compound ,Adsorption ,Modified carbon ,biology ,Chemistry ,Electrode ,Inorganic chemistry ,Ph dependent ,Shewanella putrefaciens ,Flavocytochrome c ,Electrochemistry ,biology.organism_classification - Abstract
A century after the demonstration that electrons from microbial metabolism can be harvested with electrodes, electron transfer processes in biofilms of microorganisms performing respiration on extracellular solids are now being studied in order to increase the performance of microbial electrochemical technologies such as microbial fuel cells. Extracellular electron transfer occurring at the microorganism/electrode interface stimulated a wide range of fundamental and applied studies because of important implications in biotechnology, bioenergetics and bioremediation. Most studies focus on two Gram-negative mesophilic bacteria able to transfer electrons from their respiratory metabolism to extracellular solids, namely Shewanella oneidensis MR-1 and Geobacter sulfurreducens. In these model electroactive microorganisms, multiheme c-type cytochromes transfer electrons from cytoplasmic and inner-membrane oxidizing enzymes towards cell surface redox proteins that are responsible for the reduction of solid phase electron acceptors. It is also known that electron transfer is usually coupled to proton transfer which causes acidification in the anodic biofilms and in the anolyte with deleterious consequences for the biofilm metabolism and stability. The fundamental understanding of these processes that involve large proteins (>70 kDa) often with complex redox properties (with ≥10 heme centers in some multihemes cytochromes) is still in its infancy and precludes the optimization of microbial electrochemical technologies. In Gram-negative electroactive bacteria such as Shewanella, several redox proteins have pH-dependent potentials, such as flavocytochrome c 3 (M r = 63.8 kDa) which is one of the most abundant proteins in the periplasm and the only functional fumarate reductase in this microorganism. This work focuses on the design and the development of an efficient and versatile electrochemical platform able to probe charge (electron/proton) transfer properties of proteins from Gram-negative electroactive bacteria on modified carbon electrodes.[1] The electrodes are first modified with pH-responsive electrophores such as quinone units and then proteins are immobilized for electrochemical studies. If relevant, the protein electroactivity can be probed directly at the modified electrode while proton transport, if any, performed by the protein can be detected thanks to the grafted pH sensor.The electrochemical detection of a pH-dependent redox protein from electroactive bacteria at an electrode modified to act additionally as an efficient pH sensor based on a redox readout is demonstrated. The pH sensing electrode was previously designed and showed to allow the immobilization and study of pH-independent and redox active cytochrome c.[1] Here we extend this work to flavocytochrome c 3, a tetraheme FAD-containing periplasmic flavoenzyme isolated from the bacterium Shewanella putrefaciens, taken as a model pH-dependent redox protein from electroactive bacteria [2]. The modification of the electrode surface with the pH sensing modifier (catechol) stems from our previous experience in the tailoring of bio-interfaces of carbon electrodes with covalent electrografting. Flavocytochrome c 3 adsorption onto the modified electrode surface is successfully achieved by cyclic voltammetry in a flavocytochrome c 3 solution containing polymyxin as co-adsorbate. The electrochemical activity of the immobilized flavocytochrome c 3 is detected without alteration of its native structure and by keeping intact its electrochemical properties and its catalytic fumarate reductase activity.[2] The redox activity of the protein arises from its FAD and four hemes cofactors. The experiments evidence that the hemes’ redox potentials of flavocytochrome c 3 from Shewanella putrefaciens, for which no crystal structure is yet available, depend on pH which is at variance with data from the other strains Shewanella frigidimarina or Shewanella oneidensis. [1] Lebègue, E.; Louro, R. O.; Barrière, F. Electrochemical Detection of pH-Responsive Grafted Catechol and Immobilized Cytochrome c onto Lipid Deposit-Modified Glassy Carbon Surface. ACS Omega 2018, 3 (8), 9035–9042. https://doi.org/10.1021/acsomega.8b01425. [2] Lebègue, E.; Costa, N. L.; Fonseca, B. M.; Louro, R. O.; Barrière, F. Electrochemical Properties of pH-Dependent Flavocytochrome C3 from Shewanella Putrefaciens Adsorbed onto Unmodified and Catechol-Modified Edge Plane Pyrolytic Graphite Electrode. Journal of Electroanalytical Chemistry 2019, 847, 113232. https://doi.org/10.1016/j.jelechem.2019.113232. Figure 1
- Published
- 2020
- Full Text
- View/download PDF
18. Special issue of BES 2017
- Author
-
Nicole Jaffrezic-Renault and Estelle Lebègue
- Subjects
Societies, Scientific ,Biophysics ,Electrochemistry ,General Medicine ,Physical and Theoretical Chemistry ,Biochemistry - Published
- 2019
19. Biomimetic vesicles for electrochemical sensing
- Author
-
Carole Chaix, Carole Farre, Yves Chevalier, Catherine Jose, Estelle Lebègue, Florence Lagarde, Nicole Jaffrezic-Renault, Joëlle Saulnier, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Interfaces & biosensors - Interfaces & biocapteurs, Institut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), SIMS - Surfaces-(bio)Interfaces - Micro & Nano Systèmes (2011-2014), Laboratoire d'automatique et de génie des procédés (LAGEP), Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS), Sciences Analytiques (SA), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université Claude Bernard Lyon 1 (UCBL), Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP), EC, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Vesicle ,010401 analytical chemistry ,Nanotechnology ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Key issues ,01 natural sciences ,0104 chemical sciences ,Analytical Chemistry ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,[SDV.SP.PG]Life Sciences [q-bio]/Pharmaceutical sciences/Galenic pharmacology ,Microfluidic chip ,Electrochemistry ,Electrochemical biosensor ,0210 nano-technology ,Biosensor ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Biomimetic vesicles, mainly composed of self-assembled bilayers of phospholipids, have attracted great attention for applications in the biosensor field over a number of decades, as a means to amplify the signal through encapsulated signal probes. In this review paper the most important developments in biomimetic vesicles for electrochemical biosensing within the last 2 years are presented, with a focus on the format of bioassays, their inclusion in microfluidic chip devices and their use in mimicking cell membranes. Key issues and the remaining challenges for future commercialization are analyzed.
- Published
- 2018
- Full Text
- View/download PDF
20. Electrochemical Detection of pH-Responsive Grafted Catechol and Immobilized Cytochrome c onto Lipid Deposit-Modified Glassy Carbon Surface
- Author
-
Ricardo O. Louro, Frédéric Barrière, Estelle Lebègue, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), 745689, H2020 Marie Skłodowska-Curie Actions, 40814ZE, Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche, 40814ZE, Minist?re de l?Europe et des Affaires ?trang?res, 40814ZE, FCT - Funda??o para a Ci?ncia e a Tecnologia, Bioresources 4 Sustainability (GREEN-IT), Molecular, Structural and Cellular Microbiology (MOSTMICRO), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Chemistry(all) ,General Chemical Engineering ,02 engineering and technology ,Glassy carbon ,Electrochemistry ,01 natural sciences ,Redox ,Article ,chemistry.chemical_compound ,[CHIM]Chemical Sciences ,Catechol ,biology ,010405 organic chemistry ,Chemistry ,Cytochrome c ,General Chemistry ,021001 nanoscience & nanotechnology ,Grafting ,0104 chemical sciences ,Covalent bond ,biology.protein ,Chemical Engineering(all) ,lipids (amino acids, peptides, and proteins) ,Cyclic voltammetry ,0210 nano-technology ,Nuclear chemistry - Abstract
International audience; The electrochemical systems of both grafted catechol as a pH-responsive electrophore and immobilized cytochrome c as a model redox protein are detected by cyclic voltammetry at an optimized lipid deposit-modified glassy carbon electrode. The catechol covalent grafting is successfully performed by the one-pot/three-step electrochemical reduction of 3,4-dihydroxybenzenediazonium salts generated in situ from 4-nitrocatechol. The resulting glassy carbon electrode electrochemically modified by grafted catechol species is evaluated as an efficient electrochemical pH sensor. The optimized molar ratio for the lipid deposit, promoting cytochrome c electrochemical activity in solution onto glassy carbon electrode, is reached for the lipid mixture composed of 75% 1,2-dioleoyl-sn-glycero-3-phosphocholine and 25% cardiolipin. Cytochrome c immobilization into the optimized supported lipid deposit is efficiently achieved by cyclic voltammetry (10 cycles) recorded at the modified glassy carbon electrode in a cytochrome c solution. The pH-dependent redox response of the grafted catechol and that of the immobilized cytochrome c are finally detected at the same lipid-modified glassy carbon electrode without alteration of their structure and electrochemical properties in the pH range 5-9. © 2018 American Chemical Society.
- Published
- 2018
- Full Text
- View/download PDF
21. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety
- Author
-
Daniel Bélanger, Alexis Perea, Nicolas Delaporte, Estelle Lebègue, Karim Zaghib, and Sébastien Ladouceur
- Subjects
Contact angle ,Chemistry ,law ,Inorganic chemistry ,Surface modification ,Moiety ,General Materials Science ,Electrolyte ,Inductively coupled plasma ,Electrochemistry ,Grafting ,Cathode ,law.invention - Abstract
The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.
- Published
- 2015
- Full Text
- View/download PDF
22. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms
- Author
-
Joëlle Saulnier, Carole Chaix, Florence Lagarde, Carole Farre, Catherine Jose, Yves Chevalier, Nicole Jaffrezic-Renault, and Estelle Lebègue
- Subjects
chemistry.chemical_compound ,biology ,Chemistry ,Microorganism ,Vesicle ,Biophysics ,biology.organism_classification ,Biosensor ,Fluorescence ,DNA ,Bacteria - Abstract
Polydiacetylene (PDA) inserted in films or in vesicles have received increasing attention due to PDA property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle of the detection of various microorganisms (bacteria: directly detected or detected through the emitted toxins or through their DNA, and viruses) and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The obtained analytical performances, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.
- Published
- 2018
- Full Text
- View/download PDF
23. Microbial Fuel Cells—Wastewater Utilization
- Author
-
Estelle Lebègue, Corinne Lagrost, Frédéric Barrière, Hassiba Smida, and Thomas Flinois
- Subjects
Microbial fuel cell ,020209 energy ,Microorganism ,0208 environmental biotechnology ,02 engineering and technology ,Pulp and paper industry ,Cathode ,020801 environmental engineering ,Anode ,law.invention ,chemistry.chemical_compound ,chemistry ,Nitrate ,Wastewater ,law ,Carbon dioxide ,0202 electrical engineering, electronic engineering, information engineering ,Environmental science ,Sewage treatment - Abstract
The content and properties of common wastewater streams are detailed together with current wastewater treatment technology. The principle of microbial fuel cells (MFCs) where living microorganisms organized into surface biofilms catalyze electrode reactions is then explained. Laboratory prototype MFCs that treat wastewater at the anode (oxidation of organic compounds to carbon dioxide) and/or at the cathode (reduction of inorganic pollutants such as nitrate), coupled to electrical energy recovery, are discussed. The technological locks and prospects for future application of MFCs to wastewater treatment on a large scale are addressed.
- Published
- 2018
- Full Text
- View/download PDF
24. An optimal surface concentration of pure cardiolipin deposited onto glassy carbon electrode promoting the direct electron transfer of cytochrome-c
- Author
-
Thomas Flinois, Corinne Lagrost, Frédéric Barrière, Estelle Lebègue, Hassiba Smida, Véronique Vié, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), 15-CE05-0003, ANR, Agence Nationale de la Recherche, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), and ANR-15-CE05-0003,bioWATTS,membranes biomimétiques qui produire de l'énergie biologiquement inspiré(2015)
- Subjects
Cyclic voltammetry ,Supported lipid deposit ,General Chemical Engineering ,02 engineering and technology ,Glassy carbon ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Redox ,Analytical Chemistry ,chemistry.chemical_compound ,Atomic force microscopy ,Monolayer ,[CHIM]Chemical Sciences ,[PHYS]Physics [physics] ,Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Dielectric spectroscopy ,Chemical engineering ,Electrode ,Cardiolipin ,lipids (amino acids, peptides, and proteins) ,Cytochrome-c ,Ferrocyanide ,0210 nano-technology ,Electrochemical impedance spectroscopy - Abstract
International audience; Pure cardiolipin deposit onto electrodes is optimized and shown to yield an efficient supported lipid film for promoting cytochrome-c immobilization and electroactivity. Cyclic voltammetry and electrochemical impedance spectroscopy measurements in an aqueous electrolyte with potassium ferri- and ferrocyanide as a redox probe evidence that an optimized pure cardiolipin film is reached for a 7 μg cm− 2 deposit onto glassy carbon electrode. At this optimized surface concentration the pure cardiolipin deposit yields the most compact and less permeable supported lipid film on electrode surface. The thickness and the organization of the pure cardiolipin films were analyzed by atomic force microscopy (AFM) measurements. AFM imaging in aqueous buffer shows that the lipid deposit onto the surface forms a thick deposit of approximately 30 ± 10 nm of height with 4 nm average roughness and includes defects. Cytochrome-c electroactivity was studied with the redox protein either in solution or immobilized onto the modified electrode. First, the optimized amount of pure cardiolipin was deposited onto glassy carbon electrodes to study the stable and electrochemically quasi-reversible redox system of cytochrome-c in solution. Then, the potential cycling of a pure cardiolipin-modified glassy carbon electrode in a cytochrome-c solution led to the immobilization of the protein in its native state keeping intact its electrochemical properties, and with a surface coverage of 8 pmol cm− 2 corresponding to 50% of a monolayer.
- Published
- 2018
- Full Text
- View/download PDF
25. Effect of the Porous Texture of Activated Carbons on the Electrochemical Properties of Molecule-Grafted Carbon Products in Organic Media
- Author
-
Estelle Lebègue, Charles Cougnon, Joël Gaubicher, Thierry Brousse, Corentin Benoit, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), MOLTECH-Anjou, Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Unité de chimie organique moléculaire et macromoléculaire (UCO2M), and Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Renewable Energy, Sustainability and the Environment ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrochemistry ,01 natural sciences ,Organic media ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,Chemical engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Materials Chemistry ,Molecule ,Texture (crystalline) ,0210 nano-technology ,Porosity ,Carbon ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2015
- Full Text
- View/download PDF
26. Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films
- Author
-
Frédéric Barrière, Hassiba Smida, Corinne Lagrost, Estelle Lebègue, Jean-François Bergamini, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), H·Smida thanks the French Ministry of Research for her grant. E. Lebègue thanks the EU Marie Skłodowska Curie Individual Fellowship action for financial support., Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microbial fuel cell ,Materials science ,Bioelectric Energy Sources ,Surface Properties ,Biophysics ,chemistry.chemical_element ,Pyridinium Compounds ,02 engineering and technology ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,Contact angle ,Electron Transport ,X-ray photoelectron spectroscopy ,Cations ,Physical and Theoretical Chemistry ,4-Aminopyridine ,Electrodes ,Electrochemical grafting ,Biofilm ,Microbial fuel cells ,General Medicine ,Equipment Design ,021001 nanoscience & nanotechnology ,Electroplating ,Carbon ,0104 chemical sciences ,Anode ,Chemical engineering ,chemistry ,Diazopyridinium ,Surface functionalization ,Biofilms ,Electrode ,Surface modification ,Graphite ,[CHIM.OTHE]Chemical Sciences/Other ,0210 nano-technology ,Oxidation-Reduction - Abstract
International audience; Carbon electrodes were functionalized through the reduction of diazopyridinium cations that are produced from in situ diazotization of 2-, 3- and 4-aminopyridine. Diazopyridinium salts were much more rarely employed for surface functionalization than other aryldiazonium derivatives. A study combining X-ray Photoelectron Spectroscopy (XPS), contact angle, ellipsometry, Atomic Force Microscopy (AFM) measurements and electrochemical analyses demonstrates that films obtained from 4-diazopyridinium cations are hydrophilic, dense, compact but sufficiently thin to preserve fast electronic transfer rate, being then relevant to efficiently tailor the interface between the anode surface and an electroactive biofilm. Microbial Fuels Cells (MFCs) with pyridine-functionalized graphite anodes exhibit faster development and improved performances than MFCs operating with bare graphite anodes.
- Published
- 2017
- Full Text
- View/download PDF
27. Electrochemical Behavior of Pyridinium and N-Methyl Pyridinium Cations in Aqueous Electrolytes for CO
- Author
-
Estelle, Lebègue, Julia, Agullo, and Daniel, Bélanger
- Subjects
Electrolytes ,Cations ,Photoelectron Spectroscopy ,Proton Magnetic Resonance Spectroscopy ,Water ,Pyridinium Compounds ,Electrochemical Techniques ,Carbon Dioxide ,Electrodes ,Oxidation-Reduction - Abstract
The electrochemical reduction of aqueous pyridinium and N-methyl pyridinium ions is investigated in the absence and presence of CO
- Published
- 2017
28. Corrigendum to 'Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films' [Bioelectrochem. 120 (2018) 157–165]
- Author
-
Estelle Lebègue, M. Cortés, Corinne Lagrost, Frédéric Barrière, Hassiba Smida, and Jean-François Bergamini
- Subjects
In situ ,Materials science ,010304 chemical physics ,020209 energy ,Interface (computing) ,Biophysics ,chemistry.chemical_element ,02 engineering and technology ,General Medicine ,01 natural sciences ,chemistry ,Chemical engineering ,0103 physical sciences ,Electrode ,0202 electrical engineering, electronic engineering, information engineering ,Electrochemistry ,Physical and Theoretical Chemistry ,Carbon - Published
- 2019
- Full Text
- View/download PDF
29. Preparation of a tetrahydroxyphenazine-modified carbon as cathode material for supercapacitor in aqueous acid electrolyte
- Author
-
Charles Cougnon, Stéphanie Legoupy, Estelle Lebègue, MOLTECH-Anjou, Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), MOLTECH-ANJOU (MOLTECH-ANJOU), Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Materials science ,Rhodizonic acid ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,lcsh:Chemistry ,chemistry.chemical_compound ,Electrochemistry ,medicine ,Specific energy ,[CHIM]Chemical Sciences ,ComputingMilieux_MISCELLANEOUS ,Supercapacitor ,Aqueous solution ,021001 nanoscience & nanotechnology ,Condensation reaction ,0104 chemical sciences ,chemistry ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,Oxocarbon ,0210 nano-technology ,Carbon ,Activated carbon ,medicine.drug ,lcsh:TP250-261 - Abstract
A procedure for the grafting of oxocarbon compounds is proposed by condensation reaction with a benzenediamine to obtain an attached-phenazine moieties. A technical proof of concept is given by the covalent capture of rhodizonic acid on the Norit activated carbon and potentiality for supercapacitors is evidenced. The composite material obtained was tested as positive electrode for aqueous supercapacitors in 1 M H2SO4. The redox activity covering a wide range of potential gives an unprecedented increase in specific charge of 350% and a specific energy at the discharge 3.4 times higher than the unmodified carbon. Keywords: Supercapacitor, Activated carbon, Diazonium salt, Oxocarbons, Grafting
- Published
- 2016
- Full Text
- View/download PDF
30. Direct introduction of redox centers at activated carbon substrate based on acid-substituent-assisted diazotization
- Author
-
Estelle Lebègue, Joël Gaubicher, Olivier Crosnier, Thierry Brousse, Charles Cougnon, MOLTECH-Anjou, and Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Carboxylic acid ,Inorganic chemistry ,Substituent ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Redox ,lcsh:Chemistry ,chemistry.chemical_compound ,Electrochemistry ,medicine ,[CHIM]Chemical Sciences ,chemistry.chemical_classification ,Substrate (chemistry) ,Chemical modification ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,Yield (chemistry) ,Cyclic voltammetry ,0210 nano-technology ,Activated carbon ,medicine.drug ,lcsh:TP250-261 - Abstract
Redox properties have been imparted to activated carbon with a high degree of functionalization by chemical grafting of 2-amino-4,5-dimethoxybenzoic acid in situ diazotized. The diazotization reaction was accomplished in the presence or in the absence of HCl for estimating the positive or negative effect of the carboxylic acid substituent on the grafting yield. Thermal gravimetric analysis, X-ray photoelectron spectroscopy and cyclic voltammetry experiments show that when the carboxylic acid group participates to the diazotization reaction, the grafting yield is improved and becomes even better than when the carboxylic group is not present, increasing the capacitance of pristine carbon electrode from 120 to 200 F/g. Keywords: Activated carbon, Diazonium salt, Catechol, Chemical grafting, Supercapacitor
- Published
- 2012
- Full Text
- View/download PDF
31. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation
- Author
-
Estelle Lebègue, Stève Baranton, Christophe Coutanceau, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), and Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Stripping (chemistry) ,Analytical chemistry ,Energy Engineering and Power Technology ,Nanoparticle ,Proton exchange membrane fuel cell ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,Taguchi methods ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Platinum ,Renewable Energy, Sustainability and the Environment ,Fuel cell ,Electrocatalysts ,[CHIM.CATA]Chemical Sciences/Catalysis ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Chemical engineering ,chemistry ,Polyol ,Nanoparticles ,Cyclic voltammetry ,0210 nano-technology ,Microwave - Abstract
International audience; A polyol process assisted by pulse microwave activation was used to prepare efficient Pt/C electrocatalysts for PEMFC applications with reducing cost. Catalysts from pulsed microwave method were compared with a catalyst issued from a classical method, in terms of active surface area, platinum loading and activity towards the oxygen reduction reaction. A design of experiments (DOE derived from the Taguchi method) has been implemented to optimize experimental parameters only related to pulse microwave activation, the intrinsic synthesis parameters (concentration of platinum salt, platinum/carbon weight ratio and pH) being kept constant. Controlled parameters were duration of microwave pulse, maximum temperature and total duration of the synthesis. Considered responses were catalyst active surface area and the Pt/C loading. An optimized configuration of synthesis parameter was proposed. The confirmation experiment revealed a trend in agreement with that expected. Three catalysts (two from pulsed microwave synthesis method and one prepared by the classical method) were characterized by transmission electron microscopy, cyclic voltammetry and CO stripping. Catalysts from pulsed microwave method display higher characteristics than the one prepared by the classical method. The Pt/C catalyst from the confirmation experiment displays the highest catalytic activity toward oxygen reduction reaction.
- Published
- 2011
- Full Text
- View/download PDF
32. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode
- Author
-
Jeffrey E. Dick, Allen J. Bard, Cari M. Anderson, Lauren J. Webb, Estelle Lebègue, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Chemistry ,Bilayer ,Vesicle ,Inorganic chemistry ,Ultramicroelectrode ,02 engineering and technology ,Surfaces and Interfaces ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Redox ,Amperometry ,0104 chemical sciences ,chemistry.chemical_compound ,Microelectrode ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Electrochemistry ,General Materials Science ,Ferrocyanide ,0210 nano-technology ,Lipid bilayer ,Microelectrodes ,Phospholipids ,Spectroscopy - Abstract
We report the collision behavior of single unilamellar vesicles, composed of a bilayer lipid membrane (BLM), on a platinum (Pt) ultramicroelectrode (UME) by two electrochemical detection methods. In the first method, the blocking of a solution redox reaction, induced by the single vesicle adsorption on the Pt UME, can be observed in the amperometric i-t response as current steps during the electrochemical oxidation of ferrocyanide. In the second technique, the ferrocyanide redox probe is directly encapsulated inside vesicles and can be oxidized during the vesicle collision on the UME if the potential is poised positive enough for ferrocyanide oxidation to occur. In the amperometric i-t response for the latter experiment, a current spike is observed. Here, we report the vesicle blocking (VB) method as a relevant technique for determining the vesicle solution concentration from the collisional frequency and also for observing the vesicle adhesion on the Pt surface. In addition, vesicle reactor (VR) experiments show clear evidence that the lipid bilayer membrane does not collapse or break open at the Pt UME during the vesicle collision. Because the bilayer is too thick for electron tunneling to occur readily, an appropriate concentration of a surfactant, such as Triton X-100 (TX100), was added in the VR solution to induce loosening of the bilayer (transfection conditions), allowing the electrode to oxidize the contents of the vesicle. With this technique, the TX100 effect on the vesicle lipid bilayer permeability can be evaluated through the current spike charge and frequency corresponding to redox vesicle collisions.
- Published
- 2015
- Full Text
- View/download PDF
33. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor
- Author
-
G. Pognon, Estelle Lebègue, Charles Cougnon, MOLTECH-Anjou, and Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Differential capacitance ,Activated carbon ,Analytical chemistry ,Energy Engineering and Power Technology ,chemistry.chemical_element ,Diazonium salt ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Reference electrode ,Capacitance ,[CHIM]Chemical Sciences ,Electrical and Electronic Engineering ,Physical and Theoretical Chemistry ,Electrochemical capacitor ,Grafting ,Renewable Energy, Sustainability and the Environment ,Impedance ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Dielectric spectroscopy ,chemistry ,Electrode ,Cyclic voltammetry ,0210 nano-technology ,Carbon ,Electrode potential - Abstract
International audience; Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter.The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.
- Published
- 2015
- Full Text
- View/download PDF
34. The Role of Surface Hydrogen Atoms in the Electrochemical Reduction of Pyridine and CO 2 in Aqueous Electrolyte
- Author
-
Julia Agullo, Daniel Bélanger, Mario Morin, Estelle Lebègue, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Département de Chimie [Montréal], Université du Québec à Montréal = University of Québec in Montréal (UQAM), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hydrogen ,Inorganic chemistry ,chemistry.chemical_element ,Glassy carbon ,Electrochemistry ,Catalysis ,chemistry.chemical_compound ,Adsorption ,chemistry ,Electrode ,Pyridine ,[CHIM]Chemical Sciences ,Pyridinium ,Iridium ,ComputingMilieux_MISCELLANEOUS - Abstract
The present study aims to get more insight into the role of pyridinium ions, surface H atoms and the nature of the electrode surface for the electrochemical reduction of CO2. The electrochemical activity of pyridinium ions in the absence and presence of CO2 is investigated on Ir, Pt, Au and glassy carbon electrodes. Glassy carbon and Au electrodes show irreversible reduction of pyridinium characterized by a cathodic peak potential. In the further presence of CO2, an increase of the current is noticed and the overall reduction process remains irreversible. In contrast, cyclic voltammograms recorded on an Ir electrode in a pyridine solution under nitrogen and CO2 are quasi-reversible and consistent with the participation of H atoms adsorbed onto the electrode surface. Cyclic voltammograms for Ir and Pt electrodes are similar, as expected for metals with a strong affinity for hydrogen. Our results suggest that adsorbed H atoms may play a key role in the electrochemical reduction of CO2.
- Published
- 2014
- Full Text
- View/download PDF
35. Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules
- Author
-
Joël Gaubicher, Richard Retoux, Charles Cougnon, Estelle Lebègue, Thierry Brousse, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), MOLTECH-Anjou, Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Inorganic chemistry ,chemistry.chemical_element ,02 engineering and technology ,Electrolyte ,010402 general chemistry ,Electrochemistry ,01 natural sciences ,7. Clean energy ,Redox ,Capacitance ,chemistry.chemical_compound ,medicine ,[CHIM]Chemical Sciences ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,Renewable Energy, Sustainability and the Environment ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,chemistry ,Propylene carbonate ,Electrode ,0210 nano-technology ,Carbon ,Activated carbon ,medicine.drug - Abstract
International audience; Activated carbon powders modified with naphthalimide and 2,2,6,6-tetramethylpiperidine-N-oxyl were assembled into a hybrid electrochemical capacitor containing an organic electrolyte. The fully organic rechargeable system demonstrated an increase in specific capacitance up to 51%, an extended operating voltage of 2.9 V in propylene carbonate, compared to 1.9 V for the unmodified system, and a power 2.5 times higher.
- Published
- 2014
- Full Text
- View/download PDF
36. Chemical functionalization of activated carbon through radical and diradical intermediates
- Author
-
Thierry Brousse, Charles Cougnon, Estelle Lebègue, Joël Gaubicher, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), MOLTECH-Anjou, and Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Benzynes ,Activated carbon ,Reactive intermediate ,chemistry.chemical_element ,02 engineering and technology ,Reaction intermediate ,Capacitors ,Photochemistry ,01 natural sciences ,Redox ,lcsh:Chemistry ,medicine ,Electrochemistry ,Ether cleavage ,Grafting ,010405 organic chemistry ,Diradical ,021001 nanoscience & nanotechnology ,Diazonium salts ,0104 chemical sciences ,lcsh:Industrial electrochemistry ,lcsh:QD1-999 ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Cyclic voltammetry ,0210 nano-technology ,Carbon ,lcsh:TP250-261 ,medicine.drug - Abstract
Small redox molecules were grafted on carbon through radical and diradical procedures. The reactive intermediates were derived from the 3,4-dimethoxybenzenediazonium salt and the 4,5-dimethoxybenzenediazonium-2-carboxylate salt prepared and decomposed in situ, yielding the dimethoxybenzene radical and the analogous diradical benzyne, respectively. In both cases, the activated carbon Norit serves as trapping agent and the dimethoxybenzene–carbon composites obtained were compared by thermal gravimetric analysis, X-ray photoelectron spectroscopy and cyclic voltammetry. After oxidative ether cleavage of dimethoxybenzene molecules attached to the surface, the resultant catechol-modified carbon electrodes served as pseudo-capacitive materials in aqueous electrochemical capacitors. Keywords: Diazonium salts, Benzynes, Electrochemistry, Activated carbon, Capacitors, Grafting
- Published
- 2013
- Full Text
- View/download PDF
37. Modification of activated carbons based on diazonium ions in situ produced from aminobenzene organic acid without addition of other acid
- Author
-
Thierry Brousse, Charles Cougnon, Lénaïc Madec, Eric Levillain, Estelle Lebègue, Joël Gaubicher, Institut des Matériaux Jean Rouxel (IMN), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN), Laboratoire de Génie des Matériaux et Procédés Associés (LGMPA), Ecole Polytechnique de l'Université de Nantes (EPUN), Chimie, Ingénierie Moléculaire et Matériaux d'Angers (CIMMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Unité de chimie organique moléculaire et macromoléculaire (UCO2M), and Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,Substituent ,02 engineering and technology ,General Chemistry ,Sulfonic acid ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Yield (chemistry) ,Materials Chemistry ,medicine ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Organic chemistry ,Amine gas treating ,Triazene ,0210 nano-technology ,Benzene ,Activated carbon ,medicine.drug ,Organic acid - Abstract
International audience; Activated carbon products modified with a benzene sulfonic acid group were prepared based on the spontaneous reduction of diazonium salts in situ generated in water without addition of an external acid. The diazotization reaction assisted by the organic acid substituent, produced at once amine, diazonium and triazene functionalities that maximize the grafting yield by a chemical cooperation effect.
- Published
- 2011
- Full Text
- View/download PDF
38. Electrochemical Detection of Single Phospholipid VesicleCollisions at a Pt Ultramicroelectrode.
- Author
-
Estelle Lebègue, Cari M. Anderson, JeffreyE. Dick, Lauren J. Webb, and Allen J. Bard
- Subjects
- *
ELECTROCHEMICAL analysis , *PHOSPHOLIPIDS , *BILAYER lipid membranes , *PLATINUM compounds , *OXIDATION-reduction reaction - Abstract
We report the collision behaviorof single unilamellar vesicles,composed of a bilayer lipid membrane (BLM), on a platinum (Pt) ultramicroelectrode(UME) by two electrochemical detection methods. In the first method,the blocking of a solution redox reaction, induced by the single vesicleadsorption on the Pt UME, can be observed in the amperometric i–tresponse as current steps duringthe electrochemical oxidation of ferrocyanide. In the second technique,the ferrocyanide redox probe is directly encapsulated inside vesiclesand can be oxidized during the vesicle collision on the UME if thepotential is poised positive enough for ferrocyanide oxidation tooccur. In the amperometric i–tresponse for the latter experiment, a current spike is observed.Here, we report the vesicle blocking (VB) method as a relevant techniquefor determining the vesicle solution concentration from the collisionalfrequency and also for observing the vesicle adhesion on the Pt surface.In addition, vesicle reactor (VR) experiments show clear evidencethat the lipid bilayer membrane does not collapse or break open atthe Pt UME during the vesicle collision. Because the bilayer is toothick for electron tunneling to occur readily, an appropriate concentrationof a surfactant, such as Triton X-100 (TX100), was added in the VRsolution to induce loosening of the bilayer (transfection conditions),allowing the electrode to oxidize the contents of the vesicle. Withthis technique, the TX100 effect on the vesicle lipid bilayer permeabilitycan be evaluated through the current spike charge and frequency correspondingto redox vesicle collisions. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
39. 13. Current trends for water treatment with microbial electrodes
- Author
-
Timothé Philippon, Thomas Flinois, Estelle Lebègue, Nazua L. Costa, Frédéric Barrière, Joanna Rogińska, Mathieu Etienne, ETIENNE, Mathieu, Système électrochimique microbien passif pour l'élimination de l'azote des eaux lagunaires - - LowNitrate2017 - ANR-17-CE04-0004 - AAPG2017 - VALID, Serge Cosnier, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE04-0004,LowNitrate,Système électrochimique microbien passif pour l'élimination de l'azote des eaux lagunaires(2017), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,[CHIM.GENI] Chemical Sciences/Chemical engineering ,[CHIM.CATA] Chemical Sciences/Catalysis ,[CHIM.CATA]Chemical Sciences/Catalysis ,[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,ComputingMilieux_MISCELLANEOUS ,[SDV.BIO] Life Sciences [q-bio]/Biotechnology - Abstract
International audience
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.