105 results on '"Eric Chassefière"'
Search Results
2. Obstacles encountered by four major European astronomical observatories belonging to academies in the 18th century
- Author
-
Eric Chassefière
- Subjects
Delisle scale ,History ,060102 archaeology ,060105 history of science, technology & medicine ,Physics and Astronomy (miscellaneous) ,Arts and Humanities (miscellaneous) ,Observatory ,Greenwich ,Art history ,0601 history and archaeology ,Astronomy and Astrophysics ,06 humanities and the arts - Abstract
It is known that, in the first half of the 18th century, the conditions for astronomy at the Imperial Observatory of St-Petersburg, directed by Joseph-Nicolas Delisle, were comparable to those enjoyed by astronomers at the royal observatories of Paris and Greenwich created in the previous century. But what about the public observatories created in the first half of the 18th century in Berlin, Uppsala and Bologna? The rich correspondence maintained by Joseph-Nicolas Delisle with the astronomers working in these observatories provides elements of an answer to this question. It also provides more precise information on Delisle’s working conditions at the St-Petersburg Observatory. In this article, we present a comparative analysis of the obstacles encountered by astronomers at these different observatories, and the particular contexts in which they operated, including a breakdown by observatory of salaries and expenditure on astronomy equipment.
- Published
- 2021
- Full Text
- View/download PDF
3. Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere
- Author
-
Eric Chassefière
- Subjects
Atmosphere ,Terrestrial ecosystem ,Astrobiology ,Age of Enlightenment - Published
- 2021
- Full Text
- View/download PDF
4. Observers of the Aurora Borealis in Europe : Journey Into the Learned World of the Enlightenment
- Author
-
Eric Chassefiere and Eric Chassefiere
- Subjects
- Astronomy--Research--Europe--History--18th century, Research--Europe--History--18th century, Auroras--Europe--Observations--History--18th century, Auroras--Research--Europe--History--18th century
- Abstract
The spectacular reappearance of the aurora borealis at the beginning of the 18th century, often observed simultaneously from different observatories in Europe, mobilized and federated a large community of astronomers on a European scale. It encouraged them to communicate the results of their observations and, in compiling exhaustive catalogs of information, has helped to establish a system of the aurora borealis that can be further studied in the future, according to the experimental method inherited from the previous century. This book is dedicated to some of the main aurora observers in Europe and to the human, institutional and philosophical context in which they evolved in the first half of the 18th century. Its reading should be seen as a retrospective journey through the scholarly world of the Enlightenment, during which the same scholars are frequently encountered and reencountered, yet each time in different contexts, or from different angles, with the aim of compiling an account of the swarming of ideas and encounters that constituted the development of experimental science in this pivotal period.
- Published
- 2023
5. Shell alterations in Hexaplex trunculus collected in the vicinity of an impacted zone by industrial marine discharges (Gabès, Southern Mediterranean)
- Author
-
Youssef Lahbib, Tasnime Slama, Sami Abidli, Julius Nouet, Eric Chassefière, and Najoua Trigui El Menif
- Subjects
Aquatic Science ,Oceanography ,Ecology, Evolution, Behavior and Systematics - Published
- 2022
- Full Text
- View/download PDF
6. Monitoring of coastal pollution using shell alterations in the false limpet Siphonaria pectinata
- Author
-
Najoua Trigui El Menif, Tasnime Slama, Y. Lahbib, Julius Nouet, and Eric Chassefière
- Subjects
Pollution ,biology ,Chemistry ,media_common.quotation_subject ,Limpet ,Gastropoda ,Shell (structure) ,Aquatic Science ,Contamination ,Oceanography ,biology.organism_classification ,Apex (mollusc) ,Pollution monitoring ,Environmental chemistry ,Animals ,Siphonaria pectinata ,Lipid Peroxidation ,Environmental Pollution ,Water Pollutants, Chemical ,Environmental Monitoring ,media_common - Abstract
Lipid peroxidation level (LPO), shell biometry, shape, elemental content, and microstructure were studied in three populations of Siphonaria pectinata in the complex lagoon-channel of Bizerte across a coastal pollution gradient (northern Tunisia). LPO was found in higher concentrations in harbour populations, and shells had centred apex and were flattened. Shells were also thicker, particularly in the inner layer, with many fibrous inter-beds formed. Difference in crystallization pattern was observed in numerous shells from all three populations, being more common in harbours. From the control station to the contaminated stations, shell elemental changes were observed, with a decrease in Ca, P, Sr, and S and an increase in Cl, Cd, Cu, Fe, and K. All of these findings suggested that shell alterations could be used as a good biomarker for coastal contamination.
- Published
- 2021
- Full Text
- View/download PDF
7. Physics of the Terrestrial Environment, Subtle Matter and Height of the Atmosphere : Conceptions of the Atmosphere and the Nature of Air in the Age of Enlightenment
- Author
-
Eric Chassefiere and Eric Chassefiere
- Abstract
The discovery, in the middle of the 17th century, of both the weight of air and the law governing its elasticity transformed the status of the atmosphere from that of a purely mathematical object to that of a complex and highly variable physical system.In the context of rapidly intensifying experimentation and observation, the nature of the atmosphere was therefore the subject of a host of hypotheses, which 18th century scholars tried to reconcile with a coherent physical approach. In particular, this was achieved by the conceptualization of invisible or “subtle” materials, thought to be closely linked to atmospheric stratification.Subtle matter was introduced, largely to reconcile contradictory results concerning the estimation of the height of the atmosphere. These estimations were based on different methods, mainly using the observation of meteors and the refracted and reflected light of stars.Taking as its common thread the question of the height of the atmosphere, which was omnipresent in the texts at the time, this book traces the history of the discovery of the atmosphere and the many questions it generated.
- Published
- 2021
8. The relative influence of H2O and CO2on the primitive surface conditions and evolution of rocky planets
- Author
-
Anne Davaille, Hélène Massol, Philippe Sarda, Eric Chassefière, Emmanuel Marcq, and Arnaud Salvador
- Subjects
010504 meteorology & atmospheric sciences ,biology ,Cloud cover ,Ocean current ,Steady State theory ,Venus ,Geophysics ,biology.organism_classification ,Atmospheric sciences ,01 natural sciences ,7. Clean energy ,Mantle (geology) ,Heat flux ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Heat transfer ,Earth and Planetary Sciences (miscellaneous) ,Terrestrial planet ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. The heat transfer in the atmosphere is computed either using the grey approximation or using a k-correlated method. We vary the initial CO2 and H2O contents (respectively from 0.1 × 10−2 to 14 × 10−2 wt % and from 0.03 to 1.4 times the Earth Ocean current mass) and the solar distance—from 0.63 to 1.30 AU. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end of the rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared to the absorbed solar flux. The resulting surface conditions at ERCS, including water ocean's formation, strongly depend both on the initial volatile content and solar distance D. For D > DC, the “critical distance,” the volatile content controls water condensation and a new scaling law is derived for the water condensation limit. Although today's Venus is located beyond DC due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation. Depending on the formation time of its cloud cover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean on early Venus.
- Published
- 2017
- Full Text
- View/download PDF
9. La présence simple des choses
- Author
-
Eric Chassefiere and Eric Chassefiere
- Abstract
'Que le petit jardin dans sa cage de murs à l'instant où vient la nuit s'embroussaille de vent'. Le livre propose cinq parties, cinq'déplacements', composés de trois poèmes chacun. Par le voyage, cette poésie descriptive explore le quotidien dans les détails.
- Published
- 2017
10. Ice state evolution during spring in Richardson crater, Mars
- Author
-
Sylvain Douté, F. Andrieu, Eric Chassefière, Frédéric Schmidt, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,FOS: Physical sciences ,Atmospheric sciences ,01 natural sciences ,Physics::Geophysics ,Impact crater ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Martian ,Earth and Planetary Astrophysics (astro-ph.EP) ,85A25 ,Astronomy and Astrophysics ,Mars Exploration Program ,Snow ,Grain size ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Climate model ,Sublimation (phase transition) ,Astrophysics::Earth and Planetary Astrophysics ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Martian climate is governed by an annual cycle, that results in the condensation of CO$_{2}$ ice during winter, up to a meter thick at the pole and thousands of kilometers in extension. Water and dust may be trapped during the condensation and freed during the sublimation. In addition, ice may be translucent or granular depending on the deposition process (snow vs direct condensation), annealing efficiency, and dust sinking process. The determination of ice translucency is of particular interest to confirm or reject the cold jet model (also known as Kieffer model). This work is focused on the dune field of Richardson Crater in which strong interactions between the water, dust and CO$_{2}$ cycles are observed. We analyzed CRISM hyperspectral images in the near IR using radiative transfer model inversion. We demonstrate that among the states of CO$_{2}$ ice, the translucent state is observed most frequently. The monitoring of surface characteristics shows a decrease in the thickness of the ice during the spring consistently with climate models simulations. We estimate a very low dust content of a few ppmv into the CO$_{2}$ ice, consistent with the formation scenario of cold jets. The water impurities is around 0.1\%v, almost stable during the spring, suggesting a water escape from the surface of subliming CO$_{2}$ ice layer. The water ice grain size varies in a range 1 to 50 microns. From these results, we propose the following new mechanism of small water ice grain suspension: as a cold jet occurs, water ice grains of various sizes are lifted from the surface. These jets happen during daytime, when the general upward gas flux from the subliming CO$_{2}$ ice layer is strong enough to carry the smaller grains, while the bigger fall back on the CO$_{2}$ ice layer. The smaller water grains are carried away and integrated to the general atmospheric circulation., Comment: Preprind accepted in Icarus (19/06/2018)
- Published
- 2018
- Full Text
- View/download PDF
11. Probing of Hermean exosphere by ultraviolet spectroscopy: preliminary calibration results of an ultraviolet spectrometer
- Author
-
Kazuo Yoshioka, Piergiorgio Nicolosi, Pierre-Olivier Mine, Jean Francois Mariscal, Ichiro Yoshikawa, Jean-Luc Maria, Eric Chassefière, Nicolas Rouanet, Victor Gnedykh, Go Murakami, Jean-Pierre Goutail, Eric Quémerais, Sébastien Gallet, François Leblanc, and Jean-Baptiste Rigal
- Subjects
Photomultiplier ,Materials science ,Spectrometer ,business.industry ,Extreme ultraviolet lithography ,medicine.disease_cause ,Optics ,Extreme ultraviolet ,medicine ,Emission spectrum ,Spectroscopy ,business ,Ultraviolet ,Exosphere - Abstract
PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double ultraviolet spectrometer for the MPO (Mercury Planetary Orbiter) of the ESA BepiColombo cornerstone mission, which is dedicated to the study of Mercury. The goal of this instrument is to detect emission lines of Mercury exosphere in the bandwidth between 55 to 315 nm by recording full spectra. The instrument is basically composed of two ultraviolet spectrophotometers and one scanning mirror with a single axis of rotation. This movable mirror will collect the light coming from the exosphere above the limb onto the entrance slit of the spectrometers. The mirror is protected from straylight by an entrance baffle characterized by a good rejection capability. Each detector has a specific range of wavelengths: the EUV (Extreme UV) channel spreads from 55 to 155 nm, and the FUV (Far UV) channel from 145 to 315 nm. A couple of photomultipliers receive two additional wavelengths in the Near UV range (NUV) at 404 and 422 nm.
- Published
- 2017
- Full Text
- View/download PDF
12. Probing the hermean exosphere by ultraviolet spectroscopy (PHEBUS): optical simulation of an ultraviolet spectrometer
- Author
-
François Leblanc, Carole Gouvret, Jean-Jacques Correia, Nicolas Rouanet, Jean-Pierre Goutail, Jean-Luc Maria, Eric Chassefière, Christian Buil, Eric Quémerais, Philippe-Jean Hébert, and Pierre Etcheto
- Subjects
Materials science ,Spectrometer ,business.industry ,medicine.disease_cause ,Atmosphere of Mercury ,Optics ,Extreme ultraviolet ,medicine ,Emission spectrum ,Spectral resolution ,business ,Spectroscopy ,Ultraviolet ,Exosphere - Abstract
PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) consists of an ultraviolet spectrometer for the MPO (Mercury Planetary Orbiter) of the Bepi-Colombo Mission. The goal of this instrument is to detect emission lines of Mercury exosphere in the bandwidth from 55 to 315 nm by recording full spectra. This instrument is made of an entrance mobile baffle, which is necessary to scan vertically the Mercury atmosphere, an off-axis mirror entrance, a slit, two gratings and two detectors. A few different designs, simulated by optical software, are analysed in this paper. They provide essential results as the instrument spectral resolution. Besides a radiometric model is established to observe the spectra we would obtain on the detectors.
- Published
- 2017
- Full Text
- View/download PDF
13. Thermal evolution of an early magma ocean in interaction with the atmosphere
- Author
-
T. Lebrun, Anne Davaille, Emmanuel Marcq, François Leblanc, Philippe Sarda, G. Brandeis, Eric Chassefière, and Hélène Massol
- Subjects
010504 meteorology & atmospheric sciences ,Venus ,01 natural sciences ,Physics::Geophysics ,Astrobiology ,Atmosphere ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Astrophysics::Solar and Stellar Astrophysics ,Ocean planet ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Secondary atmosphere ,Accretion (meteorology) ,biology ,Mars Exploration Program ,Geophysics ,biology.organism_classification ,Lunar magma ocean ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Magma ,Astrophysics::Earth and Planetary Astrophysics ,Geology - Abstract
[1] The thermal evolution of magma oceans produced by collision with giant impactors late in accretion is expected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. In order to constrain the various cooling timescales of the system, we developed a 1-D parameterized convection model of a magma ocean coupled with a 1-D radiative-convective model of the atmosphere. We conducted a parametric study and described the influences of the initial volatile inventories, the initial depth of the magma ocean, and the Sun-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1, 1.5, and 10 Myr for, respectively, Mars, Earth, and Venus. This time would be virtually infinite for an Earth-sized planet located at less than 0.66 AU from the Sun. Using a more accurate calculation of opacities, we show that Venus is much closer to this threshold distance than in previous models. So there are conditions such as no water ocean is formed on Venus. Moreover, for Mars and Earth, water ocean formation timescales are shorter than typical time gaps between major impacts. This implies that successive water oceans may have developed during accretion, making easier the loss of their atmospheres by impact erosion. On the other hand, Venus could have remained in the magma ocean stage for most of its accretion.
- Published
- 2013
- Full Text
- View/download PDF
14. The fate of early Mars' lost water: The role of serpentinization
- Author
-
Eric Chassefière, François Leblanc, Benoit Langlais, and Yoann Quesnel
- Subjects
010504 meteorology & atmospheric sciences ,Water on Mars ,Accretion (meteorology) ,Atmospheric escape ,Noachian ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,Atmosphere ,Geophysics ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Cryosphere ,010303 astronomy & astrophysics ,Groundwater ,Geology ,0105 earth and related environmental sciences - Abstract
The fate of water which was present on early Mars remains enigmatic. We propose a simple model based on serpentinization, a hydrothermal alteration process which may produce magnetite and store water. Our model invokes serpentinization during about 500 to 800 Myr, while a dynamo is active, which may have continued after the formation of the crustal dichotomy. We show that the present magnetic field measured by MGS in the Southern hemisphere is consistent with a ~500 m thick Global Equivalent Layer of water trapped in serpentine. Serpentinization results in the release of H 2 . The released H atoms are lost to space through thermal escape, increasing the D/H ratio in water reservoirs exchanging with atmosphere. We show that the value of the D/H ratio in the present atmosphere (~5) is consistent with the serpentinization of a ~500 m thick water GEL. We reassess the role of non-thermal escape in removing water from the planet. By considering an updated solar wind-ionosphere interaction representation, we show that the contribution of oxygen escape to H isotopic fractionation is negligible. Our results suggest that significant amounts of water (up to a ~330-1030 m thick GEL) present at the surface during the Noachian, similar to the quantity inferred from the morphological analysis of valley networks, could be stored today in subsurface serpentine. 1. The study Like Earth, Mars has been endowed with large amounts of water during accretion, equivalent to the content of several terrestrial oceans, corresponding to a several 10 km thick Global Equivalent Layer. The present inventory of observable water on Mars, mainly within the polar caps, is quite smaller, in the range from ~20-30 m. The mega-regolith capacity is large, with up to ~500 GEL m potentially trapped in the cryosphere, and hypothetically several additional hundreds of meters (up to ~500 m) of ground water surviving at depth below the cryosphere [1]. A ~500 m thick GEL is generally assumed to be required to explain the formation of outflow channels [2], and most of this water could be trapped today as water ice, and possibly deep liquid water, in the subsurface, and also possibly under the form of hydrated minerals.
- Published
- 2013
- Full Text
- View/download PDF
15. Potential infrared relaxation channels calculated for CO2 clathrate hydrates
- Author
-
Eric Chassefière, Pierre-Richard Dahoo, Azzedine Lakhlifi, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), INSU EPOV interdisciplinary program, Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Infrared ,Clathrate hydrate ,Degrees of freedom (physics and chemistry) ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Infrared spectroscopy ,Librational motions ,01 natural sciences ,Molecular physics ,Spectral line ,Optics ,Clathrate Hydrates ,0103 physical sciences ,Isotopologue ,010303 astronomy & astrophysics ,Spectroscopy ,0105 earth and related environmental sciences ,Physics ,Radiation ,business.industry ,Relaxation (NMR) ,Atomic and Molecular Physics, and Optics ,Intercation potential energy ,IR spectroscopy ,Excited state ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,business - Abstract
International audience; The infrared bar-spectrum of a single carbon dioxide molecule encapsulated in nano-cage clathrate hydrate is determined using the LD (Lakhlifi-Dahoo) extended site inclusion model successfully applied to analyze the spectra of CO2 isotopologues isolated in rare gas matrices. Trapping is energetically more favorable in clathrate structure of type sI than sII. CO2 exhibits hindered orientational motions (librational motions) around its equilibrium configurations in the small and large nano-cages. The orientation transitions are weak, and the spectra are purely vibrational. In the static field inside the cage, the doubly degenerate bending mode ν2 is blue shifted and split. From the scheme of the calculated energy levels for the different degrees of freedom, which is comparable to that of CO2 in rare gas matrices, it is conjectured that infrared excited CO2 will rather relax radiatively. Non-radiative channels can be analyzed by binary collision model.
- Published
- 2017
- Full Text
- View/download PDF
16. The Science of Exoplanets and Their Systems
- Author
-
Malcolm Fridlund, Manuel Güdel, Roger Bonnet, Winfried Lorenzen, Willy Benz, Ravit Helled, Michel Blanc, Douglas N. C. Lin, Artie P. Hatzes, Jeffrey L. Linsky, Eric Chassefière, David Charbonneau, Stéphane Udry, Yann Alibert, Vincent Coudé du Foresto, René Liseau, Linda T. Elkins-Tanton, Sean N. Raymond, Maurizio Falanga, Helmut Lammer, Heike Rauer, Thérèse Encrenaz, Willy Kley, Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Service d'hématologie - Hôpital de Chambery, Hôpital de Chambery, Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrophysique de l'observatoire de Besançon (UMR 6091) (LAOB), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Space Sciences [Göteborg], Chalmers University of Technology [Göteborg], SSE 2013, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Universität Bern [Bern], European Space Agency (ESA)-European Space Agency (ESA), Université de Genève (UNIGE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), and Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB)
- Subjects
Extraterrestrial Environment ,010504 meteorology & atmospheric sciences ,Earth, Planet ,530 Physics ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Exoplanets—Disks—Planet formation—Stellar activity—Water origin—Water delivery—Habitability ,Planets ,01 natural sciences ,Astrobiology ,Stars, Celestial ,Planet ,0103 physical sciences ,Hot Jupiter ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Exoplanets--Disks--Planet formation--Stellar activity--Water origin--Water delivery--Habitability ,Habitability ,520 Astronomy ,620 Engineering ,Agricultural and Biological Sciences (miscellaneous) ,Data science ,Exoplanet ,Field (geography) ,13. Climate action ,Space and Planetary Science ,Formation water ,Space Science ,Circumstellar habitable zone - Abstract
International audience; A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet* and the International Space Science Institute (ISSI)† and co-organized by the Center for Space and Habitability (CSH)‡ of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.
- Published
- 2013
- Full Text
- View/download PDF
17. European Venus Explorer (EVE): an in-situ mission to Venus
- Author
-
Takeshi Imamura, P. Raizonville, Tibor S. Balint, Eve team, D. V. Titov, Chris Cochrane, Cs. Ferencz, D. Carbonne, J.-M. Charbonnier, L. V. Zasova, M. Gerasimov, Johannes Leitner, James A. Whiteway, Bernard Marty, Alexander Rodin, J. Michaud, M. Martynov, Colin Wilson, J. E. Blamont, Oleg Korablev, Sergei Pogrebenko, Eric Chassefière, J. J. López-Moreno, R. Bertrand, Francesca Ferri, Kevin H. Baines, Karen Aplin, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre National d'Études Spatiales [Toulouse] (CNES), Centre de Recherches Pétrographiques et Géochimiques (CRPG), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Engineering ,Cosmic Vision ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Venus ,7. Clean energy ,01 natural sciences ,Astrobiology ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Balloons ,biology ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Space vehicles ,biology.organism_classification ,13. Climate action ,Space and Planetary Science ,Hydrodynamics ,Astrophysics::Earth and Planetary Astrophysics ,business ,Instruments - Abstract
The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50-60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days-enough for one full circumnavigation of the planet. The descent probe's fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface. © Springer Science+Business Media B.V. 2008.
- Published
- 2016
- Full Text
- View/download PDF
18. Geochemical Consequences of Widespread Clay Mineral Formation in Mars’ Ancient Crust
- Author
-
Francois Poulet, Eric Chassefière, Joseph R. Michalski, Nicolas Mangold, Paul B. Niles, David C. Catling, Vincent Chevrier, Steven W. Ruff, Gilles Berger, and Bethany L. Ehlmann
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Geochemistry ,Noachian ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,Diagenesis ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Composition of Mars ,Sedimentary rock ,Clay minerals ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
Clays form on Earth by near-surface weathering, precipitation in water bodies within basins, hydrothermal alteration (volcanic- or impact-induced), diagenesis, metamorphism, and magmatic precipitation. Diverse clay minerals have been detected from orbital investigation of terrains on Mars and are globally distributed, indicating geographically widespread aqueous alteration. Clay assemblages within deep stratigraphic units in the Martian crust include Fe/Mg smectites, chlorites and higher temperature hydrated silicates. Sedimentary clay mineral assemblages include Fe/Mg smectites, kaolinite, and sulfate, carbonate, and chloride salts. Stratigraphic sequences with multiple clay-bearing units have an upper unit with Al-clays and a lower unit with Fe/Mg-clays. The typical restriction of clay minerals to the oldest, Noachian terrains indicates a distinctive set of processes involving water-rock interaction that was prevalent early in Mars history and may have profoundly influenced the evolution of Martian geochemical systems. Current analyses of orbital data have led to the proposition of multiple clay-formation mechanisms, varying in space and time in their relative importance. These include near-surface weathering, formation in ice-dominated near-surface groundwaters, and formation by subsurface hydrothermal fluids. Near-surface, open system formation of clays would lead to fractionation of Mars’ crustal reservoir into an altered crustal reservoir and a sedimentary reservoir, potentially involving changes in the composition of Mars’ atmosphere. In contrast, formation of clays in the subsurface by either aqueous alteration or magmatic cooling would result in comparatively little geochemical fractionation or interaction of Mars’ atmospheric, crustal, and magmatic reservoirs, with the exception of long-term sequestration of water. Formation of clays within ice would have geochemical consequences intermediate between these endmembers. We outline the future analyses of orbital data, in situ measurements acquired within clay-bearing terrains, and analyses of Mars samples that are needed to more fully elucidate the mechanisms of martian clay formation and to determine the consequences for the geochemical evolution of the planet.
- Published
- 2012
- Full Text
- View/download PDF
19. Constraining methane release due to serpentinization by the observed D/H ratio on Mars
- Author
-
Eric Chassefière, François Leblanc, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Water on Mars ,Hydrogen ,Geochemistry ,Mineralogy ,chemistry.chemical_element ,01 natural sciences ,Hydrothermal circulation ,Methane ,Sink (geography) ,chemistry.chemical_compound ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Atmospheric escape ,Noachian ,Mars Exploration Program ,Geophysics ,chemistry ,13. Climate action ,Space and Planetary Science ,Geology - Abstract
International audience; It has been suggested that Mars' atmospheric CH4 could be produced by crustal hydrothermal systems. The two most plausible mechanisms proposed so far, not exclusive from each other, are homogeneous formation by fluid–rock interaction during magmatic events and serpentinization of ultramafic rocks. The first goal of the present paper is to provide an upper limit on the release rate of serpentinization-derived CH4. Due to the release of numerous H2 molecules together with one CH4 molecule, followed by thermal escape of all released H atoms to space and subsequent H isotopic fractionation, even a relatively modest serpentinization-derived CH4 release acting over geological time scales may result in a significant enrichment of D wrt H in Mars' cryo-hydrosphere, including atmosphere, polar caps and subsurface reservoirs. By assuming that the CH4 release rate has been proportional to the volcanic extrusion rate during the last 4 billion years, we calculate the present D/H ratio resulting from the crustal oxidation due to serpentinization, including the additional effect of sulfur oxidation. We show that this rate doesn't exceed 20% (within a factor of 2) of the estimated present value of the CH4 release rate. If not, the present D/H ratio on Mars would be larger than observed (~ 5 SMOW). This result suggests that, either the production of CH4 is sporadic with a present release rate larger than the average rate, or there are other significant sources of CH4 like homogeneous formation from mantle carbon degassing or bacterial activity. Second, assuming further that most of the H isotopic fractionation observed today is due to serpentinization, we show that a ~ 400 m thick global equivalent layer of water may have been stored in serpentine since the late Noachian. This result doesn't depend on the chemical form of the released hydrogen (H2 or CH4). Such a quantity is generally considered as the amount required for explaining the formation of valley networks on Mars. Serpentinization therefore appears as a potentially efficient sink of water on Mars, much more efficient than O escape' for having removed large amounts of water from the hydrosphere.
- Published
- 2011
- Full Text
- View/download PDF
20. Metastable methane clathrate particles as a source of methane to the martian atmosphere
- Author
-
Eric Chassefière, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Clathrate hydrate ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mineralogy ,Atmospheric sciences ,01 natural sciences ,Methane ,chemistry.chemical_compound ,Mars polar caps ,Mars atmosphere ,0103 physical sciences ,Physics::Chemical Physics ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Carbon dioxide clathrate ,Methane clathrate ,Atmospheres evolution ,Astronomy and Astrophysics ,Methane chimney ,Atmosphere of Mars ,Atmospheres chemistry ,chemistry ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Geological processes ,Hydrate ,Water vapor - Abstract
The observations of methane made by the PFS instrument onboard Mars Express exhibit a definite correlation between methane mixing ratio, water vapor mixing ratio, and cloud optical depth. The recent data obtained from ground-based telescopes seem to confirm the correlation between methane and water vapor. In order to explain this correlation, we suggest that the source of gaseous methane is atmospheric, rather than at the solid surface of the planet, and that this source may consist of metastable submicronic particles of methane clathrate hydrate continuously released to the atmosphere from one or several clathrate layers at depth, according to the phenomenon of “anomalous preservation” evidenced in the laboratory. These particles, lifted up to middle atmospheric levels due to their small size, and therefore filling the whole atmosphere, serve as condensation nuclei for water vapor. The observed correlation between methane and water vapor mixing ratios could be the signature of the decomposition of the clathrate crystals by condensation–sublimation processes related to cloud activity. Under the effect of water condensation on crystal walls, metastability could be broken and particles be eroded, resulting in a subsequent irreversible release of methane to the gas phase. Using PFS data, and according to our hypothesis, the lifetime of gaseous methane is estimated to be smaller than an upper limit of 6 ± 3 months, much smaller than the lifetime of 300 yr calculated from atmospheric chemical models. The reason why methane has a short lifetime might be the occurrence of heterogeneous chemical decomposition of methane in the subsurface, where it is known since Viking biology experiments that oxidants efficiently decompose organic matter. If true, it is shown by using existing models of H2O2 penetration in the regolith that methane could prevent H2O2 from penetrating in the subsurface, and further oxidizing the soil, at depths larger than a few millimeters. The present source of methane clathrate, acting over the last few hundred thousand or million years, could have given rise to the thin CO2–ice layer covering the permanent water ice south polar cap. The hypothesis proposed in this paper requires, to be validated, a number of laboratory experiments studying the stability of methane clathrates in martian atmospheric conditions, and the kinetics and amplitude of clathrate particle erosion in presence of condensing water vapor. Detailed future observations of methane, and associated modeling, will allow to more accurately quantify the production rate of methane clathrate, its temporal variability at seasonal scale, and possibly to locate the source(s) of clathrates at the surface.
- Published
- 2009
- Full Text
- View/download PDF
21. TandEM: Titan and Enceladus mission
- Author
-
J. E. Blamont, Tobias Owen, Michael Küppers, Xenophon Moussas, Robert H. Brown, Nicole Schmitz, Sascha Kempf, C. Menor Salvan, T. W. Haltigin, Olivier Grasset, Roger V. Yelle, Wayne H. Pollard, Daniel Gautier, Paul R. Mahaffy, Joe Pitman, Iannis Dandouras, Daphne Stam, John C. Zarnecki, Bruno Sicardy, Georges Durry, Jesús Martínez-Frías, Norbert Krupp, S. Le Mouélic, Matthias Grott, Sébastien Lebonnois, T. Krimigis, Elizabeth P. Turtle, Alain Herique, Linda Spilker, Ralph D. Lorenz, Maria Teresa Capria, M. Combes, John F. Cooper, O. Mousis, Joachim Saur, Wlodek Kofman, J. Bouman, M. Paetzold, Hojatollah Vali, C. Dunford, Sushil K. Atreya, Eric Chassefière, I. de Pater, T. B. McCord, Bruno Bézard, Gabriel Tobie, Catherine D. Neish, M. Ruiz Bermejo, Sergei Pogrebenko, Kim Reh, Athena Coustenis, Ralf Jaumann, Angioletta Coradini, Leonid I. Gurvits, Andrew J. Coates, Tibor S. Balint, H. Hussmann, E. Choi, Ioannis A. Daglis, Edward C. Sittler, Emmanuel Lellouch, Robert A. West, L. Boireau, E.F. Young, Timothy A. Livengood, Cesar Bertucci, Martin G. Tomasko, M. Fujimoto, Ingo Müller-Wodarg, Yves Bénilan, Wing-Huen Ip, Marina Galand, Darrell F. Strobel, Cyril Szopa, Pascal Rannou, D. G. Mitchell, Mark Leese, Véronique Vuitton, P. Annan, Tetsuya Tokano, Caitlin A. Griffith, Conor A. Nixon, Stephen A. Ledvina, Karoly Szego, Andrew Morse, Panayotis Lavvas, Luisa Lara, C. de Bergh, Jonathan I. Lunine, R. A. Gowen, Katrin Stephan, Jianping Li, Glenn S. Orton, Michel Blanc, Esa Kallio, Ronan Modolo, M. Hirtzig, Helmut Lammer, Nicholas Achilleos, D. Nna Mvondo, Frank Sohl, M. Nakamura, Andrew Steele, C. C. Porco, Marcello Fulchignoni, Gordon L. Bjoraker, Olga Prieto-Ballesteros, J. J. López-Moreno, Andrew Dominic Fortes, Rafael Rodrigo, Patrice Coll, Francesca Ferri, François Raulin, Tom Spilker, F. J. Crary, J. H. Waite, Dirk Schulze-Makuch, Thomas E. Cravens, Kevin H. Baines, C. P. McKay, L. Richter, D. Luz, David H. Atkinson, Martin Knapmeyer, Robert E. Johnson, D. Fairbrother, F. M. Flasar, Roland Thissen, Paul N. Romani, Sebastien Rodriguez, Urs Mall, Paul M. Schenk, Franck Hersant, R. Koop, Odile Dutuit, I. Vardavas, T. Kostiuk, Ricardo Amils, Konrad Schwingenschuh, Robert V. Frampton, Fritz M. Neubauer, Jan-Erik Wahlund, L. A. Soderblom, Michele K. Dougherty, Anna Milillo, Frank T. Robb, Bernard Schmitt, Christophe Sotin, Michel Cabane, A. Selig, Bernard Marty, Yves Langevin, Rosaly M. C. Lopes, Emmanuel T. Sarris, E. De Angelis, D. Toublanc, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Space and Atmospheric Physics Group [London], Blackett Laboratory, Imperial College London-Imperial College London, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Università degli Studi di Padova = University of Padua (Unipd), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Joint Institute for VLBI in Europe (JIVE ERIC), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), NASA Ames Research Center (ARC), Department of Physics [Athens], National and Kapodistrian University of Athens (NKUA), University of Cologne, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Swedish Institute of Space Physics [Uppsala] (IRF), Space Science Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), Centre National d'Études Spatiales [Toulouse] (CNES), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Academy of Athens, Observatoire de Paris - Site de Paris (OP), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Bombardier Aerospace, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Sensors and Software, University of Idaho [Moscow, USA], SRON Netherlands Institute for Space Research (SRON), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto Nazionale di Astrofisica (INAF), University of Kansas [Lawrence] (KU), National Observatory of Athens (NOA), Department of Astronomy [Berkeley], University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), McGill University = Université McGill [Montréal, Canada], FORMATION STELLAIRE 2009, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), University of Virginia [Charlottesville], Finnish Meteorological Institute (FMI), Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics [Beijing] (IAP), Chinese Academy of Sciences [Beijing] (CAS)-Chinese Academy of Sciences [Beijing] (CAS), National Center for Earth and Space Science Education (NCESSE), Observatório Astronómico de Lisboa, Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bear Fight Center, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Lockheed Martin Space, Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), University of Maryland Biotechnology Institute Baltimore, University of Maryland [Baltimore], Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Democritus University of Thrace (DUTH), Lunar and Planetary Institute [Houston] (LPI), School of Earth and Environmental Sciences [Pullman], Washington State University (WSU), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universita degli Studi di Padova, National and Kapodistrian University of Athens = University of Athens (NKUA | UoA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), IMPEC - LATMOS, University of California [Berkeley], University of California-University of California, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), McGill University, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), University of Virginia, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Exploration of Saturn ,Solar System ,Cosmic Vision ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Computer science ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,TandEM ,01 natural sciences ,law.invention ,Astrobiology ,Enceladus ,Orbiter ,symbols.namesake ,law ,Saturnian system ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Spacecraft ,Tandem ,business.industry ,Astronomy and Astrophysics ,Landing probes ,Space and Planetary Science ,symbols ,Titan ,business ,Titan (rocket family) - Abstract
著者人数:156名, Accepted: 2008-05-27, 資料番号: SA1000998000
- Published
- 2009
- Full Text
- View/download PDF
22. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)
- Author
-
Angioletta Coradini, Roberto Marco, Manuel Grande, Dave Rothery, Frances Westall, Jean-Pierre Bibring, Helmut Lammer, Antonella Barucci, Pascale Ehrenfreund, Peter Norsk, Gerhard Haerendel, Jean-Claude Worms, Bernhard Koch, J. E. Blamont, John Robert Brucato, Ian A. Crawford, Stephan Ulamec, Cam Tropea, Rupert Gerzer, Eric Chassefière, John C. Zarnecki, Monica M. Grady, Michel Blanc, Jean-Pierre Swings, Heno Falcke, Gerda Horneck, Reta Beebe, Andrei Lobanov, José Juan López-Moreno, Roger Bonnet, European Space Science Committee-European Science Foundation (ESSC-ESF), European Science Foundation (ESF), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), New Mexico State University, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), École polytechnique (X), International Space Science Institute [Bern] (ISSI), INAF - Osservatorio Astronomico di Capodimonte (OAC), Istituto Nazionale di Astrofisica (INAF), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Birkbeck College [University of London], Universiteit Leiden [Leiden], Netherlands Institute for Radio Astronomy (ASTRON), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Planetary and Space Sciences [Milton Keynes] (PSS), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU)-Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), University of Whales, Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Radioastronomie (MPIFR), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Universidad Autonoma de Madrid (UAM), University of Copenhagen = Københavns Universitet (KU), The Open University [Milton Keynes] (OU), Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Technische Universität Darmstadt (TU Darmstadt), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Universiteit Leiden, Universidad Autónoma de Madrid (UAM), University of Copenhagen = Københavns Universitet (UCPH), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), and Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Robotic exploration ,Societies, Scientific ,MARS-EXPRESS ,European exploration programme, Robotic exploration, Human lunar missions, Human Mars missions, NEOs, Sample return missions, Planetary protection, International cooperation, NEAR-EARTH ASTEROIDS, MARS-EXPRESS, ASTRONOMY, MOON ,Extraterrestrial Environment ,010504 meteorology & atmospheric sciences ,Planetary protection ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astronomy ,International Cooperation ,European exploration programme ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Human Mars missions ,Mars ,Library science ,Context (language use) ,01 natural sciences ,Space exploration ,Minor Planets ,Astrobiology ,0103 physical sciences ,Humans ,Human lunar missions ,Moon ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,NEAR-EARTH ASTEROIDS ,0105 earth and related environmental sciences ,Human spaceflight ,ASTRONOMY ,International Agencies ,Timeline ,Robotics ,Mars Exploration Program ,Space Flight ,Agricultural and Biological Sciences (miscellaneous) ,Europe ,NEOs ,13. Climate action ,Space and Planetary Science ,Astronauts ,Position paper ,Sample return missions ,Space Science ,Goals ,Geology - Abstract
International audience; In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e. g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group ( 7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice with all ESSC-ESF reports, and amended accordingly. The Ad Hoc Group defined overarching scientific goals for Europe's exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments,"focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return as the recognized primary goal; furthermore the report clearly states that Europe should position itself as a major actor in defining and leading Mars sample return missions. The report is reproduced in this article. On 26 November 2008 the Ministers of ESA Member States decided to give a high strategic priority to the robotic exploration programme of Mars by funding the enhanced ExoMars mission component, in line therefore with the recommendations from this ESSC-ESF report.
- Published
- 2009
- Full Text
- View/download PDF
23. Early Mars volcanic sulfur storage in the upper cryosphere and formation of transient SO2-rich atmospheres during the Hesperian
- Author
-
Feng Tian, Eric Chassefière, Olivier Mousis, Jean-Michel Herri, Frédéric Schmidt, Emmanuel Dartois, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Center for Earth System Science [Beijing] (CESS), Tsinghua University [Beijing] (THU), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département PROcédés Poudres, Interfaces, Cristallisation et Ecoulements (PROPICE-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-SPIN, Laboratoire Georges Friedel (LGF-ENSMSE), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut National des Sciences de l'UniversCentre National de la Recherche ScientifiqueCentre National d'Etude SpatialeInvestissements d'AvenirNational Natural Science Foundation of China. Grant Number: 41175039Startup Fund of the Ministry of Education of China. Grant Number: 20131029170, Université Paris-Saclay-Orsay-GEOPS-Université Paris-Sud-CNRS, Tsinghua University-Center for Earth System Sciences-Beijing-China, Université Paris-Sud-IAS-CNRS, Université d'Aix Marseille-CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011)
- Subjects
010504 meteorology & atmospheric sciences ,chemistry.chemical_element ,FOS: Physical sciences ,Noachian terrains ,01 natural sciences ,Astrobiology ,Atmosphere ,sulfate deposits ,0103 physical sciences ,Cryosphere ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Earth and Planetary Astrophysics (astro-ph.EP) ,geography ,geography.geographical_feature_category ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Noachian ,Mars Exploration Program ,Atmosphere of Mars ,Sulfur ,early Mars atmosphere ,Geophysics ,CO2-SO2 clathrates ,chemistry ,Volcano ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Hesperian ,Hesperian terrains ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
In a previous paper (Chassefi\`ere et al., Icarus 223, 878-891, 2013), we have shown that most volcanic sulfur released to early Mars atmosphere could have been trapped in the cryosphere under the form of CO2-SO2 clathrates. Huge amounts of sulfur, up to the equivalent of a ~1 bar atmosphere of SO2, would have been stored in the Noachian cryosphere, then massively released to the atmosphere during Hesperian due to rapidly decreasing CO2 pressure. It would have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2-SO2 clathrates formed through a progressive enrichment of a preexisting reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2-rich upper cryosphere. We show that episodes of sudden destabilization at the Hesperian may generate 1000 ppmv of SO2 in the atmosphere and contribute to maintaining the surface temperature above the water freezing point., Comment: 15 pages, 1 figure
- Published
- 2016
- Full Text
- View/download PDF
24. Martian zeolites as a source of atmospheric methane
- Author
-
Frédéric Schmidt, V. Sautter, Olivier Mousis, Sylvain Picaud, Sylvain Bouley, Yoann Quesnel, Jean-Marc Simon, Sébastien Lectez, Eric Chassefière, Jean-Pierre Bellat, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), School of Earth and Environment [Leeds] (SEE), University of Leeds, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Géosciences Paris Sud ( GEOPS ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Muséum National d'Histoire Naturelle ( MNHN ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules ( UTINAM ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), and School of Earth and Environment [Leeds] ( SEE )
- Subjects
Chabazite ,010504 meteorology & atmospheric sciences ,Clathrate hydrate ,FOS: Physical sciences ,01 natural sciences ,Methane ,Astrobiology ,chemistry.chemical_compound ,0103 physical sciences ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Basalt ,Martian ,Atmospheric methane ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,chemistry ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Environmental science ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,[ SDU ] Sciences of the Universe [physics] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equivalent Layer may range up to more than $\sim$1 km, according to the most optimistic estimates. If the martian methane present in chabazite and clinoptilolite is directly sourced from an abiotic source in the subsurface, the destabilization of a localized layer of a few millimeters per year may be sufficient to explain the current observations. The sporadic release of methane from these zeolites requires that they also remained isolated from the atmosphere during its evolution. The methane release over the ages could be due to several mechanisms such as impacts, seismic activity or erosion. If the methane outgassing from excavated chabazite and/or clinoptilolite prevails on Mars, then the presence of these zeolites around Gale Crater could explain the variation of methane level observed by Mars Science Laboratory., Comment: Accepted for publication in Icarus
- Published
- 2016
- Full Text
- View/download PDF
25. Early Mars serpentinization-derived CH4 reservoirs, H-2-induced warming and paleopressure evolution
- Author
-
Yoann Quesnel, Jérémie Lasue, Eric Chassefière, Benoit Langlais, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Clathrate hydrate ,Noachian ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,Atmosphere ,Geophysics ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,0103 physical sciences ,Cryosphere ,Hesperian ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Geology ,0105 earth and related environmental sciences ,Tharsis - Abstract
International audience; CH4 has been observed on Mars both by remote sensing and in situ during the past 15 yr. It could have been produced by early Mars serpentinization processes that could also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. The maximum storage capacity of such a clathrate cryosphere has been recently estimated to be 2 x 10(19) to 2 x 10(20) moles of methane. We estimate how large amounts of serpentinization-derived CH4 stored in the cryosphere have been released into the atmosphere during the Noachian and the early Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H-2, these episodes of massive CH4 release may have resulted in transient H-2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. The collision-induced heating effect of H-2 present in such an atmosphere has been shown to raise the surface temperature above the water freezing point. We show how local and rapid destabilization of the cryosphere can be induced by large events (such as the Hellas Basin or Tharsis bulge formation) and lead to such releases. Our results show that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H-2-rich transient atmospheres during a total time period up to several million years or tens of million years, having potentially contributed to the formation of valley networks during the Noachian/early Hesperian.
- Published
- 2016
- Full Text
- View/download PDF
26. The combined effects of escape and magnetic field histories at Mars
- Author
-
Eric Chassefière, Benoit Langlais, François Leblanc, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Solar System ,010504 meteorology & atmospheric sciences ,Mars ,01 natural sciences ,Astrobiology ,Atmosphere ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Martian ,Noachian ,Water ,Astronomy ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Dynamo ,Solar wind ,Escape ,Magnetic field ,Climate history ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Dynamo theory ,Astrophysics::Earth and Planetary Astrophysics ,Geology - Abstract
Mars is thought to have hosted large amounts of water and carbon dioxide at primitive epochs. The morphological analysis of the surface of Mars shows that large bodies of water were probably present in the North hemisphere at late Noachian (3.7–4 Gyr ago). Was this water solid or liquid? For maintaining liquid water at this time, when the Sun was (likely) less bright than now, a CO2 atmosphere of typically 2 bars is required. Can sputtering, still presently acting at the top of the Martian atmosphere, have removed such a dense atmosphere over the last 3.5–4 Gyr? What was the fate of the 100–200 m global equivalent layer of water present at late Noachian? When did Martian magnetic dynamo vanish, initiating a long period of intense escape by sputtering? Because sputtering efficiency is highly non-linear with solar EUV flux, with a logarithmic slope of ≈7:Φsput≈ΦEUV7, resulting in enhanced levels of escape at primitive epochs, when the sun was several times more luminous than now in the EUV, there is a large uncertainty on the cumulated amount of volatiles removed to space. This amount depends primarily on two factors: (i) the exact value of the non-linearity exponent (≈7 from existing models, but this value is rather uncertain), (ii) the exact time when the dynamo collapsed, activating sputtering at epochs when intense EUV flux and solar wind activity prevailed in the solar system. Both parameters are only crudely known at the present time, due the lack of direct observation of sputtering from Martian orbit, and to the incomplete and insufficiently spatially resolved map of the crustal magnetic field. Precise timing of the past Martian dynamo can be investigated through the demagnetisation signature associated with impact craters. A designated mission to Mars would help in answering this crucial question: was water liquid at the surface of Mars at late Noachian? Such a mission would consist of a low periapsis (≈100 km) orbiter, equipped with a boom-mounted magnetometer, for mapping the magnetic field, as well as adequate in situ mass and energy spectrometers, for a full characterization of escape and of its response to solar activity variations. Surface based observations of atmospheric noble gas isotopic ratios, which keep the signatures of past escape processes, including sputtering for the lightest of them (Ne, Ar), would bring a key constraint for escape models extrapolated back to the past.
- Published
- 2007
- Full Text
- View/download PDF
27. Methane clathrates in the solar system
- Author
-
Yuri Aikawa, Mohamad Ali-Dib, Wolf D. Geppert, Alexis Bouquet, Eric Chassefière, Jack H. Waite, Sylvain Picaud, Jean Luc Charlou, Nils G. Holm, Philippe Rousselot, Olivier Mousis, Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Stockholm], Stockholm University, Space Science and Engineering Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), The University of Texas at San Antonio (UTSA), Department of Physics [Stockholm], Stockholm University Astrobiology Centre, Department of Earth and Planetary Sciences [Kobe], Kobe University, Unité de recherche Géosciences Marines (Ifremer) (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), and Géosciences Marines (GM)
- Subjects
Solar System ,Materials science ,010504 meteorology & atmospheric sciences ,Extraterrestrial Environment ,FOS: Physical sciences ,Planets ,Permafrost ,01 natural sciences ,Methane ,Astrobiology ,Atmosphere ,chemistry.chemical_compound ,Planet ,0103 physical sciences ,Cryosphere ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Martian ,Earth and Planetary Astrophysics (astro-ph.EP) ,Mars Exploration Program ,Agricultural and Biological Sciences (miscellaneous) ,chemistry ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Crystallization ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System. Astrobiology 15, 308-326.
- Published
- 2015
- Full Text
- View/download PDF
28. Thermal model of Mercury’s surface and subsurface: Impact of subsurface physical heterogeneities on the surface temperature
- Author
-
Alain Sarkissian, Eric Chassefière, Nicolas Yan, François Leblanc, Service d'aéronomie (SA), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,Materials science ,010504 meteorology & atmospheric sciences ,Aerospace Engineering ,chemistry.chemical_element ,Mineralogy ,Atmospheric sciences ,01 natural sciences ,7. Clean energy ,Heat capacity ,Thermal conductivity ,0103 physical sciences ,Thermal ,Radiative transfer ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Radiometer ,business.industry ,Astronomy and Astrophysics ,Mercury ,Thermal model ,Regolith ,Mercury (element) ,Surface temperature ,Geophysics ,chemistry ,13. Climate action ,Space and Planetary Science ,General Earth and Planetary Sciences ,business ,Thermal energy - Abstract
The surface temperature of Mercury will be monitored by the IR radiometer on board the MPO orbiter of the BepiColombo mission. These results are expected to provide information about regolith thermal and thermo-optical properties at the surface, but also in the near subsurface. The presence of physical heterogeneities, resulting in discontinuities of the vertical profiles of subsurface physical parameters (like thermal conductivity, heat capacity, porosity, etc.) is expected to imprint its signature on the time evolution of surface temperature, in particular at twilight, when the temperature does rapidly vary, and during the night. It might as well affect the absolute level of surface temperature, on both dayside and nightside, due to possible horizontal variations of thermal inertia, because of topography and/or geographical variations of regolith textural properties. We have therefore developed a thermal model of Mercury's regolith which includes radiative and conductive effects, and tests the effect of various subsurface inhomogeneities on the observed temperature curves. Such a model describes the diurnal variation of the surface temperature and of the temperature profile in the first meters below the surface. This model has been tested with respect to known measurements of Mercury's surface temperature [Chase, S.C., Miner, Jr., E.D., Morrison, D. et al. Mariner 10 infrared radiometer results: temperatures and thermal properties of the surface of Mercury. Icarus 28, 655–578, 1976] and previous existing models [Hale, A.S., Hapke, B. A time-dependent model of radiative and conductive thermal energy transport in planetary regoliths with applications to the Moon and Mercury. Icarus 156, 318–334, 2002].
- Published
- 2006
- Full Text
- View/download PDF
29. Global structure and composition of the martian atmosphere with SPICAM on Mars express
- Author
-
François Forget, Alexander Rodin, Eric Quémerais, Pascal Rannou, M. De Mazière, S. Guibert, V. I. Moroz, Franck Lefèvre, Michel Cabane, Oleg Korablev, Paul C. Simon, Alain Hauchecorne, G. Kockarts, D. Moreau, Jean-Pierre Dubois, Olivier Talagrand, Eric Chassefière, C. Lippens, Alan Stern, Emmanuel Dimarellis, C. Muller, Jean-Loup Bertaux, Bill R. Sandel, D. Fonteyn, Anny Chantal Levasseur-Regourd, Frédéric Hourdin, Eddy Neefs, Guy Cernogora, Christian Hermans, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Southwest Research Institute [Boulder] (SwRI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Aerospace Engineering ,7. Clean energy ,01 natural sciences ,Occultation ,Atmosphère planétaire ,law.invention ,Astrobiology ,010309 optics ,Orbiter ,law ,0103 physical sciences ,Planète Mars ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Martian ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Solar wind ,Geophysics ,13. Climate action ,Space and Planetary Science ,Mars Orbiter Laser Altimeter ,General Earth and Planetary Sciences ,Environmental science ,Ionosphere - Abstract
SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) Light, a light-weight (4.7 kg) UV–IR instrument to be flown on Mars Express orbiter, is dedicated to the study of the atmosphere and ionosphere of Mars. A UV spectrometer (118–320 nm, resolution 0.8 nm) is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO 2 + , and its direct interaction with the solar wind. An IR spectrometer (1.0–1.7 μm, resolution 0.5–1.2 nm) is dedicated primarily to nadir measurements of H2O abundances simultaneously with ozone measured in the UV, and to vertical profiling during solar occultation of H2O, CO2, and aerosols. The SPICAM Light near-IR sensor employs a pioneering technology acousto-optical tunable filter (AOTF), leading to a compact and light design. Overall, SPICAM Light is an ideal candidate for future orbiter studies of Mars, after Mars Express, in order to study the interannual variability of martian atmospheric processes. The potential contribution to a Mars International Reference Atmosphere is clear.
- Published
- 2005
- Full Text
- View/download PDF
30. DYNAMO: a Mars upper atmosphere package for investigating solar wind interaction and escape processes, and mapping Martian fields
- Author
-
Jean-Claude Gérard, Jean-André Sauvaud, Jacques Porteneuve, Andrew F. Nagy, Fritz Primdahl, Janet G. Luhmann, Mustapha Meftah, François Leblanc, David L. Mitchell, Eric Chassefière, Sándor Szalai, G. Cerutti-Maori, Sue Smrekar, Sho Sasaki, F. Barlier, Michael E. Purucker, M. Mandea, Karoly Szego, Jean-Jacques Berthelier, Mario H. Acuña, G. Hulot, Thomas H. Zurbuchen, Doris Breuer, Robert Lin, Stephen W. Bougher, G. M. Keating, Michel Parrot, Eric Quémerais, Jean Lilensten, Jean-Pierre Barriot, H. Waite, John Clarke, Christian Malique, Pierre Rochus, François Forget, Jean-Gabriel Trotignon, Stefano Orsini, Jean-Loup Bertaux, Gérard Chanteur, S. Barabash, Bruce M. Jakosky, Henri Rème, Michel Menvielle, P. Touboul, D. T. Young, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Danish Space Research Institute (DSRI), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Space Sciences Laboratory [Berkeley] (SSL), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Swedish Institute of Space Physics [Kiruna] (IRF), Centre d'étude des environnements terrestre et planétaires (CETP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Southwest Research Institute [San Antonio] (SwRI), Boston University [Boston] (BU), Laboratoire de physique et chimie de l'environnement (LPCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Observatoire de la Côte d'Azur (OCA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Planétologie de Grenoble (LPG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, NASA Goddard Space Flight Center (GSFC), Institut für Planetologie [Münster], Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], The University of Tokyo (UTokyo), The George Washington University (GW), ONERA - The French Aerospace Lab [Châtillon], ONERA-Université Paris Saclay (COmUE), Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, University of California [Berkeley], University of California-University of California, Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Westfälische Wilhelms-Universität Münster (WWU), California Institute of Technology (CALTECH)-NASA, and Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Mars ,Aerospace Engineering ,Magnetosphere ,7. Clean energy ,01 natural sciences ,Astrobiology ,0103 physical sciences ,Gravity field ,Upper atmosphere ,Mercury's magnetic field ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Martian ,Atmospheric escape ,Astronomy and Astrophysics ,Mars Exploration Program ,Solar wind ,Escape ,Magnetic field ,Geophysics ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,General Earth and Planetary Sciences ,Timekeeping on Mars ,Astrophysics::Earth and Planetary Astrophysics ,Thermosphere ,Geology - Abstract
International audience; DYNAMO is a small multi-instrument payload aimed at characterizing current atmospheric escape, which is still poorly constrained, and improving gravity and magnetic field representations, in order to better understand the magnetic, geologic and thermal history of Mars. The internal structure and evolution of Mars is thought to have influenced climate evolution. The collapse of the primitive magnetosphere early in Mars history could have enhanced atmospheric escape and favored transition to the present arid climate. These objectives are achieved by using a low periapsis orbit. DYNAMO has been proposed in response to the AO released in February 2002 for instruments to be flown as a complementary payload onboard the CNES Orbiter to Mars (MO-07), foreseen to be launched in 2007 in the framework of the French PREMIER Mars exploration program. MO-07 orbital phase 2b (with an elliptical orbit of periapsis 170 km), and in a lesser extent 2a, offers an unprecedented opportunity to investigate by in situ probing the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, and therefore the present atmospheric escape rate. Ultraviolet remote sensing is an essential complement to characterize high, tenuous, layers of the atmosphere. One Martian year of operation, with about 5,000 low passes, should allow DYNAMO to map in great detail the residual magnetic field, together with the gravity field. Additional data on the internal structure will be obtained by mapping the electric conductivity, sinergistically with the NETLANDER magnetic data. Three options have been recommended by the International Science and Technical Review Board (ISTRB), who met on July 1st and 2nd, 2002. One of them is centered on DYNAMO. The final choice, which should be made before the end of 2002, will depend on available funding resources at CNES.
- Published
- 2004
- Full Text
- View/download PDF
31. Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow
- Author
-
François Gensdarmes, Jean-Christophe Sabroux, Volker Rohde, Christian Grisolia, A. Roynette, Eric Chassefière, Anthony Rondeau, Thomas Gelain, Sophie Peillon, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Laboratoire de Physique et de Métrologie des Aérosols, Institut National de la Recherche Scientifique [Québec] (INRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), Géosciences Paris Sud (GEOPS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Tokamak ,Materials science ,Divertor ,Airflow ,chemistry.chemical_element ,Mechanics ,Tungsten ,law.invention ,Nuclear Energy and Engineering ,chemistry ,ASDEX Upgrade ,law ,[SDU]Sciences of the Universe [physics] ,Particle-size distribution ,Shear stress ,General Materials Science ,Axial symmetry - Abstract
International audience; At the starting of the shutdown of the AUG (ASDEX Upgrade: Axially Symmetric Divertor EXperiment) German tokamak, we collected particles deposited on the divertor surfaces by means of a dedicated device called “Duster Box”. This device allows to collect the particles using a controlled airflow with a defined shear stress. Consequently, the particles collected correspond to a potentially mobilizable fraction, by an airflow, of deposited dust. A total of more than 70,000 tungsten particles was, analysed showing a bimodal particle size distribution with a mode composed of flakes at 0.6 μm and a mode composed of spherical particles at 1.8 μm.
- Published
- 2015
- Full Text
- View/download PDF
32. Comparative planetology of the history of nitrogen isotopes in the atmosphere of Titan and Mars
- Author
-
Olivier Mousis, Eric Chassefière, Kathleen Mandt, Department of Environmental and Civil Engineering, The University of Texas at San Antonio (UTSA), Space Science and Engineering Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
- Subjects
Secondary atmosphere ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Atmospheric sciences ,Article ,Astrobiology ,Atmosphere ,symbols.namesake ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,symbols ,Environmental science ,Terraforming of Mars ,Atmosphere of Titan ,Primary atmosphere ,Titan (rocket family) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; We present here a comparative planetology study of evolution of N-14/N-15 at Mars and Titan. Studies show that N-14/N-15 can evolve a great deal as a result of escape in the atmosphere of Mars, but not in Titan's atmosphere. We explain this through the existence of an upper limit to the amount of fractionation allowed to occur due to escape that is a function of the escape flux and the column density of nitrogen. (C) 2015 Elsevier Inc. All rights reserved.
- Published
- 2015
- Full Text
- View/download PDF
33. TERMOPAC/ADIP : A generic package for long-term monitoring of the Martian thermosphere
- Author
-
Jean-Jacques Berthelier, P. Touboul, Eric Chassefière, and Stephen W. Bougher
- Subjects
Martian ,Atmospheric Science ,Meteorology ,Aerospace Engineering ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmospheric sciences ,Monitoring program ,Aerobraking ,Atmosphere ,Geophysics ,Planetary science ,Space and Planetary Science ,Planet ,General Earth and Planetary Sciences ,Environmental science ,Thermosphere - Abstract
A small package devoted to the measurement of Mars neutral densities, temperatures, and winds in the 100–250 km altitude range is proposed to be put onboard the various orbiters of Mars that will be flown in the future. This package is composed of a 3-axis accelerometer and two density gauges, totaling approximately 2 kg. The solar cycle, seasonal, wave, and dust storm responses of the Mars upper atmosphere are poorly constrained at present. A long-term program for Mars thermospheric monitoring is needed to provide multiple opportunities to systematically investigate these thermospheric variations. Ultimately, a climatology of the Mars lower thermospheric densities, temperatures, and winds can be constructed. The goals of such a program are two-fold : (i) to fully characterize the Martian thermospheric structure and dynamics, and (ii) to provide a realistic Mars thermospheric climatology for future aerobraking exercises at the planet. A fundamental understanding of Mars thermospheric structure and dynamics naturally leads to comparison with the terrestrial lower thermosphere and the associated processes. Such comparative planetology studies require a global Mars database that would be provided by a regular thermospheric monitoring program made possible with TERMOPAC.
- Published
- 2002
- Full Text
- View/download PDF
34. Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a water ocean
- Author
-
Anne Davaille, François Leblanc, Philippe Sarda, Eric Chassefière, T. Lebrun, G. Brandeis, Emmanuel Marcq, Hélène Massol, Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Fluides, automatique, systèmes thermiques (FAST), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Convection ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Environmental Engineering ,Accretion (meteorology) ,lcsh:QP1-981 ,lcsh:QR1-502 ,Mars Exploration Program ,Atmospheric sciences ,Industrial and Manufacturing Engineering ,lcsh:Microbiology ,lcsh:Physiology ,Physics::Geophysics ,Atmosphere ,Lunar magma ocean ,13. Climate action ,Magma ,Physics::Space Physics ,lcsh:Zoology ,Astrophysics::Solar and Stellar Astrophysics ,Ocean planet ,Astrophysics::Earth and Planetary Astrophysics ,lcsh:QL1-991 ,Geology ,Water vapor ,Physics::Atmospheric and Oceanic Physics - Abstract
EPOV 2012: From Planets to Life – Colloquium of the CNRS Interdisciplinary Initiative “Planetary Environments and Origins of Life”; International audience; The thermal evolution of magma oceans produced by collision with giant impactors late in accretion is xpected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. We developed a 1D parameterized convection model of a magma ocean coupled with a 1D radiative convective model of the atmosphere. We conducted a parametric study and described the influences of some important parameters such as the Sun-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1 Myr, 1.5 Myr and 10 Myr for, respectively, Mars, Earth and Venus. This time would be virtually infinite for an Earth-sized planet located at less than 0.66 AU from the Sun. So there are conditions such as no water ocean is formed on Venus. Moreover, for Mars and Earth, water ocean formation time scales are shorter than typical time gaps between major impacts. This implies that successive water oceans may have developed during accretion, making easier the loss of their atmospheres by impact erosion.
- Published
- 2014
- Full Text
- View/download PDF
35. A new interpretation of scattered light measurements at Titan's limb
- Author
-
Pascal Rannou, Eric Chassefière, Robert Botet, and Michel Cabane
- Subjects
Atmospheric Science ,Soil Science ,Aquatic Science ,Oceanography ,Fractal dimension ,Light scattering ,symbols.namesake ,Fractal ,Optics ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Earth-Surface Processes ,Water Science and Technology ,Physics ,Ecology ,Microphysics ,Scattering ,business.industry ,Paleontology ,Forestry ,Molar absorptivity ,Aerosol ,Computational physics ,Geophysics ,Space and Planetary Science ,symbols ,Titan (rocket family) ,business - Abstract
Images of Titan, taken by Voyager 2 at phase angles Φ=140° and Φ=155° have provided radial intensity profiles at the bright and dark limbs, which provide information on the vertical and latitudinal distribution of organic hazes. In previous work, the deduced extinction coefficient, using ad hoc particle sizes, was obtained without help of microphysics, and it appeared difficult to compare it with coefficients computed from theoretical models. We use here our fractal approach of microphysical modeling and optics of agregates to compute intensity profiles of the main haze at the bright limb, and compare to the Voyager observations. Fractal aerosol distributions are obtained using different production altitudes and rates. Scattering and absorption of light are described by an improved model, based on the use of fractal aggregates made of spherical (Mie) particles. We show that the fractal dimension of aggregates has to be Df≈2, as predicted by microphysical arguments. Only a production altitude z0≈385±60 km, corresponding to a monomer radius rm≈0.066 μm, is fully consistent with both phase angle data. We also point out that the production rate of the aerosols decreases by a factor ≈2 between 30°S and the midnorthern latitude and further, increases up to 80°N. The average value of the production rate is Q≈1.4×10−13 kg/m2/s; we give arguments in favor of dynamical processes rather than of a purely microphysical mechanisms to explain such latitudinal variations.
- Published
- 1997
- Full Text
- View/download PDF
36. Loss of Water on the Young Venus: The Effect of a Strong Primitive Solar Wind☆
- Author
-
Eric Chassefière
- Subjects
Physics ,Solar System ,Atmospheric escape ,biology ,Coronal hole ,Astronomy ,Astronomy and Astrophysics ,Venus ,biology.organism_classification ,Corona ,Astrobiology ,Atmosphere of Venus ,Solar wind ,Space and Planetary Science ,Water vapor - Abstract
An enhanced primitive solar wind, such as may have prevailed during the first few 100 million years of the solar system history, is shown to have had the potential to stimulate strong thermal atmospheric escape from the young Venus. Due to heating by solar wind bombardment of an extended dense planetary corona, typically 10 times more extensive than the solid planet, an escape flux of pure atomic hydrogen as large as 3 × 1014cm−2sec−1is found to be possible, provided the solar wind was ≈103–104more intense than now. Even if escape was diffusion-limited, an enhanced primitive solar UV flux (a factor of ≈5 above present level), absorbed by ≈0.3 mbar of thermospheric water vapor, was able to supply the flow at the required rate. For these high escape rates, oxygen was massively dragged off along with hydrogen, and water molecules could be lost at a rate of ≈6 × 1013molecules cm−2sec−1. Because, at this rate, a terrestrial-type ocean was completely lost in ≈10 million years, short compared to typical accretion and outgassing times, water was lost “as soon” as it was outgassed. This mechanism could explain the present lack of oxygen in the Venus atmosphere. Because it is expected to affect all sunlike stars in the early phase of planet formation, abiotic oxygen atmospheres could be rare in the universe.
- Published
- 1997
- Full Text
- View/download PDF
37. Volatile trapping in Martian clathrates
- Author
-
Frédéric Schmidt, Jérémie Lasue, Eric Chassefière, Megan E. Elwood Madden, Jonathan I. Lunine, Franck Montmessin, Olivier Mousis, Sylvain Picaud, Vincent Chevrier, Azzedine Lakhlifi, Timothy D. Swindle, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), W.M. Keck Laboratory for Space and Planetary Simulation [Fayetteville], Arkansas Center for Space and Planetary Sciences, University of Arkansas [Fayetteville]-University of Arkansas [Fayetteville], School of Geology and Geophysics, University of Oklahoma, University of Oklahoma (OU), Center for Radiophysics and Space Research [Ithaca] (CRSR), Cornell University [New York], PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Clathrate hydrate ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,chemistry.chemical_element ,Mars ,Context (language use) ,01 natural sciences ,Astrobiology ,Atmosphere ,Xenon ,Clathrates ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Carbon dioxide clathrate ,Martian ,Atmospheric methane ,Astronomy and Astrophysics ,Mars Exploration Program ,chemistry ,13. Climate action ,Space and Planetary Science ,Polar caps ,Cryosphere - Abstract
International audience; Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet's volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.
- Published
- 2013
- Full Text
- View/download PDF
38. CO2-SO2 clathrate hydrate formation on early Mars
- Author
-
Emmanuel Dartois, Frédéric Schmidt, Feng Tian, Olivier Mousis, Eric Chassefière, Jean-Michel Herri, Azzedine Lakhlifi, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département PROcédés Poudres, Interfaces, Cristallisation et Ecoulements (PROPICE-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-SPIN, Laboratoire Georges Friedel (LGF-ENSMSE), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Center for Earth System Science [Beijing] (CESS), Tsinghua University [Beijing] (THU), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Laboratoire IDES, UMR 8148 et IAS - Tsinghua University, Center for Earth System Sciences - Université de Franche-Comté, Institut UTINAM, UMR 6213 et OSU THETA de Franche-Comté - Université de Toulouse, UPS-OMP, CNRS-INSU, IRAP, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mars surface ,010504 meteorology & atmospheric sciences ,Water on Mars ,Ices ,Clathrate hydrate ,Noachian ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Mars climate ,01 natural sciences ,Astrobiology ,Freezing point ,Atmosphere ,Mars atmosphere ,Volcanism ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Hesperian ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; It is generally agreed that a dense CO2-dominant atmosphere was necessary in order to keep early Mars warm and wet. However, current models have not been able to produce surface temperature higher than the freezing point of water. Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian, despite likely much stronger volcanic activities and more substantial release of sulfur-bearing gases into martian atmosphere during the Noachian. Here we show, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ∼2 bar and maintained a global average surface temperature ∼230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2-rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. A lower value of the pressure threshold, down to ∼0.5 bar, could have been sufficient to maintain middle and high latitude regions below the clathrate formation temperature during the Noachian and to make the trapping of SO2 in clathrates efficient. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.
- Published
- 2013
- Full Text
- View/download PDF
39. Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments
- Author
-
Richard V. Morris, Joseph R. Michalski, Eric Chassefière, Brad Sutter, David C. Catling, Gilles Berger, Paul B. Niles, Steven W. Ruff, and Bethany L. Ehlmann
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Carbonate minerals ,Geochemistry ,Noachian ,Astronomy and Astrophysics ,Mars Exploration Program ,Exploration of Mars ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,Planetary science ,Meteorite ,chemistry ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Carbonate ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO_2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (
- Published
- 2013
40. Outgassing History and Escape of the Martian Atmosphere and Water Inventory
- Author
-
Matthias Grott, Eric Chassefière, Achim Morschhauser, Doris Breuer, Véronique Dehant, Lê Binh San Pham, Hannes Gröller, Petra Odert, Olivier Mousis, Özgür Karatekin, Helmut Lammer, Paul B. Niles, Ernst Hauber, and U. V. Möstl
- Subjects
010504 meteorology & atmospheric sciences ,Thermal escape ,Amazonian ,Early Mars ,Atmospheric evolution ,FOS: Physical sciences ,01 natural sciences ,Astrobiology ,Young Sun ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Volcanic outgassing ,Nonthermal escape ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Magma ocean ,Secondary atmosphere ,Atmospheric escape ,Noachian ,Astronomy and Astrophysics ,Mars Exploration Program ,Atmosphere of Mars ,Outgassing ,13. Climate action ,Space and Planetary Science ,Impacts ,Hesperian ,Astrophysics::Earth and Planetary Astrophysics ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The evolution and escape of the martian atmosphere and the planet's water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet's origin and lasted $\sim$500 Myr. Because of the high EUV flux of the young Sun and Mars' low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO$_2$ atmosphere of a few tens to a few hundred mbar around $\sim$4--4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure., 49 pages, 14 figures
- Published
- 2013
41. Quantifying the Martian geochemical reservoirs: An interdisciplinary perspective
- Author
-
James F. Bell, M. Toplis, Michel Blanc, Christophe Sotin, Eric Chassefière, Tilman Spohn, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), ASU, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, and German Aerospace Center (DLR)
- Subjects
Martian ,Solar System ,SNC Meteorite ,Outer planets ,010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,Astronomy and Astrophysics ,Context (language use) ,Mars Exploration Program ,Entwicklung des Mars ,01 natural sciences ,Astrobiology ,Planetary science ,Meteorite ,13. Climate action ,Space and Planetary Science ,Planet ,0103 physical sciences ,geochemische Reservoire ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Remote sensing - Abstract
The planet Mars has fascinated humanity since antiquity, a fascination that persists to the present-day, fuelled by the enticing possibility that the conditions necessary for life may once have existed there, and perhaps continue to exist to the present day. Indeed, comparative planetology of terrestrial bodies large enough to retain an atmosphere is a key to understanding the formation of our own planet and the physical and chemical conditions that led to the emergence and the development of life. In more general terms, the study of rocky bodies of the solar system also provides a context for planetary formation as a whole, shedding light on the geochemical similarities and differences between the principal objects of the inner solar system, as well as the cores of the outer planets and many of their satellites. However, it was not until the advent of space-based exploration in the 1960s that quantification of the geochemical characteristics of our planetary neighbours first became possible. Indeed, our knowledge of Mars changed dramatically when Mariner 4 took the first close-up pictures in July 1965, observing a highly cratered arid landscape. In 1976 the Viking orbiters and landers provided ground-breaking insight into surface morphology and the chemistry of the soil and atmosphere on Mars, data that also led to confirmation that the ShergottiteNakhlite-Chassignite group of meteorites (SNC) most probably have a martian origin. This
- Published
- 2013
- Full Text
- View/download PDF
42. Geochemical consequences of widespread clay mineral formation in Mars' ancient crust
- Author
-
Bethany L. Ehlmann, Gilles Berger, Nicolas Mangold, Joseph R. Michalski, David C. Catling, Steven W. Ruff, Eric Chassefière, Paul B. Niles, Vincent Chevrier, Francois Poulet, CRINON, Evelyne, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Mineralogy, Natural History Museum [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, W.M. Keck Laboratory for Space and Planetary Simulation [Fayetteville], Arkansas Center for Space and Planetary Sciences, University of Arkansas [Fayetteville]-University of Arkansas [Fayetteville], Institut d'astrophysique spatiale (IAS), and Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
010504 meteorology & atmospheric sciences ,0103 physical sciences ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010303 astronomy & astrophysics ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
International audience; Clays form on Earth by near-surface weathering, precipitation in water bodies within basins, hydrothermal alteration (volcanic- or impact-induced), diagenesis, metamorphism, and magmatic precipitation. Diverse clay minerals have been detected from orbital investigation of terrains on Mars and are globally distributed, indicating geographically widespread aqueous alteration. Clay assemblages within deep stratigraphic units in the Martian crust include Fe/Mg smectites, chlorites and higher temperature hydrated silicates. Sedimentary clay mineral assemblages include Fe/Mg smectites, kaolinite, and sulfate, carbonate, and chloride salts. Stratigraphic sequences with multiple clay-bearing units have an upper unit with Al-clays and a lower unit with Fe/Mg-clays. The typical restriction of clay minerals to the oldest, Noachian terrains indicates a distinctive set of processes involving water-rock interaction that was prevalent early in Mars history and may have profoundly influenced the evolution of Martian geochemical systems. Current analyses of orbital data have led to the proposition of multiple clay-formation mechanisms, varying in space and time in their relative importance. These include near-surface weathering, formation in ice-dominated near-surface groundwaters, and formation by subsurface hydrothermal fluids. Near-surface, open system formation of clays would lead to fractionation of Mars' crustal reservoir into an altered crustal reservoir and a sedimentary reservoir, potentially involving changes in the composition of Mars' atmosphere. In contrast, formation of clays in the subsurface by either aqueous alteration or magmatic cooling would result in comparatively little geochemical fractionation or interaction of Mars' atmospheric, crustal, and magmatic reservoirs, with the exception of long-term sequestration of water. Formation of clays within ice would have geochemical consequences intermediate between these endmembers. We outline the future analyses of orbital data, in situ measurements acquired within clay-bearing terrains, and analyses of Mars samples that are needed to more fully elucidate the mechanisms of martian clay formation and to determine the consequences for the geochemical evolution of the planet.
- Published
- 2013
43. Atmospheric Escape and Climate Evolution of Terrestrial Planets
- Author
-
Eric Chassefière, David Brain, Feng Tian, and François Leblanc
- Subjects
Secondary atmosphere ,Atmospheric escape ,Terrestrial planet ,Environmental science ,Primary atmosphere ,Atmospheric sciences ,Astrobiology - Published
- 2013
- Full Text
- View/download PDF
44. Titan's Geometric Albedo: Role of the Fractal Structure of the Aerosols
- Author
-
Robert Botet, Régis Courtin, C. P. McKay, Eric Chassefière, Michel Cabane, and Pascal Rannou
- Subjects
Physics ,education.field_of_study ,business.industry ,Population ,Astronomy and Astrophysics ,Discrete dipole approximation ,Fractal dimension ,Aerosol ,Computational physics ,Wavelength ,Optics ,Fractal ,Space and Planetary Science ,Geometric albedo ,Radiative transfer ,Astrophysics::Earth and Planetary Astrophysics ,education ,business ,Physics::Atmospheric and Oceanic Physics - Abstract
The collisional mechanisms of Titan's aerosols may lead to a fractal structure in which the aerosols are built by the aggregation of spherical submicrometer particles (monomers). In this initial study of the problem, the optical behavior of these aggregates is modeled assuming that each monomer radiates a dipole field in response to the incident radiation including the radiated fields of all the other elements in the aggregate. This dipole approximation, valid if the monomer radius is smaller than the wavelength, is used to calculate the scattering and extinction efficiencies of such aerosol particles, which are assumed to be composed of tholins. By applying the two-stream approximation for radiative transfer to the vertical distribution of aerosols obtained by microphysical modeling, we compute the geometric albedo of Titan. Computed values and observational values of the albedo are compared for wavelengths from 0.22 to 1.0 μm, and the effects of parameters, such as the fractal dimension of aerosols, their formation altitude or mass production rate, and, in addition, the methane abundance, are investigated. The hypothesized fractal structure of particles can explain both the visible and the UV albedos. In previous models these measurements could only be matched simultaneously under the assumption of a bimodal population. For a fractal dimension Df ≈ 2 in the settling region, corresponding to a growth governed by cluster-cluster aggregation, the computed albedo in the near-UV range matches the observations. A good fit between measurement and calculated albedo is obtained, for a formation altitude Z0 = 535 km, over the whole wavelength range by adjusting the absorption coefficient of the particles within a factor of two from that of tholins and a production rate between 0.2 and 1.5 times 3.5 × 10-13 kg m-2 sec-1. Lower formation altitudes, like our preferred case, Z0 = 385 km, cannot be investigated in the UV range due to limitations of the dipolar approximation, but we expect this case to give the same behavior.
- Published
- 1995
- Full Text
- View/download PDF
45. CO2-SO2 clathrate hydrate formation on early Mars
- Author
-
Frédéric Schmidt, Jean-Michel Herri, Emmanuel Dartois, Feng Tian, Azzedine Lakhlifi, Eric Chassefière, Olivier Mousis, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Tsinghua University [Beijing] (THU), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and M. Ollivier and M.-C. Maurel, eds.
- Subjects
Environmental Engineering ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Clathrate hydrate ,lcsh:QR1-502 ,01 natural sciences ,Industrial and Manufacturing Engineering ,lcsh:Microbiology ,lcsh:Physiology ,Astrobiology ,Atmosphere ,Impact crater ,0103 physical sciences ,lcsh:Zoology ,lcsh:QL1-991 ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Tharsis ,lcsh:QP1-981 ,Noachian ,Mars Exploration Program ,13. Climate action ,Sulfate minerals ,Hesperian ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology - Abstract
International audience; Most sulfate minerals discovered on Mars are dated no earlier than the Hesperian. We showed, using a 1-D radiative-convective-photochemical model, that clathrate formation during the Noachian would have buffered the atmospheric CO2 pressure of early Mars at ~2 bar and maintained a global average surface temperature ~230 K. Because clathrates trap SO2 more favorably than CO2, all volcanically outgassed sulfur would have been trapped in Noachian Mars cryosphere, preventing a significant formation of sulfate minerals during the Noachian and inhibiting carbonates from forming at the surface in acidic water resulting from the local melting of the SO2- rich cryosphere. The massive formation of sulfate minerals at the surface of Mars during the Hesperian could be the consequence of a drop of the CO2 pressure below a 2-bar threshold value at the late Noachian-Hesperian transition, which would have released sulfur gases into the atmosphere from both the Noachian sulfur-rich cryosphere and still active Tharsis volcanism. Our hypothesis could allow to explain the formation of chaotic terrains and outflow channels, and the occurrence of episodic warm episodes facilitated by the release of SO2 to the atmosphere. These episodes could explain the formation of valley networks and the degradation of impact craters, but remain to be confirmed by further modeling.
- Published
- 2012
- Full Text
- View/download PDF
46. Mars cryosphere: A potential reservoir for heavy noble gases?
- Author
-
Daniel Cordier, Eric Chassefière, Olivier Mousis, Franck Montmessin, Jonathan I. Lunine, Sylvain Picaud, Azzedine Lakhlifi, Jean-Marc Petit, Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Center for Radiophysics and Space Research [Ithaca] (CRSR), Cornell University, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Cornell University [New York], PLANETO - LATMOS, Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
Atmospheres ,Materials science ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Physics::Instrumentation and Detectors ,Ices ,Clathrate hydrate ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,chemistry.chemical_element ,01 natural sciences ,Paleoatmosphere ,Astrobiology ,Origin ,Xenon ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Abundances ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Carbon dioxide clathrate ,Argon ,Atmosphere ,Krypton ,Noble gas ,Astronomy and Astrophysics ,Atmosphere of Mars ,chemistry ,13. Climate action ,Space and Planetary Science ,Chemical physics ,[SDU]Sciences of the Universe [physics] ,Solar System ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The two orders of magnitude drop between the measured atmospheric abundances of non radiogenic argon, krypton and xenon in Earth versus Mars is striking. Here, in order to account for this difference, we explore the hypothesis that clathrate deposits incorporated into the current Martian cryosphere have sequestered significant amounts of these noble gases assuming they were initially present in the paleoatmosphere in quantities similar to those measured on Earth (in mass of noble gas per unit mass of the planet). To do so, we use a statistical-thermodynamic model that predicts the clathrate composition formed from a carbon dioxide-dominated paleoatmosphere whose surface pressure ranges up to 3 bars. The influence of the presence of atmospheric sulfur dioxide on clathrate composition is investigated and we find that it does not alter the trapping efficiencies of other minor species. Assuming nominal structural parameters for the clathrate cages, we find that a carbon dioxide equivalent pressure of 0.03 and 0.9 bar is sufficient to trap masses of xenon and krypton, respectively, equivalent to those found on Earth in the clathrate deposits of the cryosphere. In this case, the amount of trapped argon is not sufficient to explain the measured Earth/Mars argon abundance ratio in the considered pressure range. In contrast, if one assumes a 2 % contraction of the clathrate cages, masses of xenon, krypton and argon at least equivalent to those found on Earth can be incorporated into clathrates if one assumes the trapping of carbon dioxide at equivalent atmospheric pressures of ∼2.3 bar. The proposed clathrate trapping mechanism could have then played an important role in the shaping of the current Martian atmosphere.
- Published
- 2012
- Full Text
- View/download PDF
47. Mars' atmospheric 40Ar: A tracer for past crustal erosion
- Author
-
Eric Chassefière, François Leblanc, Cedric Gillmann, Doris Breuer, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut für Geophysik [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), and Deutsches Zentrum für Luft- und Raumfahrt (DLR)
- Subjects
Atmospheres ,010504 meteorology & atmospheric sciences ,Evolution ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Earth science ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Volcanism ,01 natural sciences ,Mantle (geology) ,Astrobiology ,Atmosphere ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Martian ,Atmospheric escape ,Astronomy and Astrophysics ,Crust ,Mars Exploration Program ,Atmosphere of Mars ,13. Climate action ,Space and Planetary Science ,Geology ,Composition - Abstract
International audience; Noble gas 40Ar may be used as a tracer of the past evolution of volatiles in Mars' crust, mantle and atmosphere. 40Ar is formed by the radioactive decay of 40K in the mantle and in the crust and is released from the mantle to the atmosphere due to volcanism and from the crust by erosion such as aeolian and hydrothermal erosion. Furthermore, 40Ar can escape from the atmosphere into space via atmospheric escape mechanisms. The evolution of the atmospheric abundance of 40Ar thus depends on these three processes whose efficiencies vary with time. In the present study we reconsider atmospheric escape mechanism efficiencies and describe various possible scenarios of the evolution of 40Ar with a model describing the three main reservoirs of 40Ar, the mantle, crust and atmosphere. First, we show that atmospheric escape, which is stronger in the early evolution, does not significantly influence the present abundance of the atmospheric 40Ar. In the early evolution the atmospheric concentration of 40Ar is very low as the outgassing of 40Ar from the mantle occurs relatively late in the Martian evolution. Thus, the atmospheric 40Ar concentration is essentially a tracer of Mars' outgassing history and not of the escape processes. Second, using the results of the most recent published crustal formation models, the calculated present 40Ar atmospheric abundance is smaller than its observed value. This discrepancy may be explained by a significant 40Ar supply from the crust by erosion (16% to 30% of the 40Ar content of the upper first 10 km of crust). The knowledge of the fraction of crustal 40Ar outgassed to the atmosphere is an important constraint for any future global modelling of past Mars' hydrothermal activity aiming at better characterizing the role of subsurface aqueous alteration processes in Mars climate evolution. One of the main sources of the uncertainty of these results is the present uncertainty in the measured atmospheric 40Ar value (±20%). More precise measurements of 40Ar and 36Ar in the Martian atmosphere are therefore required to better constrain the model.
- Published
- 2012
- Full Text
- View/download PDF
48. The 2010 European Venus Explorer (EVE) mission proposal
- Author
-
François Leblanc, Jean-Luc Josset, Jean-Jacques Berthelier, Georges Durry, Robert E. Grimm, Sébastien Lebonnois, Colin Wilson, Liudmila V. Zasova, Tibor S. Balint, Eric Chassefière, D. L. Talboys, Johannes Leitner, Emmanuel Hinglais, Cyrill Szopa, Csaba Ferencz, Sanjay S. Limaye, Rainer Wieler, Bernard Marty, Scot Rafkin, Ernesto Palomba, Takeshi Imamura, J.E. Blamont, Sergei Pogrebenko, Kevin H. Baines, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), University of Oxford [Oxford], Interactions et dynamique des environnements de surface ( IDES ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National d'Etudes Spatiales ( CNES ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), Space Science and Engineering Center [Madison] ( SSEC ), University of Wisconsin-Madison [Madison], IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales ( LATMOS ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Groupe de spectrométrie moléculaire et atmosphérique - UMR 7331 ( GSMA ), Université de Reims Champagne-Ardenne ( URCA ) -Centre National de la Recherche Scientifique ( CNRS ), Space Research Laboratory [Budapest], Eötvös Loránd University ( ELTE ), Department of Space Studies [Boulder], Southwest Research Institute [Boulder] ( SwRI ), Institute of Space and Astronautical Science ( ISAS ), Space Exploration Institute [Neuchâtel] ( SPACE - X ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Institute for Astronomy [Vienna], University of Vienna [Vienna], Centre de Recherches Pétrographiques et Géochimiques ( CRPG ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Istituto di Fisica dello Spazio Interplanetaro ( IFSI ), Istituto Nazionale di Astrofisica ( INAF ), Joint Institute for VLBI in Europe ( JIVE ERIC ), Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), Space Research Institute of the Russian Academy of Sciences ( IKI ), Russian Academy of Sciences [Moscow] ( RAS ), Centre National d'Etudes Spatiales (CNES), Science and Technology Facilities Council (STFC), UK, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Science and Engineering Center [Madison] (SSEC), University of Wisconsin-Madison, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Eötvös Loránd University (ELTE), Southwest Research Institute [Boulder] (SwRI), Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), Space Exploration Institute [Neuchâtel] (SPACE - X), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Joint Institute for VLBI in Europe (JIVE ERIC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Lorraine (UL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Solar System ,Cosmic Vision ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Cosmic vision ,Venus ,Superpressure balloon ,7. Clean energy ,01 natural sciences ,Astrobiology ,Atmosphere ,Planet ,0103 physical sciences ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,biology ,Astronomy ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomy and Astrophysics ,biology.organism_classification ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Dynamics ,Planetary science ,Geochemistry ,13. Climate action ,Space and Planetary Science ,Planetary mission ,Terrestrial planet ,Geology - Abstract
The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an 'M-class' mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (~25°C and ~0. 5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond. © 2011 Springer Science+Business Media B.V.
- Published
- 2012
- Full Text
- View/download PDF
49. The evolution of Venus : Present state of knowledge and future exploration
- Author
-
Eric Chassefière, Rainer Wieler, Bernard Marty, François Leblanc, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Solar System ,010504 meteorology & atmospheric sciences ,Evolution ,Formation ,Venus ,01 natural sciences ,Astrobiology ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Planet ,0103 physical sciences ,Terrestrial planets ,010303 astronomy & astrophysics ,Late Heavy Bombardment ,0105 earth and related environmental sciences ,Stable isotopes ,Balloons ,Secondary atmosphere ,biology ,Planetary habitability ,Astronomy ,Astronomy and Astrophysics ,biology.organism_classification ,Noble gases ,Planetary science ,13. Climate action ,Space and Planetary Science ,Physics::Space Physics ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Geology - Abstract
International audience; A detailed characterization of the formation and evolution of Venus is a key link to the study of terrestrial planets, and to their divergent evolutions. While Earth and to a lesser extent Mars (thanks to the analysis of SNC meteorites) are extensively studied in a comparative planetology context, the history of the most Earth-like planet of the Solar System, Venus, is still poorly understood. For how long has Venus been in its current extreme climate state? When and how did it diverge from a (possible) early Earth-like state? Has Venus been a potentially habitable planet at some time of its early history? Did a "cool early Venus" stage occur between the end of accretion and the late heavy bombardment, like suspected for Earth? What are the implications of the Venus/Earth comparison for the nature and evolution of habitable terrestrial planets throughout the universe? A major observational missing link in our understanding of Venus' climate evolution is the elementary and isotopic pattern of noble gases and of stable isotopes in Venus' atmosphere, still poorly known. The concentrations of heavy noble gases (Kr, Xe) and their isotopes are mostly unknown, and our knowledge of light noble gases and stable isotopes is incomplete and inaccurate. In this paper, we summarize our present understanding of Venus' early evolution, including the crucial question of knowing if water ever condensed at the surface of the planet. Then, we assess the potential contribution of a precise measurement of noble gases, their isotopes and stable isotopes to improve of our understanding of Venus evolution, and list the main questions that noble gases and isotope measurements would help to answer. Finally, we show how future exploration of Venus could allow to gain a glimpse into the early evolution of Venus through a small in-situ mission based on a single balloon probe, called EVE (European Venus Explorer), proposed in the frame of the ESA Cosmic Vision program.
- Published
- 2012
- Full Text
- View/download PDF
50. Volatile Trapping in Martian Clathrates
- Author
-
Olivier Mousis, Eric Chassefière, Jérémie Lasue, Vincent Chevrier, Megan E. Elwood Madden, Azzedine Lakhlifi, Jonathan I. Lunine, Franck Montmessin, Sylvain Picaud, Frédéric Schmidt, and Timothy D. Swindle
- Subjects
010504 meteorology & atmospheric sciences ,0103 physical sciences ,010303 astronomy & astrophysics ,01 natural sciences ,0105 earth and related environmental sciences - Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.