1. Shotgun DNA sequencing for human identification: Dynamic SNP selection and likelihood ratio calculations accounting for errors
- Author
-
Andersen, Mikkel Meyer, Kampmann, Marie-Louise, Jepsen, Alberte Honoré, Morling, Niels, Eriksen, Poul Svante, Børsting, Claus, and Andersen, Jeppe Dyrberg
- Subjects
Statistics - Applications ,Quantitative Biology - Genomics - Abstract
In forensic genetics, short tandem repeats (STRs) are used for human identification (HID). Degraded biological trace samples with low amounts of short DNA fragments (low-quality DNA samples) pose a challenge for STR typing. Predefined single nucleotide polymorphisms (SNPs) can be amplified on short PCR fragments and used to generate SNP profiles from low-quality DNA samples. However, the stochastic results from low-quality DNA samples may result in frequent locus drop-outs and insufficient numbers of SNP genotypes for convincing identification of individuals. Shotgun DNA sequencing potentially analyses all DNA fragments in a sample in contrast to the targeted PCR-based sequencing methods and may be applied to DNA samples of very low quality, like heavily compromised crime-scene samples and ancient DNA samples. Here, we developed a statistical model for shotgun sequencing, sequence alignment, and genotype calling. Results from replicated shotgun sequencing of buccal swab (high-quality samples) and hair samples (low-quality samples) were arranged in a genotype-call confusion matrix to estimate the calling error probability by maximum likelihood and Bayesian inference. We developed formulas for calculating the evidential weight as a likelihood ratio (LR) based on data from dynamically selected SNPs from shotgun DNA sequencing. The method accounts for potential genotyping errors. Different genotype quality filters may be applied to account for genotyping errors. An error probability of zero resulted in the forensically commonly used LR formula. When considering a single SNP marker's contribution to the LR, error probabilities larger than zero reduced the LR contribution of matching genotypes and increased the LR in the case of a mismatch. We developed an open-source R package, wgsLR, which implements the method, including estimating the calling error probability and calculating LR values., Comment: 25 pages, 9 figures
- Published
- 2024
- Full Text
- View/download PDF