55 results on '"Eric Hivon"'
Search Results
2. Accurate CMB covariance matrices: exact calculation and approximations
- Author
-
Étienne Camphuis, Karim Benabed, Silvia Galli, Eric Hivon, and Marc Lilley
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Accurate covariance matrices are required for a reliable estimation of cosmological parameters from pseudo-power spectrum estimators. In this work, we focus on the analytical calculation of covariance matrices. We consider the case of observations of the Cosmic Microwave Background in temperature and polarization on a small footprint such as in the SPT-3G experiment, which observes 4% of the sky. Power spectra evaluated on small footprints are expected to have large correlations between modes, and these need to be accurately modelled. We present, for the first time, an algorithm that allows an efficient (but computationally expensive) exact calculation of analytic covariance matrices. Using it as our reference, we test the accuracy of existing fast approximations of the covariance matrix. We find that, when the power spectrum is binned in wide bandpowers, current approaches are correct up to the 5% level on the SPT-3G small sky footprint. Furthermore, we propose a new approximation which improves over the previous ones reaching a precision of 1% in the wide bandpowers case and generally more than 4 times more accurate than current approaches. Finally, we derive the covariance matrices for mask-corrected power spectra estimated by the PolSpice code. In particular, we include, in the case of a small sky fraction, the effect of the apodization of the large scale modes. While we considered the specific case of the CMB, our results are applicable to any other cosmological probe which requires the calculation of pseudo-power spectrum covariance matrices., Comment: 20 pages, 14 figures, 1 table
- Published
- 2022
- Full Text
- View/download PDF
3. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
- Full Text
- View/download PDF
4. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
- Full Text
- View/download PDF
5. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
- Full Text
- View/download PDF
6. Planck intermediate results
- Author
-
E. Franceschi, Erminia Calabrese, Michael P. Hobson, Jose M. Diego, S. Galeotta, Yashar Akrami, L. Toffolatti, F. Piacentini, M. Tenti, X. Dupac, Paolo Natoli, M. Ashdown, A. Renzi, M. Savelainen, M. Migliaccio, N. Mandolesi, Eric Hivon, Tiziana Trombetti, J. Aumont, E. Keihänen, Peter G. Martin, Francesca Perrotta, Torsten A. Enßlin, M. López-Caniego, Fabrizio Villa, J.-P. Bernard, J. González-Nuevo, Ingunn Kathrine Wehus, G. de Zotti, Zhiqi Huang, P. Bielewicz, Valeria Pettorino, F. Cuttaia, W. C. Jones, Alessandro Gruppuso, R. Fernandez-Cobos, Julian Borrill, Will Handley, H. K. Eriksen, G. Sirri, Carlo Baccigalupi, R. B. Barreiro, Serge Gratton, J.-M. Delouis, Jacques Delabrouille, Gianluca Morgante, J.-M. Lamarre, Jan Tauber, François Levrier, M. Reinecke, B. P. Crill, Anthony Lasenby, Charles R. Lawrence, B. Van Tent, F. K. Hansen, Yin-Zhe Ma, Douglas Scott, M. Le Jeune, Hannu Kurki-Suonio, Fabio Finelli, L. A. Montier, N. Bartolo, Franz Elsner, M. Tomasi, Martin Kunz, V. Lindholm, Mathieu Remazeilles, Ken Ganga, Andrea Zacchei, P. Vielva, Ted Kisner, Krzysztof M. Gorski, G. Polenta, G. Roudier, E. Di Valentino, A. Marcos-Caballero, Diego Molinari, Jon E. Gudmundsson, Marco Bersanelli, A. De Rosa, Jason D. McEwen, G. Maggio, B. Ruiz-Granados, A.-S. Suur-Uski, François R. Bouchet, John Bond, Carlo Burigana, Nicoletta Krachmalnicoff, A. A. Fraisse, Mario Ballardini, Enrique Martínez-González, Daniela Paoletti, Locke D. Spencer, George Efstathiou, Andrei V. Frolov, N. Mauri, A. J. Banday, Karim Benabed, S. Dusini, Andrea Zonca, P. B. Lilje, H. C. Chiang, J. Kim, Reijo Keskitalo, Jussi Valiviita, M. Maris, P. Carvalho, Martina Gerbino, J. F. Macías-Pérez, Graca Rocha, S. Basak, D. Tavagnacco, A. Moneti, Mario G. Lattanzi, Jörg P. Rachen, J.-L. Puget, Sabino Matarrese, D. Herranz, B. Partridge, Universidad de Cantabria, Ministerio de Economía y Competitividad (España), European Commission, Consejo Superior de Investigaciones Científicas (España), Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de recherche en astrophysique et planétologie (IRAP), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Brest (UBO), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Planck, Université Paris sciences et lettres (PSL), Cavendish Laboratory, University of Cambridge [UK] (CAM), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), SISSA MathLab [Trieste], University of the Western Cape, Instituto de Física de Cantabria (IFCA), Universidad de Cantabria [Santander]-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Università degli Studi di Milano [Milano] (UNIMI), Canadian Institute for Theoretical Astrophysics (CITA), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Dipartimento di Fisica e Scienze della Terra [Ferrara], Università degli Studi di Ferrara (UniFE), Istituto di Radioastronomia [Bologna] (IRA), Istituto Nazionale di Astrofisica (INAF), Universidade Federal de Mato Grosso (UFMT), Algorithmes Parallèles et Optimisation (IRIT-APO), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Institut National Polytechnique (Toulouse) (Toulouse INP), Princeton University, Oskar Klein Centre [Stockholm], Stockholm University, Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Helsinki Institute of Physics (HIP), University of Helsinki, Aalto University, University of British Columbia (UBC), Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (INFN, Sezione di Bologna), Istituto Nazionale di Fisica Nucleare (INFN), Cardiff University, European Space Research and Technology Centre (ESTEC), INAF - Osservatorio Astronomico di Trieste (OAT), Universidad de Oviedo [Oviedo], Istituto Nazionale di Fisica Nucleare [Ferrara] (INFN), Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a,POB 64, FI-00014 Helsinki, Finland, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Basque Centre for Climate Change (BC3), Institute of Theoretical Astrophysics [Oslo], University of Oslo (UiO), San Diego Supercomputer Center [San Diego], NASA (USA), Planck Collaboration, European Project, Akrami Y., Ashdown M., Aumont J., Baccigalupi C., Ballardini M., Banday A.J., Barreiro R.B., Bartolo N., Basak S., Benabed K., Bernard J.-P., Bersanelli M., Bielewicz P., Bond J.R., Borrill J., Bouchet F.R., Burigana C., Calabrese E., Carvalho P., Chiang H.C., Crill B.P., Cuttaia F., De Rosa A., De Zotti G., Delabrouille J., Delouis J.-M., Di Valentino E., Diego J.M., Dupac X., Dusini S., Efstathiou G., Elsner F., Ensslin T.A., Eriksen H.K., Fernandez-Cobos R., Finelli F., Fraisse A.A., Franceschi E., Frolov A., Galeotta S., Ganga K., Gerbino M., Gonzalez-Nuevo J., Gorski K.M., Gratton S., Gruppuso A., Gudmundsson J.E., Handley W., Hansen F.K., Herranz D., Hivon E., Hobson M., Huang Z., Jones W.C., Keihanen E., Keskitalo R., Kim J., Kisner T.S., Krachmalnicoff N., Kunz M., Kurki-Suonio H., Lamarre J.-M., Lasenby A., Lattanzi M., Lawrence C.R., Le Jeune M., Levrier F., Lilje P.B., Lindholm V., Lopez-Caniego M., Ma Y.-Z., Macias-Perez J.F., Maggio G., Mandolesi N., Marcos-Caballero A., Maris M., Martin P.G., Martinez-Gonzalez E., Matarrese S., Mauri N., McEwen J.D., Migliaccio M., Molinari D., Moneti A., Montier L., Morgante G., Natoli P., Paoletti D., Partridge B., Perrotta F., Pettorino V., Piacentini F., Polenta G., Puget J.-L., Rachen J.P., Reinecke M., Remazeilles M., Renzi A., Rocha G., Roudier G., Ruiz-Granados B., Savelainen M., Scott D., Sirri G., Spencer L.D., Suur-Uski A.-S., Tauber J.A., Tavagnacco D., Tenti M., Toffolatti L., Tomasi M., Trombetti T., Valiviita J., Van Tent B., Vielva P., Villa F., Wehus I.K., Zacchei A., Zonca A., École normale supérieure - Paris (ENS-PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of the Western Cape (UWC), Università degli Studi di Padova = University of Padua (Unipd), Università degli Studi di Milano = University of Milan (UNIMI), Università degli Studi di Ferrara = University of Ferrara (UniFE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Agence Spatiale Européenne = European Space Agency (ESA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Department of Physics, Helsinki Institute of Physics, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
Submillimeter: general ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,astro-ph.GA ,Astronomy ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,general [Submillimeter] ,7. Clean energy ,01 natural sciences ,Cosmology: observation ,NO ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,Catalogs, Cosmology: observations, Submillimeter: general ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Aerospace engineering ,Planck ,observations [Cosmology] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Reliability (statistics) ,Astrophysics::Galaxy Astrophysics ,Physics ,HERSCHEL ,010308 nuclear & particles physics ,business.industry ,PE9_14 ,COMPONENTS ,Cosmology: observations ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Catalogs ,Astrophysics - Astrophysics of Galaxies ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,symbols ,astro-ph.CO ,Catalog ,CLUSTERS ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,astro-ph.IM ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Planck Collaboration: et al., We describe an extension of the most recent version of the Planck Catalogue of Compact Sources (PCCS2), produced using a new multi-band Bayesian Extraction and Estimation Package (BeeP). BeeP assumes that the compact sources present in PCCS2 at 857 GHz have a dust-like spectral energy distribution (SED), which leads to emission at both lower and higher frequencies, and adjusts the parameters of the source and its SED to fit the emission observed in Planck’s three highest frequency channels at 353, 545, and 857 GHz, as well as the IRIS map at 3000 GHz. In order to reduce confusion regarding diffuse cirrus emission, BeeP’s data model includes a description of the background emission surrounding each source, and it adjusts the confidence in the source parameter extraction based on the statistical properties of the spatial distribution of the background emission. BeeP produces the following three new sets of parameters for each source: (a) fits to a modified blackbody (MBB) thermal emission model of the source; (b) SED-independent source flux densities at each frequency considered; and (c) fits to an MBB model of the background in which the source is embedded. BeeP also calculates, for each source, a reliability parameter, which takes into account confusion due to the surrounding cirrus. This parameter can be used to extract sub-samples of high-frequency sources with statistically well-understood properties. We define a high-reliability subset (BeeP/base), containing 26 083 sources (54.1% of the total PCCS2 catalogue), the majority of which have no information on reliability in the PCCS2. We describe the characteristics of this specific high-quality subset of PCCS2 and its validation against other data sets, specifically for: the sub-sample of PCCS2 located in low-cirrus areas; the Planck Catalogue of Galactic Cold Clumps; the Herschel GAMA15-field catalogue; and the temperature- and spectral-index-reconstructed dust maps obtained with Planck’s Generalized Needlet Internal Linear Combination method. The results of the BeeP extension of PCCS2, which are made publicly available via the Planck Legacy Archive, will enable the study of the thermal properties of well-defined samples of compact Galactic and extragalactic dusty sources., The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and ERC and PRACE (EU).
- Published
- 2020
- Full Text
- View/download PDF
7. Planck 2018 results: V. CMB power spectra and likelihoods
- Author
-
Francesca Perrotta, A. A. Fraisse, Torsten A. Enßlin, A. J. Banday, M. Sandri, Yabebal Fantaye, L. Toffolatti, Serge Gratton, Jean-François Cardoso, Jose Alberto Rubino-Martin, Martin Kunz, Mathieu Remazeilles, Yin-Zhe Ma, G. de Zotti, E. Martínez-González, Anthony Lasenby, E. Keihänen, Jon E. Gudmundsson, N. Mandolesi, Andrew H. Jaffe, J.-L. Puget, Philip Lubin, J. Kim, M.-A. Miville-Deschênes, M. Lilley, Charles R. Lawrence, M. Le Jeune, François R. Bouchet, F. K. Hansen, Krzysztof M. Gorski, E. Di Valentino, L. Montier, Mario G. Lattanzi, A. Moneti, Erminia Calabrese, Andrea Zacchei, B. P. Crill, N. Bartolo, B. Van Tent, Locke D. Spencer, E. Franceschi, Ted Kisner, M. Maris, Martina Gerbino, D. Herranz, A. Marcos-Caballero, N. Mauri, Adam Moss, Hannu Kurki-Suonio, M. Tomasi, Sabino Matarrese, Davide Maino, Nicola Vittorio, V. Lindholm, Ricardo Genova-Santos, Reijo Keskitalo, C. Sirignano, Zhiqi Huang, P. Bielewicz, Jörg P. Rachen, Julien Carron, Y. Giraud-Héraud, X. Dupac, K. Ganga, D. Tavagnacco, Tuhin Ghosh, L. Pagano, S. Galeotta, Hans Ulrik Nørgaard-Nielsen, L. Salvati, Marco Bersanelli, B. Partridge, Jose M. Diego, M. Reinecke, A. Renzi, Ingunn Kathrine Wehus, Benjamin D. Wandelt, Julian Borrill, Will Handley, S. Basak, Andrei V. Frolov, Marian Douspis, Rashid Sunyaev, G. Sirri, F. Piacentini, S. Dusini, Andrea Zonca, H. C. Chiang, S. Galli, Guillaume Patanchon, M. Migliaccio, Jan Hamann, P. B. Lilje, M. Bucher, O. Doré, Paolo Natoli, Douglas Scott, R. Fernandez-Cobos, F. Cuttaia, Hiranya V. Peiris, M. Tenti, James J. Bock, Peter G. Martin, Valeria Pettorino, Gianluca Morgante, Tiziana Trombetti, Jacques Delabrouille, E. P. S. Shellard, R. B. Barreiro, Alessandro Melchiorri, Antony Lewis, R. C. Butler, K. Kiiveri, J. F. Macías-Pérez, C. Combet, Fabio Finelli, Diego Molinari, G. Maggio, A. Mangilli, Graca Rocha, Fabrizio Villa, J.-P. Bernard, M. Frailis, Carlo Baccigalupi, W. C. Jones, Nabila Aghanim, François Levrier, L. P. L. Colombo, Marius Millea, Eric Hivon, Mario Ballardini, D. Paoletti, Franz Elsner, George Efstathiou, C. Rosset, G. Roudier, Alessandro Gruppuso, Michele Liguori, A. Mennella, Yashar Akrami, Anthony Challinor, J.-M. Lamarre, A. Ducout, J. A. Tauber, M. Savelainen, F. Boulanger, P. Vielva, Guilaine Lagache, M. López-Caniego, P. de Bernardis, B. Casaponsa, B. Ruiz-Granados, A.-S. Suur-Uski, J. Valiviita, J. Aumont, J.-M. Delouis, M. Ashdown, H. K. Eriksen, G. Polenta, Peter Meinhold, J. González-Nuevo, K. Benabed, J. R. Bond, A. De Rosa, Jason D. McEwen, Carlo Burigana, Nicoletta Krachmalnicoff, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Institut de recherche en astrophysique et planétologie (IRAP), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2020-....] (UGA [2020-....])-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Université Grenoble Alpes [2020-....] (UGA [2020-....]), Université de Brest (UBO), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut Lagrange de Paris, Sorbonne Université, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Planck, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Universités, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Universidad de Cantabria, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Computing and Mathematical Sciences [Pasadena]], California Institute of Technology (CALTECH), Canadian Institute for Theoretical Astrophysics (CITA), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Dipartimento di Fisica 'G. Galilei', Universita degli Studi di Padova, Sorbonne Université (SU), University College of London [London] (UCL), University of Manchester [Manchester], University of British Columbia (UBC), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Planck Collaboration, Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Aghanim N., Akrami Y., Ashdown M., Aumont J., Baccigalupi C., Ballardini M., Banday A.J., Barreiro R.B., Bartolo N., Basak S., Benabed K., Bernard J.-P., Bersanelli M., Bielewicz P., Bock J.J., Bond J.R., Borrill J., Bouchet F.R., Boulanger F., Bucher M., Burigana C., Butler R.C., Calabrese E., Cardoso J.-F., Carron J., Casaponsa B., Challinor A., Chiang H.C., Colombo L.P.L., Combet C., Crill B.P., Cuttaia F., De Bernardis P., De Rosa A., De Zotti G., Delabrouille J., Delouis J.-M., Di Valentino E., Diego J.M., Dore O., Douspis M., Ducout A., Dupac X., Dusini S., Efstathiou G., Elsner F., Ensslin T.A., Eriksen H.K., Fantaye Y., Fernandez-Cobos R., Finelli F., Frailis M., Fraisse A.A., Franceschi E., Frolov A., Galeotta S., Galli S., Ganga K., Genova-Santos R.T., Gerbino M., Ghosh T., Giraud-Heraud Y., Gonzalez-Nuevo J., Gorski K.M., Gratton S., Gruppuso A., Gudmundsson J.E., Hamann J., Handley W., Hansen F.K., Herranz D., Hivon E., Huang Z., Jaffe A.H., Jones W.C., Keihanen E., Keskitalo R., Kiiveri K., Kim J., Kisner T.S., Krachmalnicoff N., Kunz M., Kurki-Suonio H., Lagache G., Lamarre J.-M., Lasenby A., Lattanzi M., Lawrence C.R., Le Jeune M., Levrier F., Lewis A., Liguori M., Lilje P.B., Lilley M., Lindholm V., Lopez-Caniego M., Lubin P.M., Ma Y.-Z., Macias-Perez J.F., Maggio G., Maino D., Mandolesi N., Mangilli A., Marcos-Caballero A., Maris M., Martin P.G., Martinez-Gonzalez E., Matarrese S., Mauri N., McEwen J.D., Meinhold P.R., Melchiorri A., Mennella A., Migliaccio M., Millea M., Miville-Deschenes M.-A., Molinari D., Moneti A., Montier L., Morgante G., Moss A., Natoli P., Norgaard-Nielsen H.U., Pagano L., Paoletti D., Partridge B., Patanchon G., Peiris H.V., Perrotta F., Pettorino V., Piacentini F., Polenta G., Puget J.-L., Rachen J.P., Reinecke M., Remazeilles M., Renzi A., Rocha G., Rosset C., Roudier G., Rubino-Martin J.A., Ruiz-Granados B., Salvati L., Sandri M., Savelainen M., Scott D., Shellard E.P.S., Sirignano C., Sirri G., Spencer L.D., Sunyaev R., Suur-Uski A.-S., Tauber J.A., Tavagnacco D., Tenti M., Toffolatti L., Tomasi M., Trombetti T., Valiviita J., Van Tent B., Vielva P., Villa F., Vittorio N., Wandelt B.D., Wehus I.K., Zacchei A., Zonca A., Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Department of Physics, Helsinki Institute of Physics, Ministerio de Economía y Competitividad (España), Consejo Superior de Investigaciones Científicas (España), European Commission, European Research Council, and European Space Agency
- Subjects
Cosmological parameter ,POLARIZATION ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astronomy ,Cosmic microwave background ,Cosmological parameters ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,Residual ,Cosmic background radiation ,Cosmology: observation ,01 natural sciences ,7. Clean energy ,Spectral line ,NO ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,Methods: data analysis ,0103 physical sciences ,0201 Astronomical and Space Sciences ,Cosmology: observations ,Statistical physics ,MICROWAVE ,Planck ,observations [Cosmology] ,data analysis [Methods] ,010303 astronomy & astrophysics ,Reionization ,Cosmic background radiation, Cosmological parameters, Cosmology: observations, Methods: data analysis ,Physics ,010308 nuclear & particles physics ,Spectral density ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Polarization (waves) ,13. Climate action ,Space and Planetary Science ,PROBE WMAP OBSERVATIONS ,symbols ,astro-ph.CO ,SKY ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Smoothing ,APPROXIMATION ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Planck Collaboration: et al., We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (ℓ < 30) and high (ℓ ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low-ℓ data and the high-ℓ temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the ℓ < 800 and ℓ > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations., The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and ERC and PRACE (EU).
- Published
- 2020
- Full Text
- View/download PDF
8. Exploring cosmic origins with CORE:mitigation of systematic effects
- Author
-
M. Tristram, Daniela Paoletti, Eric Hivon, Jose M. Diego, M. López-Caniego, Hannu Kurki-Suonio, D. Tramonte, J. Borrill, M. Piat, Shaul Hanany, Guillaume Patanchon, M. Bonato, Matthieu Roman, J. González-Nuevo, F. Piacentini, G. Signorelli, Stephen M. Feeney, Silvia Galli, Miguel Quartin, M. Migliaccio, François R. Bouchet, A. Bonaldi, E. Di Valentino, R. Van de Weijgaert, Ricardo Genova-Santos, L. Salvati, Zhen-Yi Cai, Nicola Bartolo, Martino Calvo, Julien Lesgourgues, Reijo Keskitalo, Alessandro Coppolecchia, Jens Chluba, Carlo Burigana, G. Castellano, Bruno Maffei, D. McCarthy, R. Banerji, Daniel Baumann, Martina Gerbino, Thomas Kitching, Alessandro Monfardini, Francois Boulanger, M. Tomasi, Carlos Hernández-Monteagudo, L. Polastri, Alessandro Melchiorri, Ted Kisner, S. Basak, Giuseppe D'Alessandro, Peter A. R. Ade, Massimiliano Lattanzi, Sebastien Clesse, Marco Bersanelli, Mario Zannoni, R. Allison, Will Handley, J. Valiviita, P. Vielva, Diego Molinari, Mathieu Remazeilles, A. Gruppuso, Matthew Hills, K. Kiiveri, A. Lewis, Mattia Negrello, Michele Liguori, Carole Tucker, Gemma Luzzi, G. Polenta, Silvia Masi, Alessandro Paiella, Giampaolo Pisano, L. Pagano, P. de Bernardis, Anthony Challinor, Sebastian Grandis, Martin Bucher, Luca Lamagna, R. Fernandez-Cobos, Tiziana Trombetti, G. de Gasperis, C. S. Carvalho, A. Tartari, Jacques Delabrouille, Nazzareno Mandolesi, C. Baccigalupi, Vivian Poulin, Ana Achúcarro, Alessio Notari, Alessandro Buzzelli, I. Colantoni, Enrique Martinez-Gonzalez, Fabio Finelli, James G. Bartlett, Francesco Forastieri, Mario Ballardini, Anthony Lasenby, Vincent Vennin, Christopher G. R. Wallis, E. Keihänen, D. T. Hoang, J. J. A. Baselmans, Jean-Baptiste Melin, M. Ashdown, Sophie Henrot-Versille, M. Kunz, S. Hagstotz, Josquin Errard, Jose Alberto Rubino-Martin, C. J. A. P. Martins, G. de Zotti, Neil Trappe, Nicola Vittorio, V. Lindholm, J. Greenslade, Karl Young, O. Perdereau, B. Van Tent, A. J. Banday, Thejs Brinckmann, Graziano Rossi, A. Pollo, C. Hervias-Caimapo, Martin Crook, Paolo Natoli, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Lagrange de Paris, Sorbonne Université (SU), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), CORE, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Sorbonne Universités, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Hélium : du fondamental aux applications (NEEL - HELFA), Helsinki Institute of Physics, Department of Physics, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Natoli, P, Ashdown, M, Banerji, R, Borrill, J, Buzzelli, A, de Gasperis, G, Delabrouille, J, Hivon, E, Molinari, D, Patanchon, G, Polastri, L, Tomasi, M, Bouchet, F, Henrot-Versillé, S, Hoang, D, Keskitalo, R, Kiiveri, K, Kisner, T, Lindholm, V, Mccarthy, D, Piacentini, F, Perdereau, O, Polenta, G, Tristram, M, Achucarro, A, Ade, P, Allison, R, Baccigalupi, C, Ballardini, M, Banday, A, Bartlett, J, Bartolo, N, Basak, S, Baumann, D, Bersanelli, M, Bonaldi, A, Bonato, M, Boulanger, F, Brinckmann, T, Bucher, M, Burigana, C, Cai, Z, Calvo, M, Carvalho, C, Castellano, M, Challinor, A, Chluba, J, Clesse, S, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, de Bernardis, P, Zotti, G, Valentino, E, Diego, J, Errard, J, Feeney, S, Fernandez-Cobos, R, Finelli, F, Forastieri, F, Galli, S, Genova-Santos, R, Gerbino, M, González-Nuevo, J, Grandis, S, Greenslade, J, Gruppuso, A, Hagstotz, S, Hanany, S, Handley, W, Hernandez-Monteagudo, C, Hervías-Caimapo, C, Hills, M, Keihänen, E, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lattanzi, M, Lesgourgues, J, Lewis, A, Liguori, M, López-Caniego, M, Luzzi, G, Maffei, B, Mandolesi, N, Martinez-González, E, Martins, C, Masi, S, Matarrese, S, Melchiorri, A, Melin, J, Migliaccio, M, Monfardini, A, Negrello, M, Notari, A, Pagano, L, Paiella, A, Paoletti, D, Piat, M, Pisano, G, Pollo, A, Poulin, V, Quartin, M, Remazeilles, M, Roman, M, Rossi, G, Rubino-Martin, J, Salvati, L, Signorelli, G, Tartari, A, Tramonte, D, Trappe, N, Trombetti, T, Tucker, C, Valiviita, J, de Weijgaert, R, Tent, B, Vennin, V, Vielva, P, Vittorio, N, Wallis, C, Young, K, Zannoni, M, String Theory (ITFA, IoP, FNWI), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Néel ( NEEL ), Université Grenoble Alpes [Saint Martin d'Hères]-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Physique des Particules (ex SPP) ( DPP ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique ( LAPTH ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), and Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,Astrophysics ,Residual ,01 natural sciences ,NOISE ,Photometric calibration ,CMBR experiments ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,media_common ,Physics ,COSMIC cancer database ,INSTRUMENT ,FLIGHT ,Astrophysics::Instrumentation and Methods for Astrophysics ,symbols ,astro-ph.CO ,CMBR experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,CMBR polarisation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,POLARIZATION MAPS ,FOS: Physical sciences ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,NO ,LIKELIHOOD ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,Robustness (computer science) ,0103 physical sciences ,SPECTRA ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Planck ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,CMBR polarization ,010308 nuclear & particles physics ,MAP-MAKING ALGORITHM ,Astronomy and Astrophysics ,PLANCK SURVEYOR ,115 Astronomy, Space science ,CMBR experiments, CMBR polarisation, gravitational waves and CMBR polarization ,Reliability engineering ,Future study ,CMB EXPERIMENTS ,Sky ,astro-ph.IM ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,gravitational waves and CMBR polarization ,astronomy and astrophysics - Abstract
This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank CSC — IT Center for Science (Finland) for computational resources. We acknowledge financial support by ASI Grant 2016-24-H.0 and Academy of Finland grant 295113. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 687312. CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). JGN acknowledges financial support from the Spanish MINECO for a ‘Ramon y Cajal’ fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER). GR acknowledges support from the National Research Foundation of Korea (NRF) through Grant No. 2017R1E1A1A01077508 funded by the Korean Ministry of Education, Science and Technology (MoEST), and from the faculty research fund of Sejong University in 2018. We thank Jean Kaplan for useful comments on the manuscript., Natoli, P., Ashdown, M., Banerji, R., Borrill, J., Buzzelli, A., De Gasperis, G., Delabrouille, J., Hivon, E., Molinari, D., Patanchon, G., Polastri, L., Tomasi, M., Bouchet, F.R., Henrot-Versillé, S., Hoang, D.T., Keskitalo, R., Kiiveri, K., Kisner, T., Lindholm, V., McCarthy, D., Piacentini, F., Perdereau, O., Polenta, G., Tristram, M., Achucarro, A., Ade, P., Allison, R., Baccigalupi, C., Ballardini, M., Banday, A.J., Bartlett, J., Bartolo, N., Basak, S., Baumann, D., Bersanelli, M., Bonaldi, A., Bonato, M., Boulanger, F., Brinckmann, T., Bucher, M., Burigana, C., Cai, Z.-Y., Calvo, M., Carvalho, C.-S., Castellano, M.G., Challinor, A., Chluba, J., Clesse, S., Colantoni, I., Coppolecchia, A., Crook, M., D'Alessandro, G., De Bernardis, P., Zotti, G.D., Valentino, E.D., Diego, J.-M., Errard, J., Feeney, S., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Galli, S., Genova-Santos, R., Gerbino, M., González-Nuevo, J., Grandis, S., Greenslade, J., Gruppuso, A., Hagstotz, S., Hanany, S., Handley, W., Hernandez-Monteagudo, C., Hervías-Caimapo, C., Hills, M., Keihänen, E., Kitching, T., Kunz, M., Kurki-Suonio, H., Lamagna, L., Lasenby, A., Lattanzi, M., Lesgourgues, J., Lewis, A., Liguori, M., López-Caniego, M., Luzzi, G., Maffei, B., Mandolesi, N., Martinez-González, E., Martins, C.J.A.P., Masi, S., Matarrese, S., Melchiorri, A., Melin, J.-B., Migliaccio, M., Monfardini, A., Negrello, M., Notari, A., Pagano, L., Paiella, A., Paoletti, D., Piat, M., Pisano, G., Pollo, A., Poulin, V., Quartin, M., Remazeilles, M., Roman, M., Rossi, G., Rubino-Martin, J.-A., Salvati, L., Signorelli, G., Tartari, A., Tramonte, D., Trappe, N., Trombetti, T., Tucker, C., Valiviita, J., De Weijgaert, R.V., Tent, B.V., Vennin, V., Vielva, P., Vittorio, N., Wallis, C., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
9. Exploring cosmic origins with CORE: cosmological parameters
- Author
-
Daniela Paoletti, Nicola Bartolo, Jens Chluba, J. Greenslade, P. Vielva, Mattia Negrello, Karl Young, Matteo Bonato, Andrea Tartari, Alessandro Paiella, Alessandro Coppolecchia, Andrea Caputo, Nicola Vittorio, V. Lindholm, Anthony Challinor, Agnieszka Pollo, Francois Boulanger, Luca Lamagna, Simone Ferraro, Martin Crook, D. McCarthy, M. López-Caniego, Ted Kisner, G. de Gasperis, L. Polastri, Alessandro Melchiorri, Josquin Errard, Rien van de Weygaert, D. Tramonte, Jose Alberto Rubino-Martin, C. J. A. P. Martins, Deanna C. Hooper, Matthieu Roman, Gianfranco De Zotti, Neil Trappe, M. Piat, Daniel Baumann, Gianluca Polenta, Jussi Valiviita, M. Tomasi, Paolo de Bernardis, Christophe Ringeval, Marco De Petris, Marco Bersanelli, Mario Zannoni, Giuseppe D'Alessandro, R. Fernandez-Cobos, Julien Lesgourgues, Paolo Natoli, Laura Salvati, Miguel Quartin, Thomas Kitching, R. Allison, Antony Lewis, K. Kiiveri, Carole Tucker, Diego Molinari, M. Kunz, Joseph J. Mohr, Ricardo Genova-Santos, C. Hervias-Caimapo, Jean-Baptiste Melin, Sebastian Grandis, Sylvain Martin, Michele Liguori, Shaul Hanany, Mario Ballardini, Vincent Vennin, Eleonora Di Valentino, Enrique Martinez-Gonzalez, Jose M. Diego, Giovanni Cabass, Hannu Kurki-Suonio, Jacques Delabrouille, J. González-Nuevo, Anthony Lasenby, F. Piacentini, Jochem J. A. Baselmans, Gemma Luzzi, S. Hagstotz, Tiziana Trombetti, Stephen M. Feeney, Alessio Notari, C. S. Carvalho, Fabio Finelli, Simone Paradiso, Silvia Masi, James G. Bartlett, Carlos Hernández-Monteagudo, Massimiliano Lattanzi, A. J. Banday, Thejs Brinckmann, Cora Dvorkin, Eric Hivon, Sebastien Clesse, Alessandro Buzzelli, Vivian Poulin, Ana Achúcarro, Martina Gerbino, M. Ashdown, A. Bonaldi, Luca Pagano, Julian Borrill, Will Handley, Martino Calvo, R. Banerji, Ivan Charles, Alessandro Monfardini, Frederico Arroja, S. Basak, Mathieu Remazeilles, Giampaolo Pisano, I. Colantoni, Silvia Galli, Gérard Vermeulen, Francesco Forastieri, Elena Giusarma, Dhiraj Kumar Hazra, François R. Bouchet, Zhen-Yi Cai, Carlo Burigana, G. Castellano, Peter A. R. Ade, Matthew Hills, Bruno Maffei, Martin Bucher, Bartjan van Tent, Guillaume Patanchon, Helsinki Institute of Physics, Department of Physics, String Theory (ITFA, IoP, FNWI), Astronomy, Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Lagrange de Paris, Sorbonne Universités, Laboratoire d'Annecy-le-Vieux de Physique Théorique ( LAPTH ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Recherche Fondamentale sur la Matière Condensée ( DRFMC ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Département de Physique des Particules (ex SPP) ( DPP ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut Néel ( NEEL ), Université Grenoble Alpes [Saint Martin d'Hères]-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), CORE, Di Valentino, E, Brinckmann, T, Gerbino, M, Poulin, V, Bouchet, F, Lesgourgues, J, Melchiorri, A, Chluba, J, Clesse, S, Delabrouille, J, Dvorkin, C, Forastieri, F, Galli, S, Hooper, D, Lattanzi, M, Martins, C, Salvati, L, Cabass, G, Caputo, A, Giusarma, E, Hivon, E, Natoli, P, Pagano, L, Paradiso, S, Rubiño-Martin, J, Achúcarro, A, Ade, P, Allison, R, Arroja, F, Ashdown, M, Ballardini, M, Banday, A, Banerji, R, Bartolo, N, Bartlett, J, Basak, S, Baumann, D, de Bernardis, P, Bersanelli, M, Bonaldi, A, Bonato, M, Borrill, J, Boulanger, F, Bucher, M, Burigana, C, Buzzelli, A, Cai, Z, Calvo, M, Carvalho, C, Castellano, G, Challinor, A, Charles, I, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, De Petris, M, De Zotti, G, Diego, J, Errard, J, Feeney, S, Fernandez-Cobos, R, Ferraro, S, Finelli, F, de Gasperis, G, Génova-Santos, R, González-Nuevo, J, Grandis, S, Greenslade, J, Hagstotz, S, Hanany, S, Handley, W, Hazra, D, Hernández-Monteagudo, C, Hervias-Caimapo, C, Hills, M, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lewis, A, Liguori, M, Lindholm, V, Lopez-Caniego, M, Luzzi, G, Maffei, B, Martin, S, Martinez-Gonzalez, E, Masi, S, Matarrese, S, Mccarthy, D, Melin, J, Mohr, J, Molinari, D, Monfardini, A, Negrello, M, Notari, A, Paiella, A, Paoletti, D, Patanchon, G, Piacentini, F, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Quartin, M, Remazeilles, M, Roman, M, Ringeval, C, Tartari, A, Tomasi, M, Tramonte, D, Trappe, N, Trombetti, T, Tucker, C, Väliviita, J, van de Weygaert, R, Van Tent, B, Vennin, V, Vermeulen, G, Vielva, P, Vittorio, N, Young, K, Zannoni, M, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Département de Recherche Fondamentale sur la Matière Condensée (DRFMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département de Physique des Particules (ex SPP) (DPhP), Hélium : du fondamental aux applications (NEEL - HELFA), Sorbonne Université (SU), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
gravitation: model ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,cosmological parameters from CMBR, CMBR experiments, neutrino masses from cosmology ,BACKGROUND ANISOTROPIES ,cosmic background radiation: polarization ,Astrophysics ,baryon: oscillation: acoustic ,NEUTRINO MASS ,01 natural sciences ,COBE FIRAS INSTRUMENT ,current: constraint ,DESI ,High Energy Physics - Phenomenology (hep-ph) ,CMBR experiments ,CMB POLARIZATION ,dark energy ,010303 astronomy & astrophysics ,general relativity and quantum cosmology ,QC ,cosmological parameters from CMBR ,neutrino masses from cosmology ,media_common ,helium: primordial ,QB ,Physics ,birefringence ,hep-th ,formation ,Astrophysics::Instrumentation and Methods for Astrophysics ,hep-ph ,TEMPERATURE-REDSHIFT RELATION ,high energy physics - theory ,inflation: model ,high energy physics - phenomenology ,curvature ,symbols ,astro-ph.CO ,CMBR experiment ,FUNDAMENTAL CONSTANTS ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,ANGULAR POWER SPECTRUM ,Primordial fluctuations ,media_common.quotation_subject ,gr-qc ,Dark matter ,satellite ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NO ,BROKEN LEPTON NUMBER ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,FINE-STRUCTURE CONSTANT ,0103 physical sciences ,ionization ,LARGE-SCALE STRUCTURE ,structure ,Planck ,Reionization ,PROBING NEUTRINO MASSES ,Inflation (cosmology) ,010308 nuclear & particles physics ,fluctuation: primordial ,Astronomy and Astrophysics ,dark matter: annihilation ,sensitivity ,115 Astronomy, Space science ,MICROWAVE-ANISOTROPY-PROBE ,Universe ,recombination ,COLD DARK-MATTER ,High Energy Physics - Theory (hep-th) ,13. Climate action ,Dark energy ,DIGITAL SKY SURVEY ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,MICROWAVE BACKGROUND POLARIZATION - Abstract
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base LCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. (ABRIDGED), Comment: 90 pages, 25 Figures. Revised version with new authors list and references
- Published
- 2018
- Full Text
- View/download PDF
10. Exploring Cosmic Origins with CORE:survey requirements and mission design
- Author
-
Karl Young, N. Mandolesi, A. Renzi, D. McCarthy, Andrea Lapi, F. Voisin, F. Oppizzi, Mark Hindmarsh, A. Mennella, Josquin Errard, S. Martin, Jose M. Diego, Enrico Pajer, Douglas Scott, A. Da Silva, Luigi Danese, R. B. Partridge, Subodh P. Patil, Créidhe O'Sullivan, A. M. C. Le Brun, Gianluca Polenta, Deanna C. Hooper, Alessandro Buzzelli, O. Perdereau, Jose Alberto Rubino-Martin, Nicolas Ponthieu, C. J. A. P. Martins, Eric Hivon, M. De Petris, Reijo Keskitalo, Bruno Maffei, Rashid Sunyaev, Michael L. Brown, Elena Giusarma, Marek Biesiada, Joanes Lizarraga, Nicola Bartolo, F. Piacentini, Stephen M. Feeney, G. de Zotti, Neil Trappe, Bin Hu, Cristian Franceschet, Matthieu Tristram, Pasquale Mazzotta, R. Allison, Hannu Kurki-Suonio, Jens Chluba, J. Greenslade, R. Fernandez-Cobos, Alicia Gomez, Stephen Serjeant, A. Catalano, Paolo Natoli, C. S. Carvalho, K. Kiiveri, David L. Clements, Diego Molinari, S. Paradiso, Martina Gerbino, Vincent Vennin, Carole Tucker, Kaustuv Basu, Alexei A. Starobinsky, Sabino Matarrese, Andrea Ravenni, L. Salvati, Eduardo Artal, G. Vermeulen, M. Piat, M. Tucci, F. Noviello, Ingunn Kathrine Wehus, Elia S. Battistelli, Matteo Bonato, R. Banerji, Ted Kisner, Jean-Baptiste Melin, Christophe Ringeval, Christopher G. R. Wallis, Benjamin D. Wandelt, Julian Borrill, Massimiliano Lattanzi, Aurelien Bideaud, Sebastien Clesse, Tiziana Trombetti, Martin Crook, Will Handley, P. de Bernardis, Ruth Durrer, Francois Boulanger, Matthieu Roman, C. Y. Tan, Sébastien Triqueneaux, Silvia Galli, G. Signorelli, A. Tartari, Gianmassimo Tasinato, S. Basak, Nicola Vittorio, D. Tramonte, V. Lindholm, Julien Lesgourgues, J. F. Macías-Pérez, E. Di Valentino, Francesco Forastieri, G. de Gasperis, Thomas Kitching, Vincent Desjacques, François R. Bouchet, Zhen-Yi Cai, Sergio Colafrancesco, Richard A. Battye, Alessandro Monfardini, F.-X. Désert, Alessandro Paiella, Jesús Torrado, Michele Liguori, Anthony Challinor, Carlo Burigana, G. Castellano, Agnieszka Pollo, Daniel Baumann, L. Pagano, Boudewijn F. Roukema, Mathieu Remazeilles, Sophie Henrot-Versille, M. Tomasi, Enrique Martinez-Gonzalez, Giampaolo Pisano, M. Kunz, Joseph J. Mohr, Ricardo Genova-Santos, P. Vielva, Mattia Negrello, Marcella Massardi, Carlo Baccigalupi, Guilaine Lagache, Marco Bersanelli, Anthony Lasenby, S. Hagstotz, Domingos Barbosa, E. Keihänen, D. Prêle, Vivian Poulin, Mario Zannoni, Alain Benoit, Ana Achúcarro, D. T. Hoang, I. Colantoni, U. Fuskeland, D. Contreras, Giovanni Cabass, Jochem J. A. Baselmans, Johannes Goupy, Jochen Weller, I. Charles, Sebastian Grandis, Giuseppe D'Alessandro, M. Ashdown, A. Bonaldi, Frederico Arroja, Guido D'Amico, Gemma Luzzi, M. A. de Avillez, Martino Calvo, Silvia Masi, Daniela Paoletti, Alessandro Coppolecchia, Andrea Caputo, L. Polastri, Alessandro Melchiorri, Jon Urrestilla, Licia Verde, Mario Ballardini, Luisa Toffolatti, Jacques Delabrouille, Alessio Notari, Maciej Bilicki, Fabio Finelli, L. A. Montier, James G. Bartlett, Guillaume Patanchon, Carlos Hernández-Monteagudo, Miguel Quartin, Cora Dvorkin, Simon Doyle, H. K. Eriksen, C. Hervias-Caimapo, R. van de Weygaert, Clive Dickinson, Peter A. R. Ade, Matthew Hills, Luca Lamagna, B. Van Tent, A. J. Banday, Thejs Brinckmann, F. J. Casas, Martin Bucher, Shaul Hanany, Jussi Valiviita, J. González-Nuevo, Diederik Roest, String Theory (ITFA, IoP, FNWI), Universitat de Barcelona, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut Lagrange de Paris, Sorbonne Universités, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), CORE, Department of Physics, Helsinki Institute of Physics, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Service des Basses Températures (SBT ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Delabrouille, J, de Bernardis, P, Bouchet, F, Achúcarro, A, Ade, P, Allison, R, Arroja, F, Artal, E, Ashdown, M, Baccigalupi, C, Ballardini, M, Banday, A, Banerji, R, Barbosa, D, Bartlett, J, Bartolo, N, Basak, S, Baselmans, J, Basu, K, Battistelli, E, Battye, R, Baumann, D, Benoít, A, Bersanelli, M, Bideaud, A, Biesiada, M, Bilicki, M, Bonaldi, A, Bonato, M, Borrill, J, Boulanger, F, Brinckmann, T, Brown, M, Bucher, M, Burigana, C, Buzzelli, A, Cabass, G, Cai, Z, Calvo, M, Caputo, A, Carvalho, C, Casas, F, Castellano, G, Catalano, A, Challinor, A, Charles, I, Chluba, J, Clements, D, Clesse, S, Colafrancesco, S, Colantoni, I, Contreras, D, Coppolecchia, A, Crook, M, D'Alessandro, G, D'Amico, G, da Silva, A, de Avillez, M, de Gasperis, G, De Petris, M, de Zotti, G, Danese, L, Désert, F, Desjacques, V, Valentino, E, Dickinson, C, Diego, J, Doyle, S, Durrer, R, Dvorkin, C, Eriksen, H, Errard, J, Feeney, S, Fernández-Cobos, R, Finelli, F, Forastieri, F, Franceschet, C, Fuskeland, U, Galli, S, Génova-Santos, R, Gerbino, M, Giusarma, E, Gomez, A, González-Nuevo, J, Grandis, S, Greenslade, J, Goupy, J, Hagstotz, S, Hanany, S, Handley, W, Henrot-Versillé, S, Hernández-Monteagudo, C, Hervias-Caimapo, C, Hills, M, Hindmarsh, M, Hivon, E, Hoang, D, Hooper, D, Hu, B, Keihänen, E, Keskitalo, R, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamagna, L, Lapi, A, Lasenby, A, Lattanzi, M, Brun, A, Lesgourgues, J, Liguori, M, Lindholm, V, Lizarraga, J, Luzzi, G, Macìas-Pérez, J, Maffei, B, Mandolesi, N, Martin, S, Martinez-Gonzalez, E, Martins, C, Masi, S, Massardi, M, Matarrese, S, Mazzotta, P, Mccarthy, D, Melchiorri, A, Melin, J, Mennella, A, Mohr, J, Molinari, D, Monfardini, A, Montier, L, Natoli, P, Negrello, M, Notari, A, Noviello, F, Oppizzi, F, O'Sullivan, C, Pagano, L, Paiella, A, Pajer, E, Paoletti, D, Paradiso, S, Partridge, R, Patanchon, G, Patil, S, Perdereau, O, Piacentini, F, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Ponthieu, N, Poulin, V, Prêle, D, Quartin, M, Ravenni, A, Remazeilles, M, Renzi, A, Ringeval, C, Roest, D, Roman, M, Roukema, B, Rubiño-Martin, J, Salvati, L, Scott, D, Serjeant, S, Signorelli, G, Starobinsky, A, Sunyaev, R, Tan, C, Tartari, A, Tasinato, G, Toffolatti, L, Tomasi, M, Torrado, J, Tramonte, D, Trappe, N, Triqueneaux, S, Tristram, M, Trombetti, T, Tucci, M, Tucker, C, Urrestilla, J, Väliviita, J, de Weygaert, R, Tent, B, Vennin, V, Verde, L, Vermeulen, G, Vielva, P, Vittorio, N, Voisin, F, Wallis, C, Wandelt, B, Wehus, I, Weller, J, Young, K, and Zannoni, M
- Subjects
CMBR experiments ,CMBR polarisation ,gravitational lensing ,physics of the early universe ,POLARIZATION ,Computer science ,Cosmic microwave background ,cosmic background radiation: polarization ,CMB ,7. Clean energy ,01 natural sciences ,Cosmology ,Physics, Particles & Fields ,cosmic flows ,CMBR polarization ,astronomy and astrophysics ,Cosmic physics ,CMBR experiments – CMBR theory – reionization – high redshift galaxies ,010303 astronomy & astrophysics ,QC ,QB ,COSMIC cancer database ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Nuclear & Particles Physics ,cryogenics ,Physical Sciences ,Physics::Space Physics ,Systems engineering ,astro-ph.CO ,proposed experiment ,Astrophysics::Earth and Planetary Astrophysics ,CMBR experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,performance ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,CMBR experiments, CMBR polarisation, gravitational lensing, physics of the early universe ,satellite ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,NO ,HALF-WAVE PLATE ,0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics ,Mission design ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: design ,activity report ,Science & Technology ,Cosmologia ,010308 nuclear & particles physics ,astro-ph.IM ,115 Astronomy, Space science ,sensitivity ,Complementarity (physics) ,0201 Astronomical And Space Sciences ,angular resolution ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Física còsmica - Abstract
The CORE collaboration thanks CNES, Thales Alenia Space, and Air Liquide Advanced Technologies for advice and technical support during the preparation of the CORE proposal. We also thank the ESA CDF team for the CMB Polarisation CDF study performed in March 2016, the results of which were extensively used to define the mission concept presented in this paper. J.G.N. acknowledges financial support from the Spanish MINECO for a Ramon y Cajal fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER). CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE. F.J.C., R.F.-C., E.M.-G. and P.V. acknowledge support from the Spanish Ministerio de Econom´ıa y Competitividad project ESP2015-70646-C2-1-R (cofinanced with EU FEDER funds), ConsoliderIngenio 2010 project CSD2010-00064 and from the CSIC “Proyecto Intramural Especial” project 201550E091. FA is supported by the National Taiwan University (NTU) under Project No. 103R4000 and by the NTU Leung Center for Cosmology and Particle Astrophysics (LeCosPA) under Project No. FI121. BFR acknowledges support from the National Science Centre, Poland, under grant 2014/13/B/ST9/00845., Macìas-Pérez, J.F., Delabrouille, J., De Bernardis, P., Bouchet, F.R., Achúcarro, A., Ade, P.A.R., Allison, R., Arroja, F., Artal, E., Ashdown, M., Baccigalupi, C., Ballardini, M., Banday, A.J., Banerji, R., Barbosa, D., Bartlett, J., Bartolo, N., Basak, S., Baselmans, J.J.A., Basu, K., Battistelli, E.S., Battye, R., Baumann, D., Benoít, A., Bersanelli, M., Bideaud, A., Biesiada, M., Bilicki, M., Bonaldi, A., Bonato, M., Borrill, J., Boulanger, F., Brinckmann, T., Brown, M.L., Bucher, M., Burigana, C., Buzzelli, A., Cabass, G., Cai, Z.-Y., Calvo, M., Caputo, A., Carvalho, C.-S., Casas, F.J., Castellano, G., Catalano, A., Challinor, A., Charles, I., Chluba, J., Clements, D.L., Clesse, S., Colafrancesco, S., Colantoni, I., Contreras, D., Coppolecchia, A., Crook, M., D'Alessandro, G., D'Amico, G., Silva, A.D., De Avillez, M., De Gasperis, G., Petris, M.D., De Zotti, G., Danese, L., Désert, F.-X., Desjacques, V., Valentino, E.D., Dickinson, C., Diego, J.M., Doyle, S., Durrer, R., Dvorkin, C., Eriksen, H.K., Errard, J., Feeney, S., Fernández-Cobos, R., Finelli, F., Forastieri, F., Franceschet, C., Fuskeland, U., Galli, S., Génova-Santos, R.T., Gerbino, M., Giusarma, E., Gomez, A., González-Nuevo, J., Grandis, S., Greenslade, J., Goupy, J., Hagstotz, S., Hanany, S., Handley, W., Henrot-Versillé, S., Hernández-Monteagudo, C., Hervias-Caimapo, C., Hills, M., Hindmarsh, M., Hivon, E., Hoang, D.T., Hooper, D.C., Hu, B., Keihänen, E., Keskitalo, R., Kiiveri, K., Kisner, T., Kitching, T., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamagna, L., Lapi, A., Lasenby, A., Lattanzi, M., Brun, A.M.C.L., Lesgourgues, J., Liguori, M., Lindholm, V., Lizarraga, J., Luzzi, G., Macìas-Pérez, J.F., Maffei, B., Mandolesi, N., Martin, S., Martinez-Gonzalez, E., Martins, C.J.A.P., Masi, S., Massardi, M., Matarrese, S., Mazzotta, P., McCarthy, D., Melchiorri, A., Melin, J.-B., Mennella, A., Mohr, J., Molinari, D., Monfardini, A., Montier, L., Natoli, P., Negrello, M., Notari, A., Noviello, F., Oppizzi, F., O'Sullivan, C., Pagano, L., Paiella, A., Pajer, E., Paoletti, D., Paradiso, S., Partridge, R.B., Patanchon, G., Patil, S.P., Perdereau, O., Piacentini, F., Piat, M., Pisano, G., Polastri, L., Polenta, G., Pollo, A., Ponthieu, N., Poulin, V., Prêle, D., Quartin, M., Ravenni, A., Remazeilles, M., Renzi, A., Ringeval, C., Roest, D., Roman, M., Roukema, B.F., Rubiño-Martin, J.-A., Salvati, L., Scott, D., Serjeant, S., Signorelli, G., Starobinsky, A.A., Sunyaev, R., Tan, C.Y., Tartari, A., Tasinato, G., Toffolatti, L., Tomasi, M., Torrado, J., Tramonte, D., Trappe, N., Triqueneaux, S., Tristram, M., Trombetti, T., Tucci, M., Tucker, C., Urrestilla, J., Väliviita, J., De Weygaert, R.V., Tent, B.V., Vennin, V., Verde, L., Vermeulen, G., Vielva, P., Vittorio, N., Voisin, F., Wallis, C., Wandelt, B., Wehus, I.K., Weller, J., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
11. Reducing the H 0 and σ
- Author
-
Eleonora Di Valentino, Céline Bœhm, Eric Hivon, and François R. Bouchet
- Published
- 2018
- Full Text
- View/download PDF
12. Planck intermediate results LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect
- Author
-
Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J. -P, Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Carron, J., Chiang, H. C., Comis, B., Contreras, D., Crill, B. P., Curto, A., Cuttaia, F., Bernardis, P., Rosa, A., Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gerbino, M., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Eric Hivon, Huang, Z., Jaffe, A. H., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J. -M, Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. -Z, Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., Mcewen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M. -A, Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Ruiz-Granados, B., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Stanco, L., Sunyaev, R., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., Zonca, A., Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), APC - Gravitation (APC-Gravitation), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Benabed, K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Burigana, C., Calabrese, E., Carron, J., Chiang, H.C., Comis, B., Contreras, D., Crill, B. P., Curto, A., Cuttaia, F., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Di Valentino, E., Dickinson, C., Diego, J. M., Doré, O., Ducout, A., Dupac, X., Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Finelli, F., Forastieri, F., Frailis, M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gerbino, M., Górski, K. M., Gruppuso, A., Gudmundsson, J. E., Handley, W., Hansen, F. K., Herranz, D., Hivon, E., Huang, Z., Jaffe, A. H., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J., Kisner, T. S., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lamarre, J.-M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Levrier, F., Liguori, M., Lilje, P. B., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Martin, P. G., Martínez-González, E., Matarrese, S., Mauri, N., McEwen, J. D., Melchiorri, A., Mennella, A., Migliaccio, M., Miville-Deschênes, M.-A., Molinari, D., Moneti, A., Montier, L., Morgante, G., Natoli, P., Oxborrow, C. A., Pagano, L., Paoletti, D., Partridge, B., Perdereau, O., Perotto, L., Pettorino, V., Piacentini, F., Plaszczynski, S., Polastri, L., Polenta, G., Rachen, J. P., Racine, B., Reinecke, M., Remazeilles, M., Renzi, A., Rocha, G., Roudier, G., Ruiz-Granados, B., Sandri, M., Savelainen, M., Scott, D., Sirignano, C., Sirri, G., Spencer, L. D., Stanco, L., Sunyaev, R., Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Tristram, M., Trombetti, T., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Vittorio, N., Wandelt, B. D., Wehus, I. K., Zacchei, A., Zonca, A., Department of Physics, and Helsinki Institute of Physics
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Large-scale structure of Universe ,Astronomy ,Cosmic microwave background ,FOS: Physical sciences ,GALAXY CLUSTER SURVEY ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,clusters: general [Galaxies] ,Kinetic energy ,Cosmic background radiation ,H(-1) MPC SCALES ,114 Physical sciences ,01 natural sciences ,NO ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,ELLIPTIC GALAXIES ,Methods: data analysis ,0103 physical sciences ,Dispersion (optics) ,Optical depth (astrophysics) ,Planck ,data analysis [Methods] ,010303 astronomy & astrophysics ,Physics ,cosmic background radiation / large-scale structure of Universe / galaxies: clusters: general / methods: data analysis ,010308 nuclear & particles physics ,cosmicbackgroundradiation–large-scalestructureofUniverse–galaxies:clusters:general–methods:dataanalysis ,Velocity dispersion ,Order (ring theory) ,BULK FLOWS ,Astronomy and Astrophysics ,Galaxies: clusters: general ,Space and Planetary Science ,DISTANT CLUSTERS ,115 Astronomy, Space science ,Galaxy ,MICROWAVE BACKGROUND MAPS ,INTERNAL LINEAR COMBINATION ,SCALE PECULIAR VELOCITIES ,X-RAY ,COSMIC FLOWS ,astro-ph.CO ,symbols ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Using the ${\it Planck}$ full-mission data, we present a detection of the temperature (and therefore velocity) dispersion due to the kinetic Sunyaev-Zeldovich (kSZ) effect from clusters of galaxies. To suppress the primary CMB and instrumental noise we derive a matched filter and then convolve it with the ${\it Planck}$ foreground-cleaned `${\tt 2D-ILC\,}$' maps. By using the Meta Catalogue of X-ray detected Clusters of galaxies (MCXC), we determine the normalized ${\it rms}$ dispersion of the temperature fluctuations at the positions of clusters, finding that this shows excess variance compared with the noise expectation. We then build an unbiased statistical estimator of the signal, determining that the normalized mean temperature dispersion of $1526$ clusters is $\langle \left(\Delta T/T \right)^{2} \rangle = (1.64 \pm 0.48) \times 10^{-11}$. However, comparison with analytic calculations and simulations suggest that around $0.7\,\sigma$ of this result is due to cluster lensing rather than the kSZ effect. By correcting this, the temperature dispersion is measured to be $\langle \left(\Delta T/T \right)^{2} \rangle = (1.35 \pm 0.48) \times 10^{-11}$, which gives a detection at the $2.8\,\sigma$ level. We further convert uniform-weight temperature dispersion into a measurement of the line-of-sight velocity dispersion, by using estimates of the optical depth of each cluster (which introduces additional uncertainty into the estimate). We find that the velocity dispersion is $\langle v^{2} \rangle =(123\,000 \pm 71\,000)\,({\rm km}\,{\rm s}^{-1})^{2}$, which is consistent with findings from other large-scale structure studies, and provides direct evidence of statistical homogeneity on scales of $600\,h^{-1}{\rm Mpc}$. Our study shows the promise of using cross-correlations of the kSZ effect with large-scale structure in order to constrain the growth of structure., Comment: 20 pages, 12 figures and 8 tables, A&A in press
- Published
- 2018
- Full Text
- View/download PDF
13. Exploring Cosmic Origins with CORE: Cluster Science
- Author
-
Alessandro Monfardini, Karl Young, Mario Ballardini, E. Di Valentino, Massimiliano Lattanzi, Sebastien Clesse, Mathieu Remazeilles, Giampaolo Pisano, Michele Liguori, Alessandro Buzzelli, Tiziana Trombetti, Joseph J. Mohr, Ricardo Genova-Santos, François R. Bouchet, Jose M. Diego, Zhen-Yi Cai, Carlo Burigana, J. Borrill, Jean-Baptiste Melin, Stephen M. Feeney, Josquin Errard, C. S. Carvalho, Ted Kisner, M. Kunz, Nicola Bartolo, Kaustuv Basu, Jose Alberto Rubino-Martin, Jens Chluba, S. Triqueneaux, C. J. A. P. Martins, G. de Gasperis, G. de Zotti, P. Vielva, Bruno Maffei, A. M. C. Le Brun, Neil Trappe, D. McCarthy, Enrique Martinez-Gonzalez, J. Greenslade, G. Polenta, Anthony Lasenby, Nicola Vittorio, V. Lindholm, Daniel Baumann, Carlos Hernández-Monteagudo, Vincent Vennin, M. López-Caniego, Diego Molinari, R. Allison, Alessandro Coppolecchia, Luca Lamagna, D. Tramonte, Simone Ferraro, A. Lewis, K. Kiiveri, L. Polastri, Alessandro Melchiorri, Carole Tucker, S. Hagstotz, R. Fernandez-Cobos, Silvia Galli, P. de Bernardis, Alessandro Paiella, A. Tartari, Daniela Paoletti, Francois Boulanger, Anthony Challinor, Jacques Delabrouille, Giuseppe D'Alessandro, Alessio Notari, M. Tomasi, Fabio Finelli, Marco Castellano, Martina Gerbino, Marco Bersanelli, James G. Bartlett, J. J. A. Baselmans, Francesco Forastieri, Richard A. Battye, Mario Zannoni, Paolo Natoli, M. Piat, M. Ashdown, Will Handley, A. Bonaldi, J. Valiviita, Martin Crook, Martino Calvo, Vivian Poulin, Ana Achúcarro, Peter A. R. Ade, Mattia Negrello, S. Colafrancesco, R. Banerji, Miguel Quartin, S. Basak, R. van de Weygaert, Sebastian Grandis, Matthew Hills, Martin Bucher, Guillaume Patanchon, M. Bonato, Hannu Kurki-Suonio, B. Van Tent, A. J. Banday, Thejs Brinckmann, Shaul Hanany, J. González-Nuevo, Eric Hivon, M. De Petris, A. Pollo, C. Hervias-Caimapo, Matthieu Roman, Julien Lesgourgues, Thomas Kitching, L. Salvati, J. F. Macías-Pérez, I. Colantoni, Jochen Weller, Gemma Luzzi, Silvia Masi, Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Lagrange de Paris, Sorbonne Université (SU), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), CORE, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Sorbonne Universités, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Universitat de Barcelona, Melin, J, Bonaldi, A, Remazeilles, M, Hagstotz, S, Diego, J, Hernández-Monteagudo, C, Génova-Santos, R, Luzzi, G, Martins, C, Grandis, S, Mohr, J, Bartlett, J, Delabrouille, J, Ferraro, S, Tramonte, D, Rubiño-Martín, J, Macìas-Pérez, J, Achúcarro, A, Ade, P, Allison, R, Ashdown, M, Ballardini, M, Banday, A, Banerji, R, Bartolo, N, Basak, S, Basu, K, Battye, R, Baumann, D, Bersanelli, M, Bonato, M, Borrill, J, Bouchet, F, Boulanger, F, Brinckmann, T, Bucher, M, Burigana, C, Buzzelli, A, Cai, Z, Calvo, M, Carvalho, C, Castellano, M, Challinor, A, Chluba, J, Clesse, S, Colafrancesco, S, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, de Bernardis, P, de Gasperis, G, Petris, M, Zotti, G, Valentino, E, Errard, J, Feeney, S, Fernández-Cobos, R, Finelli, F, Forastieri, F, Galli, S, Gerbino, M, González-Nuevo, J, Greenslade, J, Hanany, S, Handley, W, Hervias-Caimapo, C, Hills, M, Hivon, E, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lattanzi, M, Brun, A, Lesgourgues, J, Lewis, A, Liguori, M, Lindholm, V, Lopez-Caniego, M, Maffei, B, Martinez-Gonzalez, E, Masi, S, Mazzotta, P, Mccarthy, D, Melchiorri, A, Molinari, D, Monfardini, A, Natoli, P, Negrello, M, Notari, A, Paiella, A, Paoletti, D, Patanchon, G, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Poulin, V, Quartin, M, Roman, M, Salvati, L, Tartari, A, Tomasi, M, Trappe, N, Triqueneaux, S, Trombetti, T, Tucker, C, Väliviita, J, de Weygaert, R, Tent, B, Vennin, V, Vielva, P, Vittorio, N, Weller, J, Young, K, Zannoni, M, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Département de Physique des Particules (ex SPP) (DPhP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Hélium : du fondamental aux applications (NEEL - HELFA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astronomy, String Theory (ITFA, IoP, FNWI), Helsinki Institute of Physics, and Department of Physics
- Subjects
cluster count ,Cosmic microwave background ,MICROWAVE BACKGROUND COMPTONIZATION ,Astrophysics ,01 natural sciences ,HOT GAS ,law.invention ,law ,cluster counts ,CMBR experiments ,galaxy clusters ,Sunyaev-Zeldovich effect ,CMBR experiments, Sunyaev-Zeldovich effect, cluster counts, galaxy clusters ,WEAK-LENSING MASSES ,MASSIVE GALAXY CLUSTERS ,010303 astronomy & astrophysics ,TEMPERATURE ,QC ,QB ,Physics ,Clusters of galaxies ,Settore FIS/05 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology ,symbols ,astro-ph.CO ,Halo ,CMBR experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,galaxy cluster ,Cúmuls de galàxies ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMOLOGICAL PARAMETERS ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NO ,Primary mirror ,Telescope ,SUNYAEV-ZELDOVICH MAPS ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,0103 physical sciences ,Cluster (physics) ,Planck ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,Cosmologia ,RELATIVISTIC CORRECTIONS ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Redshift ,EVOLUTION ,RADIATION ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We thank the anonymous referee for useful comments, which helped to clarify the paper. Some of the results in this paper have been derived using the HEALPix package. Parts of the cosmological analysis was made using Cosmo MC, CLASS and MontePython. C.H.-M. acknowledges financial support of the Spanish Ministry of Economy and Competitiveness via I+D project AYA-2015-66211-C2-2-P. CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE. J.G.N. acknowledges financial support from the Spanish MINECO for a ‘Ramon y Cajal’ fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER)., Melin, J.-B., Bonaldi, A., Remazeilles, M., Hagstotz, S., Diego, J.M., Hernández-Monteagudo, C., Génova-Santos, R.T., Luzzi, G., Martins, C.J.A.P., Grandis, S., Mohr, J.J., Bartlett, J.G., Delabrouille, J., Ferraro, S., Tramonte, D., Rubiño-Martín, J.A., Macìas-Pérez, J.F., Achúcarro, A., Ade, P., Allison, R., Ashdown, M., Ballardini, M., Banday, A.J., Banerji, R., Bartolo, N., Basak, S., Basu, K., Battye, R.A., Baumann, D., Bersanelli, M., Bonato, M., Borrill, J., Bouchet, F., Boulanger, F., Brinckmann, T., Bucher, M., Burigana, C., Buzzelli, A., Cai, Z.-Y., Calvo, M., Carvalho, C.S., Castellano, M.G., Challinor, A., Chluba, J., Clesse, S., Colafrancesco, S., Colantoni, I., Coppolecchia, A., Crook, M., D'Alessandro, G., De Bernardis, P., De Gasperis, G., Petris, M.D., Zotti, G.D., Valentino, E.D., Errard, J., Feeney, S.M., Fernández-Cobos, R., Finelli, F., Forastieri, F., Galli, S., Gerbino, M., González-Nuevo, J., Greenslade, J., Hanany, S., Handley, W., Hervias-Caimapo, C., Hills, M., Hivon, E., Kiiveri, K., Kisner, T., Kitching, T., Kunz, M., Kurki-Suonio, H., Lamagna, L., Lasenby, A., Lattanzi, M., Brun, A.M.C.L., Lesgourgues, J., Lewis, A., Liguori, M., Lindholm, V., Lopez-Caniego, M., Maffei, B., Martinez-Gonzalez, E., Masi, S., Mazzotta, P., McCarthy, D., Melchiorri, A., Molinari, D., Monfardini, A., Natoli, P., Negrello, M., Notari, A., Paiella, A., Paoletti, D., Patanchon, G., Piat, M., Pisano, G., Polastri, L., Polenta, G., Pollo, A., Poulin, V., Quartin, M., Roman, M., Salvati, L., Tartari, A., Tomasi, M., Trappe, N., Triqueneaux, S., Trombetti, T., Tucker, C., Väliviita, J., De Weygaert, R.V., Tent, B.V., Vennin, V., Vielva, P., Vittorio, N., Weller, J., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
14. Reducing the $H_0$ and $\sigma_8$ tensions with Dark Matter-neutrino interactions
- Author
-
Di Valentino, Eleonora, Bøehm, Céline, Eric Hivon, Bouchet, François R., Laboratoire d'Annecy-le-Vieux de Physique Théorique ( LAPTH ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
satellite: Planck ,Hubble constant ,lens ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,tension ,cosmic background radiation: temperature ,High Energy Physics - Phenomenology ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,cosmic background radiation: multipole ,power spectrum: angular dependence ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The introduction of Dark Matter-neutrino interactions modifies the Cosmic Microwave Background (CMB) angular power spectrum at all scales, thus affecting the reconstruction of the cosmological parameters. Such interactions can lead to a slight increase of the value of $H_0$ and a slight decrease of $\sigma_8$, which can help reduce somewhat the tension between the CMB and lensing or Cepheids datasets. Here we show that it is impossible to solve both tensions simultaneously. While the 2015 Planck temperature and low multipole polarisation data combined with the Cepheids datasets prefer large values of the Hubble rate (up to $H_0 = 72.1^{+1.5}_{-1.7} \rm{km/s/Mpc}$, when $N_{\rm{eff}}$ is free to vary), the $\sigma_8$ parameter remains too large to reduce the $\sigma_8$ tension. Adding high multipole Planck polarization data does not help since this data shows a strong preference for low values of $H_0$, thus worsening current tensions, even though they also prefer smaller value of $\sigma_8$., Comment: 10 pages
- Published
- 2017
- Full Text
- View/download PDF
15. QuickPol: Fast calculation of effective beam matrices for CMB polarization
- Author
-
Nicolas Ponthieu, S. Mottet, Eric Hivon, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'astrophysique spatiale ( IAS ), and Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics ,cosmic background radiation ,01 natural sciences ,Transfer function ,methods: analytical ,symbols.namesake ,0103 physical sciences ,Planck ,Anisotropy ,010303 astronomy & astrophysics ,Leakage (electronics) ,Physics ,polarization ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Polarization (waves) ,Computational physics ,Space and Planetary Science ,cosmology: observations ,symbols ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Current and planned observations of the cosmic microwave background (CMB) polarization anisotropies, with their ever increasing number of detectors, have reached a potential accuracy that requires a very demanding control of systematic effects. While some of these systematics can be reduced in the design of the instruments, others will have to be modeled and hopefully accounted for or corrected a posteriori. We propose QuickPol, a quick and accurate calculation of the full effective beam transfer function and of temperature to polarization leakage at the power spectra level, as induced by beam imperfections and mismatches between detector optical and electronic responses. All the observation details such as exact scanning strategy, imperfect polarization measurements, and flagged samples are accounted for. Our results are validated on Planck high frequency instrument (HFI) simulations. We show how the pipeline can be used to propagate instrumental uncertainties up to the final science products, and could be applied to experiments with rotating half-wave plates., 22 pages, 5 figures; edited for typos, style and updated references; matches the version to be published in A&A
- Published
- 2017
- Full Text
- View/download PDF
16. Making 3D movies of Northern Lights
- Author
-
Eric Hivon, Jean Mouette, Thierry Legault, Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Computer science ,FOS: Physical sciences ,Image processing ,lcsh:QC851-999 ,01 natural sciences ,visualisation ,0103 physical sciences ,Computer vision ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,algorithm ,business.industry ,aurora ,[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ,Visualization ,image processing ,Stars ,Space and Planetary Science ,Order (business) ,technical ,lcsh:Meteorology. Climatology ,Artificial intelligence ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We describe the steps necessary to create three-dimensional (3D) movies of Northern Lights or Aurorae Borealis out of real-time images taken with two distant high-resolution fish-eye cameras. Astrometric reconstruction of the visible stars is used to model the optical mapping of each camera and correct for it in order to properly align the two sets of images. Examples of the resulting movies can be seen at http://www.iap.fr/aurora3d., 9 pages, 5 figures, matches the version published in J. Space Weather Space Clim. 7, A24 (open access). Paper and code available at http://www.iap.fr/aurora3d
- Published
- 2017
- Full Text
- View/download PDF
17. Searching for non-Gaussian signals in the BOOMERANG 2003 CMB maps
- Author
-
P. Cabella, Dmitry Pogosyan, Pedro G. Ferreira, Ted Kisner, Enzo Pascale, Peter A. R. Ade, Martin Kunz, S. Ricciardi, M. Veneziani, Max Tegmark, F. Piacentini, J. R. Bond, Paolo Natoli, Andrew E. Lange, Philip Daniel Mauskopf, Eric Hivon, Silvia Masi, T. E. Montroy, Calvin B. Netterfield, Simon Prunet, G. Di Stefano, G. de Gasperis, B. P. Crill, Andrew H. Jaffe, Sabino Matarrese, Nicola Vittorio, P. Santini, Alessandro Melchiorri, A. de Oliveira-Costa, A. Boscaleri, G. Polenta, Julian Borrill, J. E. Ruhl, Giovanni Romeo, G. De Troia, Michele Liguori, W. C. Jones, James J. Bock, C. J. MacTavish, P. de Bernardis, and Carlo R. Contaldi
- Subjects
Physics ,cosmic microwave background ,Gaussian ,Cosmic microwave background ,Astrophysics (astro-ph) ,Cosmic background radiation ,Estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmology: Cosmic Microwave Background ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology ,symbols.namesake ,Amplitude ,Settore FIS/05 - Astronomia e Astrofisica ,Space and Planetary Science ,Minkowski space ,symbols ,Statistical physics ,Nonlinear coupling ,QC - Abstract
We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensitivity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -300, Comment: accepted for publication in ApJ. Letters
- Published
- 2016
- Full Text
- View/download PDF
18. BOOMERanG constraints on primordial non-Gaussianity from analytical Minkowski functionals
- Author
-
W. C. Jones, Peter A. R. Ade, Chiaki Hikage, B. P. Crill, Max Tegmark, Philip Daniel Mauskopf, Nicola Vittorio, Eiichiro Komatsu, T. E. Montroy, Enzo Pascale, G. De Troia, Ted Kisner, G. Di Stefano, G. Polenta, C. J. MacTavish, F. Piacentini, Julian Borrill, P. de Bernardis, S. Ricciardi, Carlo R. Contaldi, Andrew E. Lange, J. E. Ruhl, Eric Hivon, Calvin B. Netterfield, Silvia Masi, Alessandro Melchiorri, A. de Oliveira-Costa, James J. Bock, Giovanni Romeo, J. R. Bond, G. de Gasperis, M. Veneziani, Paolo Natoli, M. Migliaccio, and A. Boscaleri
- Subjects
Physics ,Field (physics) ,010308 nuclear & particles physics ,Cosmic microwave background ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Joint analysis ,01 natural sciences ,Space and Planetary Science ,Coupling parameter ,Non-Gaussianity ,0103 physical sciences ,Minkowski space ,Limit (mathematics) ,010303 astronomy & astrophysics ,Mathematical physics - Abstract
We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two datasets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al. (2006), which can be used to constrain the coupling parameter f_NL without the need for non-Gaussian simulations. We find -1020
- Published
- 2010
- Full Text
- View/download PDF
19. MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA
- Author
-
John M Kovac, Viktor Hristov, L. Duband, W. L. Holzapfel, H. C. Chiang, Andrew E. Lange, E. M. Bierman, Ki Won Yoon, Chao-Lin Kuo, J. E. Tolan, C. D. Sheehy, C. Pryke, James J. Bock, Tomotake Matsumura, C. D. Dowell, Denis Barkats, H. T. Nguyen, G. Rocha, S. Richter, Eric Hivon, Brian Keating, Nicolas Ponthieu, P. V. Mason, W. C. Jones, E. M. Leitch, Y. D. Takahashi, J. Battle, and Peter A. R. Ade
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC cancer database ,010308 nuclear & particles physics ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Spectral density ,Astronomy and Astrophysics ,Polarimeter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,01 natural sciences ,Spectral line ,Gravitational wave background ,Space and Planetary Science ,Sky ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,media_common - Abstract
Background Imaging of Cosmic Extragalactic Polarization (BICEP) is a bolometric polarimeter designed to measure the inflationary B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. During three seasons of observing at the South Pole (2006 through 2008), BICEP mapped ~2% of the sky chosen to be uniquely clean of polarized foreground emission. Here we present initial results derived from a subset of the data acquired during the first two years. We present maps of temperature, Stokes Q and U, E and B modes, and associated angular power spectra. We demonstrate that the polarization data are self-consistent by performing a series of jackknife tests. We study potential systematic errors in detail and show that they are sub-dominant to the statistical errors. We measure the E-mode angular power spectrum with high precision at 21 < ell < 335, detecting for the first time the peak expected at ell ~ 140. The measured E-mode spectrum is consistent with expectations from a LCDM model, and the B-mode spectrum is consistent with zero. The tensor-to-scalar ratio derived from the B-mode spectrum is r = 0.03+0.31-0.26, or r < 0.72 at 95% confidence, the first meaningful constraint on the inflationary gravitational wave background to come directly from CMB B-mode polarization., Updated to reflect published version
- Published
- 2010
- Full Text
- View/download PDF
20. TEASING: a fast and accurate approximation for the low multipole likelihood of the cosmic microwave background temperature
- Author
-
Simon Prunet, J.-F. Cardoso, Eric Hivon, and Karim Benabed
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Posterior probability ,Cosmic microwave background ,FOS: Physical sciences ,Inverse ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Measure (mathematics) ,Data set ,Angular spectrum method ,Space and Planetary Science ,0103 physical sciences ,Statistical physics ,Multipole expansion ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Inverse-gamma distribution - Abstract
We explore the low-l likelihood of the angular spectrum C(l) of masked CMB temperature maps using an adaptive importance sampler. We find that, in spite of a partial sky coverage, the likelihood distribution of each C(l) closely follows an inverse gamma distribution. Our exploration is accurate enough to measure the inverse gamma parameters along with the correlation between multipoles. Those quantities are used to build an approximation of the joint posterior distribution of the low-l likelihood. The accuracy of the proposed approximation is established using both statistical criteria and a mock cosmological parameter fit. When applied to the WMAP5 data set, this approximation yields cosmological parameter estimates at the same level of accuracy as the best current techniques but with very significant speed gains., Comment: 10 pages, 10 figures, submitted to MNRAS
- Published
- 2009
- Full Text
- View/download PDF
21. Efficient data structures for masks on 2D grids
- Author
-
Martin Reinecke and Eric Hivon
- Subjects
Focus (computing) ,Computer science ,media_common.quotation_subject ,FOS: Physical sciences ,Astronomy and Astrophysics ,Space (commercial competition) ,Astronomical survey ,Data structure ,Space and Planetary Science ,Sky ,Computer graphics (images) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common - Abstract
This article discusses various methods of representing and manipulating arbitrary coverage information in two dimensions, with a focus on space- and time-efficiency when processing such coverages, storing them on disk, and transmitting them between computers. While these considerations were originally motivated by the specific tasks of representing sky coverage and cross-matching catalogues of astronomical surveys, they can be profitably applied in many other situations as well., accepted by A&A
- Published
- 2015
22. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence
- Author
-
A. Coulais, G. de Zotti, A. Benoit-Lévy, B. P. Crill, B. Van Tent, Francesca Perrotta, F. Atrio-Barandela, S. Ricciardi, T. Riller, Federico Nati, Anna Gregorio, R. B. Barreiro, A. Mennella, Y. Giraud-Héraud, Torsten A. Enßlin, Radek Stompor, Jörg P. Rachen, Allan Hornstrup, D. Sutton, X. Dupac, M. Tomasi, Ben Rusholme, Mika Juvela, D. Alina, Jacques Delabrouille, Rashmikant V. Sudiwala, Marc-Antoine Miville-Deschênes, Luca Terenzi, C. Combet, Doris Arzoumanian, Etienne Pointecouteau, Marco Bersanelli, A. De Rosa, L. Fanciullo, L. Popa, J.-F. Cardoso, Jose M. Diego, A. Moneti, Benjamin D. Wandelt, Julian Borrill, Eric Hivon, Stéphane Plaszczynski, Kevin M. Huffenberger, Katia Ferrière, H. K. Eriksen, Ken Ganga, F. Noviello, O. Doré, Gianluca Morgante, Carlo Burigana, Paolo Natoli, Fabio Finelli, M. Piat, Michael P. Hobson, L. A. Montier, C. A. Oxborrow, F. Boulanger, Fabrizio Villa, J.-P. Bernard, M. I. R. Alves, Alessandro Gruppuso, Pavel Naselsky, C. Armitage-Caplan, L. Mendes, Sabino Matarrese, W. Holmes, John Bond, Peter G. Martin, F. Piacentini, Douglas J. Marshall, Igor D. Novikov, A. Curto, E. Battaner, J.-M. Lamarre, Andrea Zonca, François R. Bouchet, Juan D. Soler, R. J. Davis, J. A. Tauber, D. L. Harrison, H. C. Chiang, George Helou, Luigi Danese, V. Stolyarov, Monique Arnaud, Hannu Kurki-Suonio, M. Migliaccio, R. Kneissl, A. Catalano, L. Pagano, Karim Benabed, Tuhin Ghosh, Charles R. Lawrence, M. Tucci, Enrique Martínez-González, F. Pajot, F. Couchot, T. R. Jaffe, Nabila Aghanim, F. Pasian, Alessandro Melchiorri, Andrea Bracco, R. D. Davies, P. B. Lilje, Peter A. R. Ade, G. Polenta, Clive Dickinson, V.-M. Pelkonen, I. Ristorcelli, G. Umana, Davide Pietrobon, Ted Kisner, M. Ashdown, Edith Falgarone, S. Donzelli, Marian Douspis, Davide Maino, A. A. Fraisse, G. Aniano, L. Toffolatti, Sergi R. Hildebrandt, L. P. L. Colombo, Anthony Lasenby, E. Keihänen, G. W. Pratt, Krzysztof M. Gorski, Calvin B. Netterfield, Stephane Colombi, Martin Kunz, P. R. Christensen, A. J. Banday, Dmitry Novikov, L. A. Wade, Daniela Paoletti, A. Chamballu, R. Leonardi, C. Rosset, G. Roudier, Dipak Munshi, Mathieu Remazeilles, George Efstathiou, Michele Liguori, M. Linden-Vørnle, Jussi Valiviita, Vincent Guillet, J. González-Nuevo, Silvia Masi, Locke D. Spencer, J. Knoche, Simon Prunet, P. Bielewicz, Olivier Forni, M. Frailis, M. Reinecke, Carlo Baccigalupi, François Levrier, C. Hernández-Monteagudo, F. K. Hansen, J.-F. Sygnet, Luca Valenziano, E. Franceschi, S. Galeotta, J. Aumont, J. F. Macías-Pérez, Graca Rocha, Douglas Scott, N. Mandolesi, Andrew H. Jaffe, Philip Lubin, P. de Bernardis, L. Perotto, O. Perdereau, A.-S. Suur-Uski, M. Giard, M. Maris, Reijo Keskitalo, Guilaine Lagache, M. López-Caniego, Daniel J. Mortlock, M. Sandri, P. Vielva, J. A. Murphy, Matthieu Tristram, Pasquale Mazzotta, C. Renault, F. Cuttaia, Jean-Loup Puget, W. C. Jones, Consejo Superior de Investigaciones Científicas (España), European Research Council, Junta de Andalucía, European Commission, Ministerio de Ciencia e Innovación (España), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Planck, Department of Physics, Helsinki Institute of Physics, Ade, P, Aghanim, N, Alina, D, Alves, M, Aniano, G, Armitage-Caplan, C, Arnaud, M, Arzoumanian, D, Ashdown, M, Atrio-Barandela, F, Aumont, J, Baccigalupi, C, Banday, A, Barreiro, R, Battaner, E, Benabed, K, Benoit-Levy, A, Bernard, J, Bersanelli, M, Bielewicz, P, Bond, J, Borrill, J, Bouchet, F, Boulanger, F, Bracco, A, Burigana, C, Cardoso, J, Catalano, A, Chamballu, A, Chiang, H, Christensen, P, Colombi, S, Colombo, L, Combet, C, Couchot, F, Coulais, A, Crill, B, Curto, A, Cuttaia, F, Danese, L, Davies, R, Davis, R, De Bernardis, P, De Rosa, A, De Zotti, G, Delabrouille, J, Dickinson, C, Diego, J, Donzelli, S, Dore, O, Douspis, M, Dupac, X, Efstathiou, G, Ensslin, T, Eriksen, H, Falgarone, E, Fanciullo, L, Ferriere, K, Finelli, F, Forni, O, Frailis, M, Fraisse, A, Franceschi, E, Galeotta, S, Ganga, K, Ghosh, T, Giard, M, Giraud-Heraud, Y, Gonzalez-Nuevo, J, Gorski, K, Gregorio, A, Gruppuso, A, Guillet, V, Hansen, F, Harrison, D, Helou, G, Hernandez-Monteagudo, C, Hildebrandt, S, Hivon, E, Hobson, M, Holmes, W, Hornstrup, A, Huffenberger, K, Jaffe, A, Jaffe, T, Jones, W, Juvela, M, Keihanen, E, Keskitalo, R, Kisner, T, Kneissl, R, Knoche, J, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamarre, J, Lasenby, A, Lawrence, C, Leonardi, R, Levrier, F, Liguori, M, Lilje, P, Linden-Vornle, M, Lopez-Caniego, M, Lubin, P, Macias-Perez, J, Maino, D, Mandolesi, N, Maris, M, Marshall, D, Martin, P, Martinez-Gonzalez, E, Masi, S, Matarrese, S, Mazzotta, P, Melchiorri, A, Mendes, L, Mennella, A, Migliaccio, M, Miville-Deschenes, M, Moneti, A, Montier, L, Morgante, G, Mortlock, D, Munshi, D, Murphy, J, Naselsky, P, Nati, F, Natoli, P, Netterfield, C, Noviello, F, Novikov, D, Novikov, I, Oxborrow, C, Pagano, L, Pajot, F, Paoletti, D, Pasian, F, Pelkonen, V, Perdereau, O, Perotto, L, Perrotta, F, Piacentini, F, Piat, M, Pietrobon, D, Plaszczynski, S, Pointecouteau, E, Polenta, G, Popa, L, Pratt, G, Prunet, S, Puget, J, Rachen, J, Reinecke, M, Remazeilles, M, Renault, C, Ricciardi, S, Riller, T, Ristorcelli, I, Rocha, G, Rosset, C, Roudier, G, Rusholme, B, Sandri, M, Scott, D, Soler, J, Spencer, L, Stolyarov, V, Stompor, R, Sudiwala, R, Sutton, D, Suur-Uski, A, Sygnet, J, Tauber, J, Terenzi, L, Toffolatti, L, Tomasi, M, Tristram, M, Tucci, M, Umana, G, Valenziano, L, Valiviita, J, Van Tent, B, Vielva, P, Villa, F, Wade, L, Wandelt, B, Zonca, A, Ade, P. A. R., Aghanim, N., Alina, D., Alves, M. I. R., Aniano, G., Armitage Caplan, C., Arnaud, M., Arzoumanian, D., Ashdown, M., Atrio Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Battaner, E., Benabed, K., Benoit Lévy, A., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Burigana, C., Cardoso, J. F., Catalano, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., De Bernardis, P., De Rosa, A., De Zotti, G., Delabrouille, J., Dickinson, C., Diego, J. M., Donzelli, S., Doré, O., Douspis, M., Dupac, X., Efstathiou, G., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fanciullo, L., Ferrière, K., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Galeotta, S., Ganga, K., Ghosh, T., Giard, M., Giraud Héraud, Y., González Nuevo, J., Górski, K. M., Gregorio, Anna, Gruppuso, A., Guillet, V., Hansen, F. K., Harrison, D. L., Helou, G., Hernández Monteagudo, C., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Huffenberger, K. M., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki Suonio, H., Lagache, G., Lamarre, J. M., Lasenby, A., Lawrence, C. R., Leonardi, R., Levrier, F., Liguori, M., Lilje, P. B., Linden Vørnle, M., López Caniego, M., Lubin, P. M., Macías Pérez, J. F., Maino, D., Mandolesi, N., Maris, M., Marshall, D. J., Martin, P. G., Martínez González, E., Masi, S., Matarrese, S., Mazzotta, P., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Miville Deschênes, M. A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Pelkonen, V. M., Perdereau, O., Perotto, L., Perrotta, F., Piacentini, F., Piat, M., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prunet, S., Puget, J. L., Rachen, J. P., Reinecke, M., Remazeilles, M., Renault, C., Ricciardi, S., Riller, T., Ristorcelli, I., Rocha, G., Rosset, C., Roudier, G., Rusholme, B., Sandri, M., Scott, D., Soler, J. D., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sutton, D., Suur Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Umana, G., Valenziano, L., Valiviita, J., Van Tent, B., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Zonca, A., Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP)
- Subjects
statistical [Methods] ,magnetic field [ISM] ,Astronomy ,cloud [ISM] ,Astrophysics ,7. Clean energy ,ISM: clouds ,TAURUS ,Anisotropy ,ComputingMilieux_MISCELLANEOUS ,QB ,ASSOCIATIONS ,Physics ,infrared: ISM ,Dust , extinction ,Line-of-sight ,general [ISM] ,extinction ,ADAPTIVE MESH REFINEMENT ,ISM [Submillimeter] ,Dust ,SUBMILLIMETER EMISSION ,Polarization (waves) ,Magnetic field ,symbols ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,submillimeter: ISM ,INTERSTELLAR POLARIZATION ,dust, extinction ,ISM: magnetic fields ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Atomic physics ,clouds [ISM] ,EFFICIENCY ,Opacity ,GRAIN ALIGNMENT ,ISM [Infrared] ,FOS: Physical sciences ,MAGNETIC-FIELDS ,NO ,Dust, extinction ,Infrared: ISM ,ISM: general ,Submillimeter: ISM ,Astronomy and Astrophysics ,Space and Planetary Science ,symbols.namesake ,ISM: magnetic field ,Settore FIS/05 - Astronomia e Astrofisica ,ISM: cloud ,RADIATIVE TORQUE ALIGNMENT ,Planck ,Astrophysics::Galaxy Astrophysics ,Brewster's angle ,numerical [Methods] ,magnetic fields [ISM] ,Astronomy and Astrophysic ,115 Astronomy, Space science ,Astrophysics - Astrophysics of Galaxies ,Observational [Methods] ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,13. Climate action ,Astrophysics of Galaxies (astro-ph.GA) ,MOLECULAR CLOUDS ,Magnetohydrodynamics - Abstract
et al., Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function . However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties., The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement No. 267934.
- Published
- 2015
- Full Text
- View/download PDF
23. ELLIPTICITY ANALYSIS OF THE BOOMERanG CMB MAPS
- Author
-
Enzo Pascale, F. Piacentini, Philip Daniel Mauskopf, Carlo Luciano Bianco, Silvia Masi, Andrew E. Lange, Eric Hivon, P. de Bernardis, T. E. Montroy, James J. Bock, B. P. Crill, Calvin B. Netterfield, G. Polenta, A. L. Kashin, Ken Ganga, J. E. Ruhl, Paolo Natoli, G. De Troia, M. Giacometti, Viktor Hristov, Vahe Gurzadyan, Peter A. R. Ade, and A. Boscaleri
- Subjects
Physics ,cosmic microwave background ,Orientation (computer vision) ,Astrophysics (astro-ph) ,Noise map ,Cosmic microwave background ,FOS: Physical sciences ,Estimator ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Curvature ,Mixing (mathematics) ,Space and Planetary Science ,Anisotropy ,Mathematical Physics ,Noise (radio) - Abstract
The properties of the Cosmic Microwave Background (CMB) maps carry valuable cosmological information. Here we report the results of the analysis hot and cold CMB anisotropy spots in the BOOMERanG 150 GHz map in terms of number, area, ellipticity, vs. temperature threshold. We carried out this analysis for the map obtained by summing independent measurement channels (signal plus noise map) and for a comparison map (noise only map) obtained by differencing the same channels. The anisotropy areas (spots) have been identified for both maps for various temperature thresholds and a catalog of the spots has been produced. The orientation (obliquity) of the spots is random for both maps. We computed the mean elongation of spots obtained from the maps at a given temperature threshold using a simple estimator. We found that for the sum map there is a region of temperature thresholds where the average elongation is not dependent on the threshold. Its value is ~ 2.3 for cold areas and ~ 2.2 for hot areas. This is a non-trivial result. The bias of the estimator is less than 0.4 for areas of size less than 30', and smaller for larger areas. The presence of noise also biases the ellipticity by less than 0.3. These biases have not been subtracted in the results quoted above. The threshold independent and random obliquity behaviour in the sum map is stable against pointing reconstruction accuracy and noise level of the data, thus confirming that these are actual properties of the dataset. The data used here give a hint of high ellipticity for the largest spots. Analogous elongation properties of CMB anisotropies had been detected for COBE-DMR 4-year data. If this is due to geodesics mixing, it would point to a non zero curvature of the Universe., Comment: Addendums on the more detailed description of the algorithms and on the non zero curvature
- Published
- 2003
- Full Text
- View/download PDF
24. Search for Non-Gaussian Signals in the BOOMERANG Maps: Pixel-Space Analysis
- Author
-
Simon Prunet, Julian Borrill, Dmitry Pogosyan, Andrew E. Lange, Eric Hivon, B. P. Crill, F. Piacentini, Carlo R. Contaldi, Nicola Vittorio, Philip Daniel Mauskopf, A. Zeppilli, Calvin B. Netterfield, J. E. Ruhl, Alessandro Melchiorri, Ken Ganga, Giovanni Romeo, T. E. Montroy, G. Polenta, Enzo Pascale, Peter A. R. Ade, A. H. Jaffe, J. R. Bond, Paolo Natoli, James J. Bock, G. De Troia, M. Giacometti, Viktor Hristov, G. de Gasperis, P. de Bernardis, Silvia Masi, and A. Boscaleri
- Subjects
cosmic microwave background ,Field (physics) ,Gaussian ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Minkowski space ,Range (statistics) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Space and Planetary Science ,Sky ,Skewness ,Kurtosis ,symbols - Abstract
We search the BOOMERanG maps of the anisotropy of the Cosmic Microwave Background (CMB) for deviations from gaussianity. In this paper we focus on analysis techniques in pixel-space, and compute skewness, kurtosis and Minkowski functionals for the BOOMERanG maps and for gaussian simulations of the CMB sky. We do not find any significant deviation from gaussianity in the high galactic latitude section of the 150 GHz map. We do find deviations from gaussianity at lower latitudes and at 410 GHz, and we ascribe them to Galactic dust contamination. Using non-gaussian simulations of instrumental systematic effects, of foregrounds, and of sample non-gaussian cosmological models, we set upper limits to the non-gaussian component of the temperature field in the BOOMERanG maps. For fluctuations distributed as a 1 DOF $\chi^2$ mixed to the main gaussian component our upper limits are in the few % range., Comment: changes to reflect version accepted by ApJ Letters
- Published
- 2002
- Full Text
- View/download PDF
25. High-Latitude Galactic Dust Emission in the BOOMERANG Maps
- Author
-
T. E. Montroy, M. Giacometti, A. Boscaleri, Philip Daniel Mauskopf, F. Piacentini, Calvin B. Netterfield, Silvia Masi, Enzo Pascale, P. de Bernardis, B. P. Crill, Peter A. R. Ade, Andrew E. Lange, Eric Hivon, James J. Bock, J. E. Ruhl, Simon Prunet, and Viktor Hristov
- Subjects
Physics ,Brightness ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Cosmic microwave background ,Extrapolation ,BOOMERanG experiment ,FOS: Physical sciences ,Spectral density ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,7. Clean energy ,01 natural sciences ,Latitude ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Beta (velocity) ,cosmic microwave background ,dust ,extinction ,infrared : ism : continuum ,infrared: ism: continuum ,submillimeter ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Cosmic dust - Abstract
We present mm-wave observations obtained by the BOOMERanG experiment of Galactic emission at intermediate and high (b < -20 deg) Galactic latitudes. We find that this emission is well correlated with extrapolation of the IRAS-DIRBE maps, and is spectrally consistent with thermal emission from interstellar dust (ISD). The ISD brightness in the 410 GHz map has an angular power spectrum c_l = A l^{-beta} with 2 < beta < 3. At 150 GHz and at multipoles ell \sim 200 the angular power spectrum of the IRAS-correlated dust signal is estimated to be l(l+1)c_l/2 pi = (3.7 \pm 2.9) uK^2. This is negligible with respect to the CMB signal measured by the same experiment l(l+1)c_l/2 pi = (4700 \pm 540) uK^2. For the uncorrelated dust signal we set an upper limit to the contribution to the CMB power at 150GHz and l \sim 200 of l(l+1)c_l/2 pi < 3 uK^2 at 95% C.L. .
- Published
- 2001
- Full Text
- View/download PDF
26. Scientific verification of Faraday Rotation Modulators: Detection of diffuse polarized Galactic emission
- Author
-
John M Kovac, Edward J. Wollack, S. Richter, W. L. Holzapfel, G. Rocha, Ki Won Yoon, J. P. Kaufman, H. T. Nguyen, L. Duband, W. C. Jones, E. M. Leitch, E. M. Bierman, Tomotake Matsumura, R. Aiken, C. Pryke, C. D. Dowell, Chao-Lin Kuo, James J. Bock, Denis Barkats, Nicolas Ponthieu, C. D. Sheehy, P. V. Mason, S. Moyerman, Colin A. Bischoff, Viktor Hristov, H. C. Chiang, Brian Keating, Peter A. R. Ade, J. E. Tolan, Y. D. Takahashi, and Eric Hivon
- Subjects
Physics ,COSMIC cancer database ,Pixel ,business.industry ,Linear polarization ,FOS: Physical sciences ,Astronomy and Astrophysics ,Polarization (waves) ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Radio spectrum ,010309 optics ,symbols.namesake ,Optics ,Space and Planetary Science ,Modulation ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Faraday effect ,symbols ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The design and performance of a wide bandwidth linear polarization modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to ~10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP's 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP's measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP's 43 pixels without FRMs., Comment: 13 pages, 15 figures, 2 tables
- Published
- 2012
- Full Text
- View/download PDF
27. Residual noise covariance for Planck low-resolution data analysis
- Author
-
T. Poutanen, Hannu Kurki-Suonio, F. Paci, G. De Troia, Ted Kisner, James G. Bartlett, Alessandro Gruppuso, Charles R. Lawrence, Radek Stompor, E. Keihänen, Graca Rocha, Paolo Cabella, C. Cantalupo, Eric Hivon, Krzysztof M. Gorski, Reijo Keskitalo, Julian Borrill, H. K. Eriksen, Fabio Finelli, G. Polenta, Andrew H. Jaffe, A. de Rosa, M. Ashdown, G. de Gasperis, Paolo Natoli, Oxford Astrophysics, University of Oxford [Oxford], APC - Gravitation (APC-Gravitation), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Istituto di Astrofisica Spaziale e Fisica cosmica - Bologna (IASF-Bo), Istituto Nazionale di Astrofisica (INAF), Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Dipartimento di Fisica, Universita` di Roma Tor Vergata, Università degli Studi di Roma Tor Vergata [Roma], Department of Physics, Helsinki Institute of Physics, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
cosmic microwave background ,cosmology: observations ,methods: data analysis ,methods: numerical ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Monte Carlo method ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,114 Physical sciences ,Window function ,Cosmic microwave background ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Settore FIS/05 - Astronomia e Astrofisica ,Aliasing ,0103 physical sciences ,observations [Cosmology] ,data analysis [Methods] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,numerical [Methods] ,010308 nuclear & particles physics ,HEALPix ,Spectral density ,Astronomy and Astrophysics ,Covariance ,115 Astronomy, Space science ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Noise ,Space and Planetary Science ,astro-ph.CO ,Astrophysics - Instrumentation and Methods for Astrophysics ,Algorithm ,Smoothing ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
29 páginas, 16+6 figuras, 4 tablas.-- et al., [Aims]: We develop and validate tools for estimating residual noise covariance in Planck frequency maps, we also quantify signal error effects and compare different techniques to produce low-resolution maps. [Methods]: We derived analytical estimates of covariance of the residual noise contained in low-resolution maps produced using a number of mapmaking approaches. We tested these analytical predictions using both Monte Carlo simulations and by applying them to angular power spectrum estimation. We used simulations to quantify the level of signal errors incurred in the different resolution downgrading schemes considered in this work. [Results]: We find excellent agreement between the optimal residual noise covariance matrices and Monte Carlo noise maps. For destriping mapmakers, the extent of agreement is dictated by the knee frequency of the correlated noise component and the chosen baseline offset length. Signal striping is shown to be insignificant when properly dealt with. In map resolution downgrading, we find that a carefully selected window function is required to reduce aliasing to the subpercent level at multipoles, ℓ > 2Nside, where Nside is the HEALPix resolution parameter. We show that, for a polarization measurement, reliable characterization of the residual noise is required to draw reliable constraints on large-scale anisotropy. [Conclusions]: Methods presented and tested in this paper allow for production of low-resolution maps with both controlled sky signal error level and a reliable estimate of covariance of the residual noise. We have also presented a method for smoothing the residual noise covariance matrices to describe the noise correlations in smoothed, bandwidth-limited maps.
- Published
- 2010
- Full Text
- View/download PDF
28. Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP
- Author
-
Brian Keating, Darcy Barron, Ki Won Yoon, Denis Barkats, B. P. Crill, Chao-Lin Kuo, Evan M. Bierman, C. Darren Dowell, James J. Bock, John M Kovac, W. L. Holzapfel, W. C. Jones, Nicolas Ponthieu, Peter Mason, C. Pryke, Viktor Hristov, Lionel Duband, Tomotake Matsumura, Andrew E. Lange, Eric Hivon, H. Cynthia Chiang, J. Battle, Hien Nguyen, Steffen Richter, Erik M. Leitch, Peter A. R. Ade, Graca Rocha, Yuki D. Takahashi, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Brewster's angle ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Polarimeter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galactic plane ,Polarization (waves) ,CMB cold spot ,Galaxy ,law.invention ,symbols.namesake ,law ,symbols ,Planck ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a method of cross-calibrating the polarization angle of a polarimeter using BICEP Galactic observations. \bicep\ was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers observing from the geographic South Pole at 100 and 150 GHz. The BICEP polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7 degrees in absolute polarization orientation. BICEP observed the temperature and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec. = -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to 0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at 100 and 150 GHz, respectively. We also discuss the expected improvement of the BICEP Galactic field observations with forthcoming BICEP2 and Keck observations., Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010
- Published
- 2010
- Full Text
- View/download PDF
29. Observing the Evolution of the Universe
- Author
-
James Aguirre, Alexandre Amblard, Amjad Ashoorioon, Carlo Baccigalupi, Amedeo Balbi, Bartlett, J. G., Nicola Bartolo, Dominic Benford, Mark Birkinshaw, Jamie Bock, Dick Bond, Julian Borrill, Franois Bouchet, Michael Bridges, Emory Bunn, Erminia Calabrese, Christopher Cantalupo, Ana Caramete, Carmelita Carbone, Suchetana Chatterjee, Sarah Church, David Chuss, Carlo Contaldi, Asantha Cooray, Sudeep Das, Francesco de Bernardis, Paolo de Bernardis, Gianfranco de Zotti, Delabrouille, J., Xavier Dsert, F., Mark Devlin, Clive Dickinson, Simon Dicker, Matt Dobbs, Scott Dodelson, Olivier Dore, Jessie Dotson, Joanna Dunkley, Maria Cristina Falvella, Dale Fixsen, Pablo Fosalba, Joseph Fowler, Evalyn Gates, Walter Gear, Sunil Golwala, Krzysztof Gorski, Alessandro Gruppuso, Josh Gundersen, Mark Halpern, Shaul Hanany, Masashi Hazumi, Carlos Hernandez-Monteagudo, Mark Hertzberg, Gary Hinshaw, Christopher Hirata, Eric Hivon, Warren Holmes, William Holzapfel, Wayne Hu, Johannes Hubmayr, Kevin Huffenberger, Kent Irwin, Mark Jackson, Andrew Jaffe, Bradley Johnson, William Jones, Manoj Kaplinghat, Brian Keating, Reijo Keskitalo, Justin Khoury, Will Kinney, Theodore Kisner, Lloyd Knox, Alan Kogut, Eiichiro Komatsu, Arthur Kosowsky, John Kovac, Lawrence Krauss, Hannu Kurki-Suonio, Susana Landau, Charles Lawrence, Samuel Leach, Adrian Lee, Erik Leitch, Rodrigo Leonardi, Julien Lesgourgues, Andrew Liddle, Eugene Lim, Michele Limon, Marilena Loverde, Philip Lubin, Antonio Magalhaes, Davide Maino, Tobias Marriage, Victoria Martin, Sabino Matarrese, John Mather, Harsh Mathur, Tomotake Matsumura, Pieter Meerburg, Alessandro Melchiorri, Stephan Meyer, Amber Miller, Michael Milligan, Kavilan Moodley, Michael Neimack, Hogan Nguyen, Dwyer, Ian O., Angiola Orlando, Luca Pagano, Lyman Page, Bruce Partridge, Timothy Pearson, Hiranya Peiris, Francesco Piacentini, Lucio Piccirillo, Elena Pierpaoli, Davide Pietrobon, Giampaolo Pisano, Levon Pogosian, Dmitri Pogosyan, Nicolas Ponthieu, Lucia Popa, Clement Pryke, Christoph Raeth, Subharthi Ray, Christian Reichardt, Sara Ricciardi, Paul Richards, Graca Rocha, Lawrence Rudnick, John Ruhl, Benjamin Rusholme, Claudia Scoccola, Douglas Scott, Carolyn Sealfon, Neelima Sehgal, Michael Seiffert, Leonardo Senatore, Paolo Serra, Sarah Shandera, Meir Shimon, Peter Shirron, Jonathan Sievers, Kris Sigurdson, Joe Silk, Robert Silverberg, Eva Silverstein, Suzanne Staggs, Albert Stebbins, Federico Stivoli, Radek Stompor, Naoshi Sugiyama, Daniel Swetz, Andria Tartari, Max Tegmark, Peter Timbie, Matthieu Tristram, Gregory Tucker, Jon Urrestilla, John Vaillancourt, Veneziani, M., Licia Verde, Joaquin Vieira, Scott Watson, Benjamin Wandelt, Grant Wilson, Edward Wollack, Mark Wyman, Amit Yadav, Giraud-Héraud, Y., Olivier Zahn, Matias Zaldarriaga, Michael Zemcov, Jonathan Zwart, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), and Bartlett, James
- Subjects
[SDU.ASTR.CO] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages., Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.edu
- Published
- 2009
30. SUBDEGREE SUNYAEV-ZEL'DOVICH SIGNAL FROM MULTIFREQUENCY BOOMERANG OBSERVATIONS
- Author
-
Giovanni Romeo, M. Veneziani, Paolo Serra, Paolo Natoli, Paola Santini, W. C. Jones, T. E. Montroy, Max Tegmark, Philip Daniel Mauskopf, F. Piacentini, G. de Gasperis, Carlo R. Contaldi, Ken Ganga, G. Polenta, B. P. Crill, J. R. Bond, C. J. MacTavish, Alessandro Melchiorri, A. de Oliveira-Costa, Davide Pietrobon, S. Ricciardi, Nicola Vittorio, A. Boscaleri, Calvin B. Netterfield, Julian Borrill, Asantha Cooray, Andrew E. Lange, Eric Hivon, Theodore Kisner, Peter A. R. Ade, Enzo Pascale, P. de Bernardis, Paolo Cabella, A. Amblard, Silvia Masi, G. Di Stefano, James J. Bock, J. E. Ruhl, G. De Troia, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Dipartimento di Fisica, Universita` di Roma Tor Vergata, Università degli Studi di Roma Tor Vergata [Roma], APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Institut d'Astrophysique de Paris (IAP), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Physique Corpusculaire et Cosmologie - Collège de France (PCC), and Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Normalization (statistics) ,cosmic microwave background ,Photon ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,cosmological parameters ,cosmology: observations ,large-scale structure of universe ,01 natural sciences ,Signal ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Anisotropy ,010303 astronomy & astrophysics ,media_common ,Physics ,Spectral signature ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Sigma ,Astronomy and Astrophysics ,Universe ,Space and Planetary Science ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Sunyaev-Zel'dovich (SZ) effect is the inverse Compton-scattering of cosmic microwave background (CMB) photons by hot electrons in the intervening gas throughout the universe. The effect has a distinct spectral signature that allows its separation from other signals in multifrequency CMB datasets. Using CMB anisotropies measured at three frequencies by the BOOMERanG 2003 flight we constrain SZ fluctuations in the 10 arcmin to 1 deg angular range. Propagating errors and potential systematic effects through simulations, we obtain an overall upper limit of 15.3 uK (2 sigma) for rms SZ fluctuations in a broad bin between multipoles of of 250 and 1200 at the Rayleigh-Jeans (RJ) end of the spectrum. When combined with other CMB anisotropy and SZ measurements, we find that the local universe normalization of the density perturbations is sigma-8(SZ) < 0.96 at the 95% confidence level, consistent with sigma-8 determined from primordial perturbations., accepted for publication in ApJ. Letters
- Published
- 2009
- Full Text
- View/download PDF
31. Characterization of the BICEP Telescope for High-Precision Cosmic Microwave Background Polarimetry
- Author
-
W. C. Jones, Nicolas Ponthieu, S. Richter, J. Battle, E. M. Bierman, L. Duband, Ki Won Yoon, C. Pryke, Y. D. Takahashi, Peter A. R. Ade, Chao-Lin Kuo, Brian Keating, John M Kovac, James J. Bock, W. L. Holzapfel, G. Rocha, Eric Hivon, H. T. Nguyen, Denis Barkats, E. M. Leitch, P. V. Mason, H. C. Chiang, Andrew E. Lange, Viktor Hristov, Tomotake Matsumura, and C. D. Dowell
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Gravitational wave ,Cosmic microwave background ,Bolometer ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,law.invention ,Telescope ,Amplitude ,Space and Planetary Science ,law ,Refracting telescope ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The BICEP experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, BICEP has completed 3 years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the BICEP experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit BICEP's 2-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1., Comment: 16 pages, 22 figures, updated to reflect published version
- Published
- 2009
- Full Text
- View/download PDF
32. CMB polarimetry with BICEP: instrument characterization, calibration, and performance
- Author
-
Chao-Lin Kuo, John M Kovac, Hien Nguyen, James J. Bock, Evan M. Bierman, W. L. Holzapfel, Viktor Hristov, H. Cynthia Chiang, Ki Won Yoon, C. Darren Dowell, Peter Mason, Peter A. R. Ade, W. C. Jones, Andrew E. Lange, Nicolas Ponthieu, Graca Rocha, Eric Hivon, Tomotake Matsumura, J. P. Kaufman, J. Battle, Erik M. Leitch, Yuki D. Takahashi, Lionel Duband, Brian Keating, Denis Barkats, Duncan, William D., Holland, Wayne S., Withington, Stafford, and Zmuidzinas, Jonas
- Subjects
Physics ,media_common.quotation_subject ,Cosmic microwave background ,Bolometer ,Astrophysics (astro-ph) ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galactic plane ,Polarization (waves) ,01 natural sciences ,law.invention ,Sky ,law ,0103 physical sciences ,Calibration ,Gravity wave ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
BICEP is a ground-based millimeter-wave bolometric array designed to target the primordial gravity wave signature on the polarization of the cosmic microwave background (CMB) at degree angular scales. Currently in its third year of operation at the South Pole, BICEP is measuring the CMB polarization with unprecedented sensitivity at 100 and 150 GHz in the cleanest available 2% of the sky, as well as deriving independent constraints on the diffuse polarized foregrounds with select observations on and off the Galactic plane. Instrument calibrations are discussed in the context of rigorous control of systematic errors, and the performance during the first two years of the experiment is reviewed., Comment: 12 pages, 15 figures, updated version of a paper accepted for Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE, 7020, 2008
- Published
- 2008
- Full Text
- View/download PDF
33. Searching for non-Gaussian signals in the BOOMERanG 2003 CMB map: Preliminary results
- Author
-
Calvin B. Netterfield, T. E. Montroy, A. Boscaleri, Carlo R. Contaldi, M. Veneziani, Peter A. R. Ade, Paolo Natoli, P. Cabella, W. C. Jones, Giovanni Romeo, Julian Borrill, G. Di Stefano, Martin Kunz, Andrew H. Jaffe, F. Piacentini, Simon Prunet, Alessandro Melchiorri, Dmitry Pogosyan, A. de Oliveira-Costa, Enzo Pascale, Andrew E. Lange, Ted Kisner, Max Tegmark, Eric Hivon, James J. Bock, Philip Daniel Mauskopf, J. R. Bond, G. de Gasperis, B. P. Crill, G. Polenta, P. Santini, Nicola Vittorio, S. Ricciardi, Sabino Matarrese, Silvia Masi, Pedro G. Ferreira, Michele Liguori, C. J. MacTavish, P. de Bernardis, G. De Troia, and J. E. Ruhl
- Subjects
Physics ,Pixel ,Gaussian ,Cosmic microwave background ,Estimator ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Space (mathematics) ,Computational physics ,symbols.namesake ,Amplitude ,Space and Planetary Science ,Minkowski space ,symbols ,Sensitivity (control systems) - Abstract
We analyze the BOOMERanG 2003 (B03) 145 GHz temperature map to constrain the amplitude of a non Gaussian, primordial contribution to CMB fluctuations. We perform a pixel space analysis restricted to a portion of the map chosen in view of high sensitivity, very low foreground contamination and tight control of systematic effects. We set up an estimator based on the three Minkowski functionals which relies on high quality simulated data, including non Gaussian CMB maps. We find good agreement with the Gaussian hypothesis and derive the first limits based on BOOMERanG data for the non linear coupling parameter f_NL as -300
- Published
- 2007
34. Making sky maps from Planck data
- Author
-
Hannu Kurki-Suonio, Simon Prunet, M. Reinecke, Benjamin D. Wandelt, Julian Borrill, Eric Hivon, Charles R. Lawrence, E. Keihänen, Amedeo Balbi, James G. Bartlett, Radek Stompor, C. Baccigalupi, Krzysztof M. Gorski, M. Ashdown, C. Cantalupo, G. de Gasperis, T. Poutanen, Paolo Natoli, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - Gravitation (APC-Gravitation), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Particle Physics and Astrophysics, Helsinki Institute of Physics, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI)
- Subjects
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Pipeline (computing) ,media_common.quotation_subject ,Cosmic microwave background ,education ,FOS: Physical sciences ,Astrophysics ,Cosmology: cosmic microwave background ,Methods: data analysis ,7. Clean energy ,01 natural sciences ,114 Physical sciences ,Set (abstract data type) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Planck ,010303 astronomy & astrophysics ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Detector ,Volume (computing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Space and Planetary Science ,Sky ,symbols ,Noise (video) ,Algorithm - Abstract
We compare the performance of multiple codes written by different groups for making polarized maps from Planck-sized, all-sky cosmic microwave background (CMB) data. Three of the codes are based on a destriping algorithm; the other three are implementations of an optimal maximum-likelihood algorithm. Time-ordered data (TOD) were simulated using the Planck Level-S simulation pipeline. Several cases of temperature-only data were run to test that the codes could handle large datasets, and to explore effects such as the precision of the pointing data. Based on these preliminary results, TOD were generated for a set of four 217 GHz detectors (the minimum number required to produce I, Q, and U maps) under two different scanning strategies, with and without noise. Following correction of various problems revealed by the early simulation, all codes were able to handle the large data volume that Planck will produce. Differences in maps produced are small but noticeable; differences in computing resources are large., 19 pages, 3 figures. Submitted to A&A
- Published
- 2007
- Full Text
- View/download PDF
35. Cosmological Parameters from the 2003 Flight of BOOMERANG
- Author
-
Peter A. R. Ade, Dmitry Pogosyan, T. E. Montroy, Andrew E. Lange, W. C. Jones, Eric Hivon, Max Tegmark, Philip Daniel Mauskopf, Theodore Kisner, M. Veneziani, B. P. Crill, F. Piacentini, Nicola Vittorio, Julian Borrill, Silvia Masi, James J. Bock, Alessandro Melchiorri, A. de Oliveira-Costa, Enzo Pascale, S. Ricciardi, A. H. Jaffe, C. J. MacTavish, A. Lewis, G. Di Stefano, Simon Prunet, P. de Bernardis, Calvin B. Netterfield, Paolo Cabella, J. E. Ruhl, G. Polenta, G. De Troia, J. R. Bond, Paolo Natoli, G. de Gasperis, Giovanni Romeo, P. Santini, A. Boscaleri, and Carlo R. Contaldi
- Subjects
cosmic microwave background ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Curvature ,01 natural sciences ,Spectral line ,law.invention ,Telescope ,High Energy Physics - Phenomenology (hep-ph) ,Settore FIS/05 - Astronomia e Astrofisica ,law ,0103 physical sciences ,cosmological parameters ,polarization ,010303 astronomy & astrophysics ,Physics ,Spectral index ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology: Cosmic Microwave Background, Cosmology: Cosmological Parameters, Polarization ,Cosmology: Cosmic Microwave Background ,Astronomy and Astrophysics ,Redshift ,High Energy Physics - Phenomenology ,Cosmology: Cosmological Parameters ,Space and Planetary Science ,Dark energy ,Neutrino - Abstract
We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the $\Lambda$CDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture., Comment: 18 pages, 10 figures, submitted to ApJ
- Published
- 2006
36. The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
- Author
-
Evan M. Bierman, Nicolas Ponthieu, J. Battle, John M Kovac, D. Woolsey, Viktor Hristov, L. Duband, Justus A. Brevik, A. T. Crites, Peter A. R. Ade, W. L. Holzapfel, H. C. Chiang, Brian Keating, P. V. Mason, Ki Won Yoon, Chao-Lin Kuo, Yuki D. Takahashi, James J. Bock, Andrew E. Lange, Eric Hivon, Denis Barkats, E. M. Leitch, C. D. Dowell, H. T. Nguyen, T. Renbarger, L. C. Weintraub, and G. S. Griffin
- Subjects
Aperture ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,Gravitational wave background ,Optics ,law ,0103 physical sciences ,Angular resolution ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,business.industry ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimeter ,Polarization (waves) ,Refracting telescope ,business - Abstract
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations., Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 2006
- Published
- 2006
- Full Text
- View/download PDF
37. Unbiased Estimation of Angular Power Spectrum
- Author
-
Eric Hivon, Amedeo Balbi, G. Polenta, Silvia Masi, P. de Bernardis, Nicola Vittorio, Paolo Natoli, and Domenico Marinucci
- Subjects
Physics ,Monte Carlo method ,Isotropy ,Astrophysics (astro-ph) ,Spectral density ,Estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,White noise ,Astrophysics ,Residual ,Noise ,Amplitude ,Settore FIS/05 - Astronomia e Astrofisica ,Statistical physics ,Caltech Library Services - Abstract
We discuss the derivation of the analytic properties of the cross-power spectrum estimator from multi-detector CMB anisotropy maps. The method is computationally convenient and it provides unbiased estimates under very broad assumptions. We also propose a new procedure for testing for the presence of residual bias due to inappropriate noise subtraction in pseudo-$C_{\ell}$ estimates. We derive the analytic behavior of this procedure under the null hypothesis, and use Monte Carlo simulations to investigate its efficiency properties, which appear very promising. For instance, for full sky maps with isotropic white noise, the test is able to identify an error of 1% on the noise amplitude estimate., replaced with version published in JCAP. Added discussion about polarization measurements and 1/f noise correlated among different detectors
- Published
- 2005
38. Comparison of map-making algorithms for CMB experiments
- Author
-
Charles R. Lawrence, C. Cantalupo, T. Poutanen, Radek Stompor, Romain Teyssier, Olivier Doré, Paolo Natoli, E. Keihänen, Julian Borrill, Simon Prunet, G. de Gasperis, Amedeo Balbi, Davide Maino, Eric Hivon, Hannu Kurki-Suonio, Helsinki Institute of Physics, Department of Physics, Particle Physics and Astrophysics, Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Cosmic microwave background ,cosmology: cosmic microwave background ,FOS: Physical sciences ,Map making ,Low frequency ,Astrophysics ,114 Physical sciences ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Planck ,Anisotropy ,methods: data analysis ,010303 astronomy & astrophysics ,Physics ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Subpixel rendering ,Signal on ,Space and Planetary Science ,symbols ,Algorithm - Abstract
We have compared the cosmic microwave background (CMB) temperature anisotropy maps made from one-year time ordered data (TOD) streams that simulated observations of the originally planned 100 GHz Planck Low Frequency Instrument (LFI). The maps were made with three different codes. Two of these, ROMA and MapCUMBA, were implementations of maximum-likelihood (ML) map-making, whereas the third was an implementation of the destriping algorithm. The purpose of this paper is to compare these two methods, ML and destriping, in terms of the maps they produce and the angular power spectrum estimates derived from these maps. The difference in the maps produced by the two ML codes was found to be negligible. As expected, ML was found to produce maps with lower residual noise than destriping. In addition to residual noise, the maps also contain an error which is due to the effect of subpixel structure in the signal on the map-making method. This error is larger for ML than for destriping. If this error is not corrected a bias will be introduced in the power spectrum estimates. This study is related to Planck activities., Comment: 16 pages, 16 figures. To be published in A&A. For a version with better-quality figures, see http://www.physics.helsinki.fi/~tfo_cosm/tfo_planck.html
- Published
- 2005
- Full Text
- View/download PDF
39. Cosmic microwave background power spectrum estimation with the destriping technique
- Author
-
T. Poutanen, Hannu Kurki-Suonio, E. Keihänen, Eric Hivon, and Davide Maino
- Subjects
Physics ,Cosmic microwave background ,Detector ,Monte Carlo method ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,Estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,7. Clean energy ,Noise (electronics) ,Computational physics ,symbols.namesake ,13. Climate action ,Space and Planetary Science ,symbols ,Planck ,Multipole expansion - Abstract
Extraction of the CMB (Cosmic Microwave Background) angular power spectrum is a challenging task for current and future CMB experiments due to the large data sets involved. Here we describe an implementation of MASTER (Monte carlo Apodised Spherical Transform EstimatoR) which exploits the destriping technique as a map-making method. In this method a noise estimate based on destriped noise-only MC (Monte Carlo) simulations is subtracted from the pseudo angular power spectrum. As a working case we use realistic simulations of the PLANCK LFI (Low Frequency Instrument). We found that the effect of destriping on a pure sky signal is minimal and requires no correction. Instead we found an effect related to the distribution of detector pointings, which affects the high multipole part of the power spectrum. We correct for this by subtracting a ``signal bias'' estimated by MC simulations. We also give analytical estimates for this signal bias. Our method is fast and accurate enough (the estimator is un-biased and errors are close to theoretical expectations for maximal accuracy) to estimate the CMB angular power spectra for current and future CMB space missions. This study is related to PLANCK LFI activities., Comment: 16 pages, 23 figures, submitted to MNRAS
- Published
- 2004
- Full Text
- View/download PDF
40. BICEP: a large angular scale CMB polarimeter
- Author
-
H. T. Nguyen, Peter A. R. Ade, Andrew E. Lange, Brian Keating, Ki Won Yoon, W. L. Holzapfel, Eric Hivon, James J. Bock, and Fineschi, Silvano
- Subjects
Physics ,Cosmic microwave background ,Bolometer ,Polarimetry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Polarimeter ,Field of view ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,law.invention ,Gravitational wave background ,law ,Extremely high frequency ,Astrophysics::Galaxy Astrophysics - Abstract
We describe the design and expected performance of BICEP, a millimeter wave receiver designed to measure the polarization of the cosmic microwave background. BICEP uses an array of polarization sensitive bolometers operating at 100 and 150 GHz to measure polarized signals over a 20 degree field of view with 1 degree resolution. BICEP is designed with particular attention to systematic effects which can potentially degrade the polarimetric fidelity of the observations. BICEP is optimized to detect the faint signature of a primordial gravitational wave background which is a generic prediction of inflationary cosmologies.
- Published
- 2003
41. Cosmology. A new window to the early universe
- Author
-
Eric, Hivon and Marc, Kamionkowski
- Published
- 2002
42. Gabor Transforms on the Sphere with Applications to CMB Power Spectrum Estimation
- Author
-
F. K. Hansen, Krzysztof M. Górski, and Eric Hivon
- Subjects
Physics ,Gaussian ,media_common.quotation_subject ,Astrophysics (astro-ph) ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Spectral density ,Astronomy and Astrophysics ,Astrophysics ,Gabor transform ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Window function ,symbols.namesake ,Fourier transform ,Space and Planetary Science ,Sky ,symbols ,Algorithm ,Ansatz ,media_common - Abstract
The Fourier transform of a dataset apodised with a window function is known as the Gabor transform. In this paper we extend the Gabor transform formalism to the sphere with the intention of applying it to CMB data analysis. The Gabor coefficients on the sphere known as the pseudo power spectrum is studied for windows of different size. By assuming that the pseudo power spectrum coefficients are Gaussian distributed, we formulate a likelihood ansatz using these as input parameters to estimate the full sky power spectrum from a patch on the sky. Since this likelihood can be calculated quickly without having to invert huge matrices, this allows for fast power spectrum estimation. By using the pseudo power spectrum from several patches on the sky together, the full sky power spectrum can be estimated from full-sky or nearly full-sky observations., 37 pages, 31 figures, accepted for publication in MNRAS
- Published
- 2002
43. First results from the BOOMERanG experiment
- Author
-
P. de Bernardis, G. De Troia, Peter A. R. Ade, M. Giacometti, L. Miglio, Enzo Pascale, Julian Borrill, A. H. Jaffe, Simon Prunet, Andrew E. Lange, Eric Hivon, Viktor Hristov, Alessandro Melchiorri, Dmitry Pogosyan, F. Piacentini, A. Boscaleri, D. Sforna, T. E. Montroy, P. V. Mason, B. P. Crill, F. Scaramuzzi, K. Coble, Philip Daniel Mauskopf, John Bond, Nicola Vittorio, P. C. Farese, J. E. Ruhl, S. Rao, Giovanni Romeo, Calvin B. Netterfield, James J. Bock, F. Pongetti, G. de Gasperis, L. Martinis, A. Iacoangeli, Ken Ganga, Pedro G. Ferreira, and Silvia Masi
- Subjects
Observational cosmology ,Physics ,Background radiations ,Background radiations, Observational cosmology, Radio, microwave ,Cold dark matter ,microwave ,Astrophysics (astro-ph) ,Cosmic microwave background ,BOOMERanG experiment ,FOS: Physical sciences ,Spectral density ,Astrophysics ,Cosmological constant ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radio ,Baryon ,Amplitude ,Settore FIS/05 - Astronomia e Astrofisica ,Baryon acoustic oscillations - Abstract
We report the first results from the BOOMERanG experiment, which mapped at 90, 150, 240 and 410 GHz a wide (3%) region of the microwave sky with minimal local contamination. From the data of the best 150 GHz detector we find evidence for a well defined peak in the power spectrum of temperature fluctuations of the Cosmic Microwave Background, localized at $\ell = 197 \pm 6$, with an amplitude of $(68 \pm 8) \mu K_{CMB}$. The location, width and amplitude of the peak is suggestive of acoustic oscillations in the primeval plasma. In the framework of inflationary adiabatic cosmological models the measured spectrum allows a Bayesian estimate of the curvature of the Universe and of other cosmological parameters. With reasonable priors we find $\Omega = (1.07 \pm 0.06)$ and $n_s = (1.00 \pm 0.08)$ (68%C.L.) in excellent agreement with the expectations from the simplest inflationary theories. We also discuss the limits on the density of baryons, of cold dark matter and on the cosmological constant., Comment: Proc. of the CAPP2000 conference, Verbier, 17-28 July 2000
- Published
- 2000
44. Previrialization: Perturbative and N-Body Results
- Author
-
Ewa L. Lokas, Eric Hivon, Roman Juszkiewicz, and François R. Bouchet
- Subjects
Physics ,Normalization (statistics) ,Series (mathematics) ,Linear system ,Astrophysics (astro-ph) ,Spectral density ,Sigma ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Spectral line ,Nonlinear system ,Space and Planetary Science ,Density contrast ,Mathematical physics - Abstract
We present a series of N-body experiments which confirm the reality of the previrialization effect. We also use weakly nonlinear perturbative approach to study the phenomenon. These two approaches agree when the rms density contrast, $\sigma$, is small; more surprisingly, they remain in agreement when $\sigma \approx 1$. When the slope of the initial power spectrum is $n>-1$, nonlinear tidal interactions slow down the growth of density fluctuations and the magnitude of the suppression increases when $n$ (i.e. the relative amount of small scale power) is increased. For $n, Comment: Significantly revised, 25 pages, uuencoded compressed postscript, figures included, to appear in ApJ
- Published
- 1995
45. Perturbative Lagrangian Approach to Gravitational Instability
- Author
-
Bouchet, F. R., Colombi, S., Eric Hivon, and Juszkiewicz, R.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics - Abstract
This paper deals with the time evolution in the matter era of perturbations in Friedman-Lemaitre models with arbitrary density parameter $\Omega$, with either a zero cosmological constant, $\Lambda = 0$, or with a non-zero cosmological constant in a spatially flat Universe. Unlike the classical Eulerian approach where the density contrast is expanded in a perturbative series, this analysis relies instead on a perturbative expansion of particles trajectories in Lagrangian coordinates. This brings a number of advantages over the classical analysis. In particular, it enables the description of stronger density contrasts. Indeed the linear term is the famous Zel'dovich approximate solution (1970). We present here a systematic and detailed account of this approach. We give analytical results (or fits to numerical results) up to the third order. We then proceed to explore the link between the lagrangian description and statistical measures. We show in particular that Lagrangian perturbation theory provides a natural framework to compute the effect of redshift distortions, using the skewness of the density distribution function as an example. Finally, we show how well the second order theory does as compared to other approximat- ions in the case of spherically symmetric perturbations. We also compare this second order approximation and Zel'dovich solution to N-body simulations in the description of large-scale structure formation starting from a power law (n=-2) power spectrum of Gaussian perturbation. We find that second order theory is both simple and powerful., Comment: 35 p. 16 fig., uuencoded ps file. + 2 fig. available via ftp.iap.fr on /pub/from_users/hivon/lagrange/. ## modified 7 Jun, to fit US letter paper size
- Published
- 1994
- Full Text
- View/download PDF
46. A New Window to the Early Universe
- Author
-
Eric Hivon and Marc Kamionkowski
- Subjects
Physics ,Multidisciplinary ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) - Abstract
Small temperature variations in the cosmic microwave background (CMB), the radiation left over from the big bang, have shed much light on the early universe. According to predictions, the CMB should also be polarized, providing a better test for early-universe theories than temperature alone. In their Perspective, Hivon and Kamionkowski highlight the recent detection of the CMB polarization. The new results end a 34-year quest to verify the predictions, but are only the first of many upcoming studies of the CMB polarization.
- Published
- 2002
- Full Text
- View/download PDF
47. A MILLIMETER-WAVE GALACTIC PLANE SURVEY WITH THE BICEP POLARIMETER
- Author
-
E. M. Leitch, Chao-Lin Kuo, James J. Bock, T. L. Culverhouse, H. C. Chiang, Peter A. R. Ade, C. D. Sheehy, E. M. Bierman, Viktor Hristov, L. Duband, S. Richter, Y. D. Takahashi, Denis Barkats, P. V. Mason, Darcy Barron, J. Battle, Andrew E. Lange, Eric Hivon, C. Pryke, J. P. Kaufman, Brian Keating, H. T. Nguyen, John M Kovac, W. L. Holzapfel, Ki Won Yoon, G. Rocha, Nathan J. Miller, Tomotake Matsumura, and C. D. Dowell
- Subjects
Physics ,Spectral index ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Milky Way ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Galactic plane ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,CMB cold spot ,Galaxy ,Interstellar medium ,Amplitude ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,QB ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In addition to its potential to probe the Inflationary cosmological paradigm, millimeter-wave polarimetry is a powerful tool for studying the Milky Way galaxy's composition and magnetic field structure. Towards this end, presented here are Stokes I, Q, and U maps of the Galactic plane from the millimeter-wave polarimeter BICEP covering the Galactic longitude range 260 - 340 degrees in three atmospheric transmission windows centered on 100, 150, and 220 GHz. The maps sample an optical depth 1 < AV < 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. Polarized emission is detected over the entire region within two degrees of the Galactic plane and indicates that the large-scale magnetic field is oriented parallel to the plane of the Galaxy. An observed trend of decreasing polarization fraction with increasing total intensity rules out the simplest model of a constant Galactic magnetic field throughout the Galaxy. Including WMAP data in the analysis, the degree-scale frequency spectrum of Galactic polarization fraction is plotted between 23 and 220 GHz for the first time. A generally increasing trend of polarization fraction with electromagnetic frequency is found, which varies from 0.5%-1.5%at frequencies below 50 GHz to 2.5%-3.5%above 90 GHz. The BICEP and WMAP data are fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Furthermore, the dust amplitude predicted by this two-component fit is consistent with model predictions of dust emission in the BICEP bands.
- Published
- 2011
- Full Text
- View/download PDF
48. Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model
- Author
-
Joshua Montgomery, Peter A. R. Ade, Zeeshan Ahmed, Ethan Anderes, Adam J. Anderson, Melanie Archipley, Jessica S. Avva, Kevin Aylor, Lennart Balkenhol, Peter S. Barry, Ritoban B. Thakur, Karim Benabed, Amy N. Bender, Bradford A. Benson, Federico Bianchini, Lindsey E. Bleem, Francois R. Bouchet, Lincoln Bryant, Karen Byrum, John E. Carlstrom, Faustin W. Carter, Thomas W. Cecil, Clarence L. Chang, Prakrut Chaubal, Geoffrey Chen, Hsiaomei Cho, Ti-Lin Chou, Jean-Francois Cliche, Tom M. Crawford, Ari Cukierman, Cail Daley, Tijmen de Haan, Edward V. Denison, Karia Dibert, Junjia Ding, Matt A. Dobbs, Daniel Dutcher, Tucker Elleflot, Wendeline Everett, Cahng Feng, Kyle R. Ferguson, Allen Foster, Jianyang Fu, Silvia Galli, Anne E. Gambrel, Robert W. Gardner, Neil Goeckner-Wald, John C. Groh, Riccardo Gualtieri, Sam Guns, Nikhel Gupta, Robert Guyser, Nils W. Halverson, Angelina H. Harke-Hosemann, Nicholas L. Harrington, Jason W. Henning, Gene C. Hilton, Eric Hivon, William L. Holzapfel, John C. Hood, Doug Howe, Nicholas Huang, Kent D. Irwin, Oliver B. Jeong, Michelle Jonas, Adam Jones, Trupti S. Khaire, Lloyd Knox, Anna M. Kofman, Milo Korman, Donna L. Kubik, Stephen Kuhlmann, Chao-Lin Kuo, Adrian T. Lee, Erik M. Leitch, Amy E. Lowitz, Chunyu Lu, Stephan S. Meyer, Daniel Michalik, Marius Millea, Andrew Nadolski, Tyler Natoli, Hogan Nguyen, Gavin I. Noble, Valentine Novosad, Yuuki Omori, Steve Padin, Zhaodi Pan, Pascal Paschos, John Pearson, Chrystian M. Posada, Karthik Prabhu, Wei Quan, Alexandra Rahlin, Christian L. Reichardt, David Riebel, Benedikt Riedel, Maclean Rouble, John E. Ruhl, James T. Sayre, Eduardo Schiappucci, Erik Shirokoff, Graeme Smecher, Joshua A. Sobrin, Antony A. Stark, Judith Stephen, Kyle T. Story, Aritoki Suzuki, Keith L. Thompson, Ben Thorne, Carole Tucker, Caterina Umilta, Leila R. Vale, Keith Vanderlinde, Joaquin D. Vieira, Gensheng Wang, Nathan Whitehorn, Wai L. K. Wu, Volodymyr Yefremenko, Ki W. Yoon, Matt R. Young, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and SPT-3G
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics::Instrumentation and Detectors ,Mechanical Engineering ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,010309 optics ,Space and Planetary Science ,Control and Systems Engineering ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Instrumentation ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system due to the higher frequencies used, and parasitic impedances associated with new cryogenic electronic architecture. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise, which become dominant at high bias frequency. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G. These results also suggest specific changes to warm electronics component values, wire-harness properties, and SQUID parameters, to improve the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope., Comment: Accepted to the Journal of Astronomical Telescopes, Instruments, and Systems
- Full Text
- View/download PDF
49. A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
- Author
-
Lennart Balkenhol, Daniel Dutcher, Alessio Spurio Mancini, Doussot, A., Benabed, K., Galli, S., Ade, P. A. R., Adam Jonathan Anderson, Ansarinejad, B., Melanie Archipley, Amy Bender, Bradford Benson, Federico Bianchini, Lindsey Bleem, Bouchet, François R., Bryant, L., Etienne Camphuis, Carlstrom, J. E., Thomas Cecil, Chang, C. L., Chaubal, P., Paul Chichura, Chou, T. -L, Coerver, A., THOMAS CRAWFORD, Ari Cukierman, Cail Daley, Haan, T., Dibert, K. R., Dobbs, M. A., Everett, W., Feng, C., Kyle Ferguson, Allen Foster, Gambrel, A. E., Gardner, R. W., Goeckner-Wald, N., Riccardo Gualtieri, Federica Guidi, Guns, S., Halverson, N. W., Eric Hivon, Gilbert Holder, Holzapfel, W. L., Hood, J. C., Huang, N., Knox, L., Korman, M., Kuo, C. -L, Lee, A. T., Lowitz, A. E., Lu, C., Marius Millea, Montgomery, J., Nakato, Y., Natoli, T., Gavin Noble, Novosad, V., Omori, Y., Padin, S., Pan, Z., Paschos, P., Prabhu, K., Quan, W., Rahimi, M., Alexandra Rahlin, Christian Reichardt, Rouble, M., Ruhl, J. E., Schiappucci, E., Smecher, G., Joshua Sobrin, Stark, A. A., Stephen, J., Suzuki, A., Tandoi, C., Thompson, K. L., Thorne, B., Tucker, C., Caterina Umiltà, Vieira, J. D., Wang, G., Nathan Whitehorn, Kimmy Wu, Yefremenko, V., Young, M. R., Zebrowski, J. A., and HEP, INSPIRE
- Subjects
density: primordial ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,Hubble constant ,space-time: expansion ,magnetic field: primordial ,multipole ,FOS: Physical sciences ,cosmic background radiation: temperature ,baryon ,confidence limit ,gravitation: lens ,power spectrum: temperature ,cosmological model: parameter space ,covariance ,density: perturbation ,polarization: power spectrum ,structure ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics ,helium: primordial - Abstract
We present a sample-variance-limited measurement of the temperature power spectrum ($TT$) of the cosmic microwave background (CMB) using observations of a $\sim\! 1500 \,\mathrm{deg}^2$ field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range $750 \leq \ell < 3000$. We combine this $TT$ measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 $TT/TE/EE$ data set. This is the first analysis to present cosmological constraints from SPT $TT$, $TE$, and $EE$ power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for $\Lambda$CDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra $A_\mathrm{L}$, the effective number of neutrino species $N_{\mathrm{eff}}$, the primordial helium abundance $Y_{\mathrm{P}}$, and the baryon clumping factor due to primordial magnetic fields $b$. We find that the SPT-3G 2018 $T/TE/EE$ data are well fit by $\Lambda$CDM with a probability-to-exceed of $15\%$. For $\Lambda$CDM, we constrain the expansion rate today to $H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}}$ and the combined structure growth parameter to $S_8 = 0.797 \pm 0.042$. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within $, Comment: 35 Pages, 17 Figures, 11 Tables
50. Scaling GDL for Multi-cores to Process Planck HFI Beams Monte Carlo on HPC
- Author
-
Coulais, A., Schellens, M., Duvert, G., Park, J., Arabas, S., Erard, S., Roudier, G., Eric Hivon, Mottet, S., Laurent, B., Pinter, M., Kasradze, N., Ayad, M., Observatoire de Paris, Université Paris sciences et lettres (PSL), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Manset, N., Forshay, and P.
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; After reviewing the majors progress done in GDL -now in 0.9.4- on performance and plotting capabilities since ADASS XXI paper (Coulais et al. 2012), we detail how a large code for Planck HFI beams Monte Carlo was successfully transposed from IDL to GDL on HPC.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.