Stéphane Abel, Sabine Manet, Claire Valotteau, G. C. Fadda, Niki Baccile, Esra Karakas, Javier Pérez, Anne-Sophie Cuvier, Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé (SMiLES), Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire Bioénergétique Membranaire et Stress (LBMS), Département Biochimie, Biophysique et Biologie Structurale (B3S), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Maison de la Simulation (MDLS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Spectroscopie, Modélisation, Interfaces pour L'Environnement et la Santé ( SMiLES ), Laboratoire de Chimie de la Matière Condensée de Paris ( LCMCP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Collège de France ( CdF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Collège de France ( CdF ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Léon Brillouin ( LLB - UMR 12 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Synchrotron SOLEIL ( SSOLEIL ), Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Bioénergétique, Métalloprotéines et Stress ( LBMS ), Département Biochimie, Biophysique et Biologie Structurale ( B3S ), Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Institut de Biologie Intégrative de la Cellule ( I2BC ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Maison de la Simulation ( MDLS ), Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Université Paris-Sud - Paris 11 ( UP11 ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ), Université Paris-Sud - Paris 11 ( UP11 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF (institution))-Institut de Chimie du CNRS (INC)
International audience; The micellar structure of sophorolipids, a glycolipid bolaamphiphile, is analyzed using a combination of small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. Numerical modeling of SAXS curves shows that micellar morphology in the noncharged system (pH< 5) is made of prolate ellipsoids of revolution with core–shell morphology. Opposed to most surfactant systems, the hydrophilic shell has a nonhomogeneous distribution of matter: the shell thickness in the axial direction of the ellipsoid is found to be practically zero, while it measures about 12 Å at its cross-section, thus forming a “coffee bean”-like shape. The use of a contrast-matching SANS experiment shows that the hydrophobic component of sophorolipids is actually distributed in a narrow spheroidal region in the micellar core. These data seem to indicate a complex distribution of sophorolipids within the micelle, divided into at least three domains: a pure hydrophobic core, a hydrophilic shell, and a region of less defined composition in the axial direction of the ellipsoid. To account for these results, we make the hypothesis that sophorolipid molecules acquire various configurations within the micelle including bent and linear, crossing the micellar core. These results are confirmed by MD simulations which do show the presence of multiple sophorolipid configurations when passing from spherical to ellipsoidal aggregates. Finally, we also used Rb+ and Sr2+ counterions in combination with anomalous SAXS experiments to probe the distribution of the COO– group of sophorolipids upon small pH increase (5 < pH < 7), where repulsive intermicellar interactions become important. The poor ASAXS signal shows that the COO– groups are rather diffused in the broad hydrophilic shell rather than at the outer micellar/water interface.