1. Prostaglandin E2 controls the metabolic adaptation of T cells to the intestinal microenvironment
- Author
-
Matteo Villa, David E. Sanin, Petya Apostolova, Mauro Corrado, Agnieszka M. Kabat, Carmine Cristinzio, Annamaria Regina, Gustavo E. Carrizo, Nisha Rana, Michal A. Stanczak, Francesc Baixauli, Katarzyna M. Grzes, Jovana Cupovic, Francesca Solagna, Alexandra Hackl, Anna-Maria Globig, Fabian Hässler, Daniel J. Puleston, Beth Kelly, Nina Cabezas-Wallscheid, Peter Hasselblatt, Bertram Bengsch, Robert Zeiser, Sagar, Joerg M. Buescher, Edward J. Pearce, and Erika L. Pearce
- Subjects
Science - Abstract
Abstract Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
- Published
- 2024
- Full Text
- View/download PDF