46 results on '"Erbe AK"'
Search Results
2. Ranking Antibody Binding Epitopes and Proteins Across Samples from Whole Proteome Tiled Linear Peptides.
- Author
-
McIlwain SJ, Hoefges A, Erbe AK, Sondel PM, and Ong IM
- Abstract
Introduction: Ultradense peptide binding arrays that can probe millions of linear peptides comprising the entire proteomes of human or mouse, or hundreds of thousands of microbes, are powerful tools for studying the antibody repertoire in serum samples to understand adaptive immune responses., Motivation: There are few tools for exploring high-dimensional, significant and reproducible antibody targets for ultradense peptide binding arrays at the linear peptide, epitope (grouping of adjacent peptides), and protein level across multiple samples/subjects (i.e. epitope spread or immunogenic regions of proteins) for understanding the heterogeneity of immune responses., Results: We developed HERON (Hierarchical antibody binding Epitopes and pROteins from liNear peptides), an R package, which identifies immunogenic epitopes, using meta-analyses and spatial clustering techniques to explore antibody targets at various resolution and confidence levels, that can be found consistently across a specified number of samples through the entire proteome to study antibody responses for diagnostics or treatment. Our approach estimates significance values at the linear peptide (probe), epitope, and protein level to identify top candidates for validation. We test the performance of predictions on all three levels using correlation between technical replicates and comparison of epitope calls on two datasets, which shows HERON's competitiveness in estimating false discovery rates and finding general and sample-level regions of interest for antibody binding., Availability: The HERON R package is available at Bioconductor https://bioconductor.org/packages/release/bioc/html/HERON.html., Supplementary Information: Supplementary data are available at Bioinformatics online., (© The Author(s) 2024. Published by Oxford University Press.)
- Published
- 2024
- Full Text
- View/download PDF
3. Metabolic modulation of melanoma enhances the therapeutic potential of immune checkpoint inhibitors.
- Author
-
Gurel Z, Luy MS, Luo Q, Arp NL, Erbe AK, Kesarwala AH, Fan J, and Kimple RJ
- Abstract
Introduction: Lactate is a pivotal molecule with diverse functions in the metabolic reprogramming of cancer cells. Beyond its role in metabolism, lactate exerts a modulatory effect within the tumor microenvironment; it is utilized by stromal cells and has been implicated in the suppression of the immune response against the tumor., Methods: Using in vitro assays (including flow cytometry, live-cell imaging and metabolic analyses), the impact of lactate dehydrogenase inhibitors (LDHIs) on melanoma cells were assessed. The therapeutic potential of LDHIs with immune checkpoint inhibitors (ICIs) were tested in vivo in murine models of melanoma tumors., Results: A potent anti-proliferative effect (via both cell cycle alterations and enhanced apoptosis) of LDHIs, Oxamate (Oxa) and methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2), was found upon treatment of melanoma cell lines. Using a combination of Oxa and NHI-2, a synergistic effect to inhibit proliferation, glycolysis, and ATP production was observed. Metabolic analysis revealed significant alteration in glycolysis and oxidative phosphorylation, while metabolite profiling emphasized consequential effects on lactate metabolism and induced energy depletion by LDHIs. Detection of increased RANTES and MCP-1, with Oxa and NHI-2 treatment, prompted the consideration of combining LDHIs with ICIs. In vivo studies using a murine B78 melanoma tumor model revealed a significant improvement in treatment efficacy when LDHIs were combined with ICIs., Conclusions: These findings propose the potential of targeting lactate metabolism to enhance the efficacy of ICI treatments in patients with melanoma., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Gurel, Luy, Luo, Arp, Erbe, Kesarwala, Fan and Kimple.)
- Published
- 2024
- Full Text
- View/download PDF
4. A combined radio-immunotherapy regimen eradicates late-stage tumors in mice.
- Author
-
Rakhmilevich AL, Tsarovsky NW, Felder M, Zaborek J, Moram S, Erbe AK, Pieper AA, Spiegelman DV, Cheng EM, Witt CM, Overwijk WW, Morris ZS, and Sondel PM
- Subjects
- Animals, Mice, Cell Line, Tumor, Female, Combined Modality Therapy, Mice, Inbred C57BL, T-Lymphocytes, Regulatory immunology, Interleukin-12, CTLA-4 Antigen antagonists & inhibitors, CTLA-4 Antigen immunology, Radioimmunotherapy methods, Interleukin-2, Mice, Inbred BALB C, Immunologic Memory, Neoplasm Staging, Colonic Neoplasms therapy, Colonic Neoplasms immunology, Colonic Neoplasms pathology, Immunotherapy methods
- Abstract
Background: The majority of experimental approaches for cancer immunotherapy are tested against relatively small tumors in tumor-bearing mice, because in most cases advanced cancers are resistant to the treatments. In this study, we asked if even late-stage mouse tumors can be eradicated by a rationally designed combined radio-immunotherapy (CRI) regimen., Methods: CRI consisted of local radiotherapy, intratumoral IL-12, slow-release systemic IL-2 and anti- CTLA-4 antibody. Therapeutic effects of CRI against several weakly immunogenic and immunogenic mouse tumors including B78 melanoma, MC38 and CT26 colon carcinomas and 9464D neuroblastoma were evaluated. Immune cell depletion and flow cytometric analysis were performed to determine the mechanisms of the antitumor effects., Results: Tumors with volumes of 2,000 mm
3 or larger were eradicated by CRI. Flow analyses of the tumors revealed reduction of T regulatory (Treg) cells and increase of CD8/Treg ratios following CRI. Rapid shrinkage of the treated tumors did not require T cells, whereas T cells were involved in the systemic effect against the distant tumors. Cured mice developed immunological memory., Conclusions: These findings underscore that rationally designed combination immunotherapy regimens can be effective even against large, late-stage tumors., Competing Interests: Author WO was formerly employed by the company Nektar Therapeutics. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Rakhmilevich, Tsarovsky, Felder, Zaborek, Moram, Erbe, Pieper, Spiegelman, Cheng, Witt, Overwijk, Morris and Sondel.)- Published
- 2024
- Full Text
- View/download PDF
5. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma.
- Author
-
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Erbe AK, and Capitini CM
- Abstract
Background: Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS., Methods: Murine NK cells were activated and expanded ex vivo with soluble IL-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, GVHD and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray., Results: AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared to synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Treatment with combination CD155 and anti-DNAM-1 pretreated alloNK ameliorated survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS., Conclusions: These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT., What Is Already Known on This Topic: Allogeneic bone marrow transplant (alloBMT) has yet to show efficacy in treating solid tumors, such as osteosarcoma (OS). CD155 is expressed on OS and interacts with natural killer (NK) cell receptors, such as activating receptor DNAM-1 and inhibitory receptors TIGIT and CD96 and has a dominant inhibitory effect on NK cell activity. Targeting CD155 interactions on allogeneic NK cells could enhance anti-OS responses, but this has not been tested after alloBMT., What This Study Adds: CD155 blockade enhances allogeneic natural killer cell-mediated cytotoxicity against OS and improved event-free survival after alloBMT in an in vivo mouse model of metastatic pulmonary OS. Addition of DNAM-1 blockade abrogated CD155 blockade-enhanced allogeneic NK cell antitumor responses., How This Study Might Affect Research Practice or Policy: These results demonstrate efficacy of allogeneic NK cells combined with CD155 blockade to mount an antitumor response against CD155-expressing OS. Translation of combination adoptive NK cell and CD155 axis modulation offers a platform for alloBMT treatment approaches for pediatric patients with relapsed and refractory solid tumors.
- Published
- 2024
- Full Text
- View/download PDF
6. Targeting both GD2 and B7-H3 using bispecific antibody improves tumor selectivity for GD2-positive tumors.
- Author
-
Rosenkrans ZT, Erbe AK, Clemons NB, Feils AS, Medina-Guevara Y, Jeffery JJ, Barnhart TE, Engle JW, Sondel PM, and Hernandez R
- Abstract
Objectives: Disialoganglioside 2 (GD2), overexpressed by cancers such as melanoma and neuroblastoma, is a tumor antigen for targeted therapy. The delivery of conventional IgG antibody technologies targeting GD2 is limited clinically by its co-expression on nerves that contributes to toxicity presenting as severe neuropathic pain. To improve the tumor selectivity of current GD2-targeting approaches, a next-generation bispecific antibody targeting GD2 and B7-H3 (CD276) was generated., Methods: Differential expression of human B7-H3 (hB7-H3) was transduced into GD2
+ B78 murine melanoma cells and confirmed by flow cytometry. We assessed the avidity and selectivity of our GD2-B7-H3 targeting bispecific antibodies (INV34-6, INV33-2, and INV36-6) towards GD2+ /hB7-H3- B78 cells relative to GD2+ /hB7-H3+ B78 cells using flow cytometry and competition binding assays, comparing results an anti-GD2 antibody (dinutuximab, DINU). The bispecific antibodies, DINU, and a non-targeted bispecific control (bsAb CTRL) were conjugated with deferoxamine for radiolabeling with Zr-89 (t1/2 = 78.4 h). Using positron emission tomography (PET) studies, we evaluated the in vivo avidity and selectivity of the GD2-B7-H3 targeting bispecific compared to bsAb CTRL and DINU using GD2+ /hB7-H3+ and GD2+ /hB7-H3- B78 tumor models., Results: Flow cytometry and competition binding assays showed that INV34-6 bound with high avidity to GD2+ /hB7-H3+ B78 cells with high avidity but not GD2+ /hB7-H3+ B78 cells. In comparison, no selectivity between cell types was observed for DINU. PET in mice bearing the GD2+ /hB7-H3- and GD2+ /hB7-H3+ B78 murine tumor showed similar biodistribution in normal tissues for [89 Zr]Zr-Df-INV34-6, [89 Zr]Zr-Df-bsAb CTRL, and [89 Zr]Zr-Df-DINU. Importantly, [89 Zr]Zr-Df-INV34-6 tumor uptake was selective to GD2+ /hB7-H3+ B78 over GD2+ /hB7-H3- B78 tumors, and substantially higher to GD2+ /hB7-H3+ B78 than the non-targeted [89 Zr]Zr-Df-bsAb CTRL control. [89 Zr]Zr-Df-DINU displayed similar uptake in both GD2+ tumor models, with uptake comparable to [89 Zr]Zr-Df-INV34-6 in the GD2+ /hB7-H3+ B78 model., Conclusion: The GD2-B7-H3 targeting bispecific antibodies successfully improved selectivity to cells expressing both antigens. This approach should address the severe toxicities associated with GD2-targeting therapies by reducing off-tumor GD2 binding in nerves. Continued improvements in bispecific antibody technologies will continue to transform the therapeutic biologics landscape., Competing Interests: Conflicts of Interest This work was funded, in part, by Invenra Inc. Z.T.R. was previously employed by Invenra Inc and has an equity interest. Z.T.R., A.K.E., P.M.S., and R.H. received research funding from Invenra Inc. for research described in this manuscript.- Published
- 2024
- Full Text
- View/download PDF
7. Evaluation of a Combinatorial Immunotherapy Regimen That Can Cure Mice Bearing MYCN-Driven High-Risk Neuroblastoma That Resists Current Clinical Therapy.
- Author
-
Zebertavage L, Schopf A, Nielsen M, Matthews J, Erbe AK, Aiken TJ, Katz S, Sun C, Witt CM, Rakhmilevich AL, and Sondel PM
- Abstract
Background : Incorporating GD2-targeting monoclonal antibody into post-consolidation maintenance therapy has improved survival for children with high-risk neuroblastoma. However, ~50% of patients do not respond to, or relapse following, initial treatment. Here, we evaluated additional anti-GD2-based immunotherapy to better treat high-risk neuroblastoma in mice to develop a regimen for patients with therapy-resistant neuroblastoma. Methods : We determined the components of a combined regimen needed to cure mice of established MYCN-amplified, GD2-expressing, murine 9464D-GD2 neuroblastomas. Results : First, we demonstrate that 9464D-GD2 is nonresponsive to a preferred salvage regimen: anti-GD2 with temozolomide and irinotecan. Second, we have previously shown that adding agonist anti-CD40 mAb and CpG to a regimen of radiotherapy, anti-GD2/IL2 immunocytokine and anti-CTLA-4, cured a substantial fraction of mice bearing small 9464D-GD2 tumors; here, we further characterize this regimen by showing that radiotherapy and hu14.18-IL2 are necessary components, while anti-CTLA-4, anti-CD40, or CpG can individually be removed, and CpG and anti-CTLA-4 can be removed together, while maintaining efficacy. Conclusions : We have developed and characterized a regimen that can cure mice of a high-risk neuroblastoma that is refractory to the current clinical regimen for relapsed/refractory disease. Ongoing preclinical work is directed towards ways to potentially translate these findings to a regimen appropriate for clinical testing., Competing Interests: The authors declare no conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
8. NK cells propagate T cell immunity following in situ tumor vaccination.
- Author
-
Jin WJ, Jagodinsky JC, Vera JM, Clark PA, Zuleger CL, Erbe AK, Ong IM, Le T, Tetreault K, Berg T, Rakhmilevich AL, Kim K, Newton MA, Albertini MR, Sondel PM, and Morris ZS
- Subjects
- Mice, Humans, Animals, Killer Cells, Natural, CD8-Positive T-Lymphocytes, Vaccination, Interleukin-2 metabolism, Melanoma metabolism
- Abstract
We report an in situ vaccination, adaptable to nearly any type of cancer, that combines radiotherapy targeting one tumor and intratumoral injection of this site with tumor-specific antibody and interleukin-2 (IL-2; 3xTx). In a phase I clinical trial, administration of 3xTx (with an immunocytokine fusion of tumor-specific antibody and IL-2, hu14.18-IL2) to subjects with metastatic melanoma increases peripheral CD8
+ T cell effector polyfunctionality. This suggests the potential for 3xTx to promote antitumor immunity against metastatic tumors. In poorly immunogenic syngeneic murine melanoma or head and neck carcinoma models, 3xTx stimulates CD8+ T cell-mediated antitumor responses at targeted and non-targeted tumors. During 3xTx treatment, natural killer (NK) cells promote CTLA4+ regulatory T cell (Treg ) apoptosis in non-targeted tumors. This is dependent on NK cell expression of CD86, which is upregulated downstream of KLRK1. NK cell depletion increases Treg infiltration, diminishing CD8+ T cell-dependent antitumor response. These findings demonstrate that NK cells sustain and propagate CD8+ T cell immunity following 3xTx., Competing Interests: Declaration of interests Z.S.M. is a member of the scientific advisory boards for Archeus Technologies, NorthStar Medical Isotopes, and Seneca Therapeutics., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
9. Antibody landscape of C57BL/6 mice cured of B78 melanoma via a combined radiation and immunocytokine immunotherapy regimen.
- Author
-
Hoefges A, McIlwain SJ, Erbe AK, Mathers N, Xu A, Melby D, Tetreault K, Le T, Kim K, Pinapati RS, Garcia BH, Patel J, Heck M, Feils AS, Tsarovsky N, Hank JA, Morris ZS, Ong IM, and Sondel PM
- Subjects
- Animals, Mice, Proteome, Mice, Inbred C57BL, Immunotherapy, Peptides, Epitopes, Immune Sera, Melanoma
- Abstract
Sera of immune mice that were previously cured of their melanoma through a combined radiation and immunocytokine immunotherapy regimen consisting of 12 Gy of external beam radiation and the intratumoral administration of an immunocytokine (anti-GD2 mAb coupled to IL-2) with long-term immunological memory showed strong antibody-binding against melanoma tumor cell lines via flow cytometric analysis. Using a high-density whole-proteome peptide array (of 6.090.593 unique peptides), we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by these 6 mice and exhibited strong antibody binding only by immune (after successful cure and rechallenge), not naïve (before tumor implantation) sera and developed a robust method to detect these differentially targeted peptides. Confirmatory studies were done to validate these results using 2 separate systems, a peptide ELISA and a smaller scale peptide array utilizing a slightly different technology. To the best of our knowledge, this is the first study of the full set of germline encoded linear peptide-based proteome epitopes that are recognized by immune sera from mice cured of cancer via radio-immunotherapy. We furthermore found that although the generation of B-cell repertoire in immune development is vastly variable, and numerous epitopes are identified uniquely by immune serum from each of these 6 immune mice evaluated, there are still several epitopes and proteins that are commonly recognized by at least half of the mice studied. This suggests that every mouse has a unique set of antibodies produced in response to the curative therapy, creating an individual "fingerprint." Additionally, certain epitopes and proteins stand out as more immunogenic, as they are recognized by multiple mice in the immune group., Competing Interests: RSP, BG & JP are all employees of Nimble Therapeutics, the producer of the high-density peptide arrays used for this research. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Hoefges, McIlwain, Erbe, Mathers, Xu, Melby, Tetreault, Le, Kim, Pinapati, Garcia, Patel, Heck, Feils, Tsarovsky, Hank, Morris, Ong and Sondel.)
- Published
- 2023
- Full Text
- View/download PDF
10. Generation of Novel Immunocompetent Mouse Cell Lines to Model Experimental Metastasis of High-Risk Neuroblastoma.
- Author
-
Dhamdhere MR, Spiegelman DV, Schneper L, Erbe AK, Sondel PM, and Spiegelman VS
- Abstract
NB, being a highly metastatic cancer, is one of the leading causes of cancer-related deaths in children. Increased disease recurrence and clinical resistance in patients with metastatic high-risk NBs (HR-NBs) result in poor outcomes and lower overall survival. However, the paucity of appropriate in vivo models for HR-NB metastasis has limited investigations into the underlying biology of HR-NB metastasis. This study was designed to address this limitation and develop suitable immunocompetent models for HR-NB metastasis. Here, we developed several highly metastatic immunocompetent murine HR-NB cell lines. Our newly developed cell lines show 100% efficiency in modeling experimental metastasis in C57BL6 mice and feature metastasis to the sites frequently observed in humans with HR-NB (liver and bone). In vivo validation demonstrated their specifically gained metastatic phenotype. The in vitro characterization of the cell lines showed increased cell invasion, acquired anchorage-independent growth ability, and resistance to MHC-I induction upon IFN-γ treatment. Furthermore, RNA-seq analysis of the newly developed cells identified a differentially regulated gene signature and an enrichment of processes consistent with their acquired metastatic phenotype, including extracellular matrix remodeling, angiogenesis, cell migration, and chemotaxis. The presented newly developed cell lines are, thus, suitable and promising tools for HR-NB metastasis and microenvironment studies in an immunocompetent system.
- Published
- 2023
- Full Text
- View/download PDF
11. Cyclophosphamide augments the efficacy of in situ vaccination in a mouse melanoma model.
- Author
-
Tsarovsky N, Felder M, Heck M, Slowinski J, Rasmussen K, VandenHeuvel S, Zaborek J, Morris ZS, Erbe AK, Sondel PM, and Rakhmilevich AL
- Abstract
Introduction: We have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2
+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice., Methods: Treatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry., Results: Similar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge., Conclusion: Taken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Tsarovsky, Felder, Heck, Slowinski, Rasmussen, VandenHeuvel, Zaborek, Morris, Erbe, Sondel and Rakhmilevich.)- Published
- 2023
- Full Text
- View/download PDF
12. Factors impacting the efficacy of the in-situ vaccine with CpG and OX40 agonist.
- Author
-
Pieper AA, Spiegelman DV, Felder MAR, Feils AS, Tsarovsky NW, Zaborek J, Morris ZS, Erbe AK, Rakhmilevich AL, and Sondel PM
- Subjects
- Mice, Animals, T-Lymphocytes, Macrophages, Receptors, OX40, Immunotherapy methods, Melanoma genetics, Lymphoma, Vaccines
- Abstract
Background: The in-situ vaccine using CpG oligodeoxynucleotide combined with OX40 agonist antibody (CpG + OX40) has been shown to be an effective therapy activating an anti-tumor T cell response in certain settings. The roles of tumor volume, tumor model, and the addition of checkpoint blockade in the efficacy of CpG + OX40 in-situ vaccination remains unknown., Methods: Mice bearing flank tumors (B78 melanoma or A20 lymphoma) were treated with combinations of CpG, OX40, and anti-CTLA-4. Tumor growth and survival were monitored. In vivo T cell depletion, tumor cell phenotype, and tumor infiltrating lymphocyte (TIL) studies were performed. Tumor cell sensitivity to CpG and macrophages were evaluated in vitro., Results: As tumor volumes increased in the B78 (one-tumor) and A20 (one-tumor or two-tumor) models, the anti-tumor efficacy of the in-situ vaccine decreased. In vitro, CpG had a direct effect on A20 proliferation and phenotype and an indirect effect on B78 proliferation via macrophage activation. As A20 tumors progressed in vivo, tumor cell phenotype changed, and T cells became more involved in the local CpG + OX40 mediated anti-tumor response. In mice with larger tumors that were poorly responsive to CpG + OX40, the addition of anti-CTLA-4 enhanced the anti-tumor efficacy in the A20 but not B78 models., Conclusions: Increased tumor volume negatively impacts the anti-tumor capability of CpG + OX40 in-situ vaccine. The addition of checkpoint blockade augmented the efficacy of CpG + OX40 in the A20 but not B78 model. These results highlight the importance of considering multiple preclinical model conditions when assessing the efficacy of cancer immunotherapy regimens and their translation to clinical testing., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
13. Associations between KIR/KIR-ligand genotypes and clinical outcome for patients with advanced solid tumors receiving BEMPEG plus nivolumab combination therapy in the PIVOT-02 trial.
- Author
-
Feils AS, Erbe AK, Birstler J, Kim K, Hoch U, Currie SL, Nguyen T, Yu D, Siefker-Radtke AO, Tannir N, Tolaney SM, Diab A, and Sondel PM
- Subjects
- Humans, Ligands, Retrospective Studies, Receptors, IgG genetics, Receptors, KIR genetics, Receptors, KIR metabolism, Genotype, Polymorphism, Single Nucleotide, Nivolumab therapeutic use, Neoplasms drug therapy, Neoplasms genetics
- Abstract
Bempegaldesleukin (BEMPEG), a CD122-preferential IL2 pathway agonist, has been shown to induce proliferation and activation of NK cells. NK activation is dependent on the balance of inhibitory and excitatory signals transmitted by NK receptors, including Fc-gamma receptors (FCγRs) and killer immunoglobulin-like receptors (KIRs) along with their KIR-ligands. The repertoire of KIRs/KIR-ligands an individual inherits and the single-nucleotide polymorphisms (SNPs) of FCγRs can influence NK function and affect responses to immunotherapies. In this retrospective analysis of the single-arm PIVOT-02 trial, 200 patients with advanced solid tumors were genotyped for KIR/KIR-ligand gene status and FCγR SNP status and evaluated for associations with clinical outcome. Patients with inhibitory KIR2DL2 and its ligand (HLA-C1) observed significantly greater tumor shrinkage (TS, median change -13.0 vs. 0%) and increased PFS (5.5 vs. 3.3 months) and a trend toward improved OR (31.2 vs. 19.5%) compared to patients with the complementary genotype. Furthermore, patients with KIR2DL2 and its ligand together with inhibitory KIR3DL1 and its ligand (HLA-Bw4) had improved OR (36.5 vs. 19.6%), greater TS (median change -16.1 vs. 0%), and a trend toward prolonged PFS (8.4 vs. 3.6 months) as compared to patients with the complementary genotype. FCγR polymorphisms did not influence OR/PFS/TS.These data show that clinical response to BEMPEG plus nivolumab treatment in the PIVOT-02 trial may be associated with the repertoire of KIR/KIR-ligands an individual inherits. Further investigation and validation of these results may enable KIR/KIR-ligand genotyping to be utilized prospectively for identifying patients likely to benefit from certain cancer immunotherapy regimens., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
14. Antibody landscape of C57BL/6 mice cured of B78 melanoma via immunotherapy.
- Author
-
Hoefges A, McIlwain SJ, Erbe AK, Mathers N, Xu A, Melby D, Tetreault K, Le T, Kim K, Pinapati RS, Garcia B, Patel J, Heck M, Feils AS, Tsarovsky N, Hank JA, Morris ZS, Ong IM, and Sondel PM
- Abstract
Hoefges et al. utilized a whole-proteome peptide array approach to show that C57BL/6 mice develop a large repertoire of antibodies against linear peptide sequences of their melanoma after receiving a curative immunotherapy regimen consisting of radiation and an immunocytokine. Antibodies can play an important role in innate and adaptive immune responses against cancer, and in preventing infectious disease. Flow cytometry analysis of sera of immune mice that were previously cured of their melanoma through a combined immunotherapy regimen with long-term memory showed strong antibody-binding against melanoma tumor cell lines. Using a high-density whole-proteome peptide array, we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by 2 or more of these 6 mice and exhibited strong antibody binding only by immune, not naive sera. Confirmatory studies were done to validate these results using 2 separate ELISA-based systems. To the best of our knowledge, this is the first study of the "immunome" of protein-based epitopes that are recognized by immune sera from mice cured of cancer via immunotherapy., Competing Interests: 9Conflict of Interest RSP, BG & JP are all employees of Nimble Therapeutics, the producer of the high-density peptide arrays used for this research. Other than these affiliations, the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
15. Ranking Antibody Binding Epitopes and Proteins Across Samples from Whole Proteome Tiled Linear Peptides.
- Author
-
McIlwain SJ, Hoefges A, Erbe AK, Sondel PM, and Ong IM
- Abstract
Ultradense peptide binding arrays that can probe millions of linear peptides comprising the entire proteomes or immunomes of human or mouse, or numerous microbes, are powerful tools for studying the abundance of different antibody repertoire in serum samples to understand adaptive immune responses. There are few statistical analysis tools for exploring high-dimensional, significant and reproducible antibody targets for ultradense peptide binding arrays at the linear peptide, epitope (grouping of adjacent peptides), and protein level across multiple samples/subjects (I.e. epitope spread or immunogenic regions within each protein) for understanding the heterogeneity of immune responses. We developed HERON ( H ierarchical antibody binding E pitopes and p RO teins from li N ear peptides), an R package, which allows users to identify immunogenic epitopes using meta-analyses and spatial clustering techniques to explore antibody targets at various resolution and confidence levels, that can be found consistently across a specified number of samples through the entire proteome to study antibody responses for diagnostics or treatment. Our approach estimates significance values at the linear peptide (probe), epitope, and protein level to identify top candidates for validation. We test the performance of predictions on all three levels using correlation between technical replicates and comparison of epitope calls on 2 datasets, which shows HERON's competitiveness in estimating false discovery rates and finding general and sample-level regions of interest for antibody binding. The code is available as an R package downloadable from http://github.com/Ong-Research/HERON., Competing Interests: Conflict of Interest: S.J.M. and I.M.O are listed as the inventors on a patent filed that is related to findings in the COVID manuscript. Application: 63/080568, 63/083671. Title: IDENTIFICATION OF SARS-COV-2 EPITOPES DISCRIMINATING COVID-19 INFECTION FROM CONTROL AND METHODS OF USE. Application type: Provisional. Status: Filed. Country: United States. Filing date: September 18, 2020, September 25, 2020. Other than these affiliations, the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
16. Single cell metabolic imaging of tumor and immune cells in vivo in melanoma bearing mice.
- Author
-
Heaton AR, Rehani PR, Hoefges A, Lopez AF, Erbe AK, Sondel PM, and Skala MC
- Abstract
Introduction: Metabolic reprogramming of cancer and immune cells occurs during tumorigenesis and has a significant impact on cancer progression. Unfortunately, current techniques to measure tumor and immune cell metabolism require sample destruction and/or cell isolations that remove the spatial context. Two-photon fluorescence lifetime imaging microscopy (FLIM) of the autofluorescent metabolic coenzymes nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) provides in vivo images of cell metabolism at a single cell level., Methods: Here, we report an immunocompetent mCherry reporter mouse model for immune cells that express CD4 either during differentiation or CD4 and/or CD8 in their mature state and perform in vivo imaging of immune and cancer cells within a syngeneic B78 melanoma model. We also report an algorithm for single cell segmentation of mCherry-expressing immune cells within in vivo images., Results: We found that immune cells within B78 tumors exhibited decreased FAD mean lifetime and an increased proportion of bound FAD compared to immune cells within spleens. Tumor infiltrating immune cell size also increased compared to immune cells from spleens. These changes are consistent with a shift towards increased activation and proliferation in tumor infiltrating immune cells compared to immune cells from spleens. Tumor infiltrating immune cells exhibited increased FAD mean lifetime and increased protein-bound FAD lifetime compared to B78 tumor cells within the same tumor. Single cell metabolic heterogeneity was observed in both immune and tumor cells in vivo ., Discussion: This approach can be used to monitor single cell metabolic heterogeneity in tumor cells and immune cells to study promising treatments for cancer in the native in vivo context., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Heaton, Rehani, Hoefges, Lopez, Erbe, Sondel and Skala.)
- Published
- 2023
- Full Text
- View/download PDF
17. KIR/KIR-ligand genotypes and clinical outcomes following chemoimmunotherapy in patients with relapsed or refractory neuroblastoma: a report from the Children's Oncology Group.
- Author
-
Erbe AK, Diccianni MB, Mody R, Naranjo A, Zhang FF, Birstler J, Kim K, Feils AS, Hung JT, London WB, Shulkin BL, Mathew V, Parisi MT, Servaes S, Asgharzadeh S, Maris JM, Park J, Yu AL, Sondel PM, and Bagatell R
- Subjects
- Humans, Child, Ligands, Leukocytes, Mononuclear, Genotype, Receptors, KIR genetics, Histocompatibility Antigens, Irinotecan therapeutic use, Immunotherapy, Recurrence, Granulocyte-Macrophage Colony-Stimulating Factor genetics, Neuroblastoma drug therapy, Neuroblastoma genetics
- Abstract
Background: In the Children's Oncology Group ANBL1221 phase 2 trial for patients with first relapse/first declaration of refractory high-risk neuroblastoma, irinotecan and temozolomide (I/T) combined with either temsirolimus (TEMS) or immunotherapy (the anti-GD2 antibody dinutuximab (DIN) and granulocyte macrophage colony stimulating factory (GM-CSF)) was administered. The response rate among patients treated with I/T/DIN/GM-CSF in the initial cohort (n=17) was 53%; additional patients were enrolled to permit further evaluation of this chemoimmunotherapy regimen. Potential associations between immune-related biomarkers and clinical outcomes including response and survival were evaluated., Methods: Patients were evaluated for specific immunogenotypes that influence natural killer (NK) cell activity, including killer immunoglobulin-like receptors (KIRs) and their ligands, Fc gamma receptors, and NCR3. Total white cells and leucocyte subsets were assessed via complete blood counts, and flow cytometry of peripheral blood mononuclear cells was performed to assess the potential association between immune cell subpopulations and surface marker expression and clinical outcomes. Appropriate statistical tests of association were performed. The Bonferroni correction for multiple comparisons was performed where indicated., Results: Of the immunogenotypes assessed, the presence or absence of certain KIR and their ligands was associated with clinical outcomes in patients treated with chemoimmunotherapy rather than I/T/TEMS. While median values of CD161, CD56, and KIR differed in responders and non-responders, statistical significance was not maintained in logistic regression models. White cell and neutrophil counts were associated with differences in survival outcomes, however, increases in risk of event in patients assigned to chemoimmunotherapy were not clinically significant., Conclusions: These findings are consistent with those of prior studies showing that KIR/KIR-ligand genotypes are associated with clinical outcomes following anti-GD2 immunotherapy in children with neuroblastoma. The current study confirms the importance of KIR/KIR-ligand genotype in the context of I/T/DIN/GM-CSF chemoimmunotherapy administered to patients with relapsed or refractory disease in a clinical trial. These results are important because this regimen is now widely used for treatment of patients at time of first relapse/first declaration of refractory disease. Efforts to assess the role of NK cells and genes that influence their function in response to immunotherapy are ongoing., Trial Registration Number: NCT01767194., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2023
- Full Text
- View/download PDF
18. Radiation to all macroscopic sites of tumor permits greater systemic antitumor response to in situ vaccination.
- Author
-
Carlson PM, Patel RB, Birstler J, Rodriquez M, Sun C, Erbe AK, Bates AM, Marsh I, Grudzinski J, Hernandez R, Pieper AA, Feils AS, Rakhmilevich AL, Weichert JP, Bednarz BP, Sondel PM, and Morris ZS
- Subjects
- Mice, Animals, Immunotherapy methods, Immunologic Memory, Vaccination, CD8-Positive T-Lymphocytes, Melanoma
- Abstract
Background: The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV., Methods: We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to
90 Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors., Results: Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV., Conclusions: We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV., Competing Interests: Competing interests: ZSM, JPW, RH, and JG have financial interests in Archeus Technologies. ZSM is a member of the Scientific Advisory Boards for Archeus Technologies and for Seneca Therapeutics. PMS is an unpaid medical advisor for Invenra. JPW is a cofounder, CSO, and director of Archeus Technologies, which holds the licence rights to NM600-related technologies. BPB and JG are cofounders of Voximetry, and BPB is the CSO. The following patents have been applied for or filed by the University of Wisconsin Alumni Research Foundation: US Patent 10,736,949, 'Radiohalogenated agents for in situ immune modulated cancer vaccination', with ZSM, PMS, JPW, and BPB as inventors; US Patent 10,751,430, 'Targeted radiotherapy chelates for in situ immune modulated cancer vaccination' with ZSM, PMS, JPW, BPB, and PMC as inventors; application no. 15/809,427, 'Using targeted radiotherapy to drive anti-tumor immune response to immunotherapies', ZSM, PMS, JPW, PMC, JG, RBP, and RH as inventors; and US 2011/0060602, 'A1 treatment planning system for radiopharmaceuticals', with BPB and JG as inventors., (© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2023
- Full Text
- View/download PDF
19. GPC2 antibody-drug conjugate reprograms the neuroblastoma immune milieu to enhance macrophage-driven therapies.
- Author
-
Pascual-Pasto G, McIntyre B, Shraim R, Buongervino SN, Erbe AK, Zhelev DV, Sadirova S, Giudice AM, Martinez D, Garcia-Gerique L, Dimitrov DS, Sondel PM, and Bosse KR
- Subjects
- Humans, Mice, Animals, Glypicans, CD47 Antigen, Macrophages, Tumor Microenvironment, Immunoconjugates pharmacology, Immunoconjugates therapeutic use, Neuroblastoma drug therapy
- Abstract
Background: Antibody-drug conjugates (ADCs) that deliver cytotoxic drugs to tumor cells have emerged as an effective and safe anticancer therapy. ADCs may induce immunogenic cell death (ICD) to promote additional endogenous antitumor immune responses. Here, we characterized the immunomodulatory properties of D3-GPC2-PBD, a pyrrolobenzodiazepine (PBD) dimer-bearing ADC that targets glypican 2 (GPC2), a cell surface oncoprotein highly differentially expressed in neuroblastoma., Methods: ADC-mediated induction of ICD was studied in GPC2-expressing murine neuroblastomas in vitro and in vivo. ADC reprogramming of the neuroblastoma tumor microenvironment was profiled by RNA sequencing, cytokine arrays, cytometry by time of flight and flow cytometry. ADC efficacy was tested in combination with macrophage-driven immunoregulators in neuroblastoma syngeneic allografts and human patient-derived xenografts., Results: The D3-GPC2-PBD ADC induced biomarkers of ICD, including neuroblastoma cell membrane translocation of calreticulin and heat shock proteins (HSP70/90) and release of high-mobility group box 1 and ATP. Vaccination of immunocompetent mice with ADC-treated murine neuroblastoma cells promoted T cell-mediated immune responses that protected animals against tumor rechallenge. ADC treatment also reprogrammed the tumor immune microenvironment to a proinflammatory state in these syngeneic neuroblastoma models, with increased tumor trafficking of activated macrophages and T cells. In turn, macrophage or T-cell inhibition impaired ADC efficacy in vivo, which was alternatively enhanced by both CD40 agonist and CD47 antagonist antibodies. In human neuroblastomas, the D3-GPC2-PBD ADC also induced ICD and promoted tumor phagocytosis by macrophages, which was further enhanced when blocking CD47 signaling in vitro and in vivo., Conclusions: We elucidated the immunoregulatory properties of a GPC2-targeted ADC and showed robust efficacy of combination immunotherapies in diverse neuroblastoma preclinical models., Competing Interests: Competing interests: GPP, DVZ, DSD, and KRB hold patents for the discovery and development of immunotherapies for cancer, including patents related to GPC2-directed immunotherapies. KRB received research funding from Tmunity for research on GPC2-directed immunotherapies. The other authors declare no potential conflicts of interest., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
20. Roles of CD4+ T cells as mediators of antitumor immunity.
- Author
-
Kravtsov DS, Erbe AK, Sondel PM, and Rakhmilevich AL
- Subjects
- CD8-Positive T-Lymphocytes, Humans, T-Lymphocytes, Cytotoxic, CD4-Positive T-Lymphocytes, Neoplasms
- Abstract
It has been well established that CD8+ T cells serve as effector cells of the adaptive immune response against tumors, whereas CD4+ T cells either help or suppress the generation of CD8+ cytotoxic T cells. However, in several experimental models as well as in cancer patients, it has been shown that CD4+ T cells can also mediate antitumor immunity either directly by killing tumor cells or indirectly by activating innate immune cells or by reducing tumor angiogenesis. In this review, we discuss the growing evidence of this underappreciated role of CD4+ T cells as mediators of antitumor immunity., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Kravtsov, Erbe, Sondel and Rakhmilevich.)
- Published
- 2022
- Full Text
- View/download PDF
21. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma.
- Author
-
Aiken TJ, Erbe AK, Zebertavage L, Komjathy D, Feils AS, Rodriguez M, Stuckwisch A, Gillies SD, Morris ZS, Birstler J, Rakhmilevich AL, and Sondel PM
- Subjects
- Animals, Histocompatibility Antigens Class I, Humans, Immunotherapy, Interferon-gamma, Killer Cells, Natural, Mice, Radioimmunotherapy, Neuroblastoma radiotherapy
- Abstract
Background: Most pediatric cancers are considered immunologically cold with relatively few responding to immune checkpoint inhibition. We recently described an effective combination radio-immunotherapy treatment regimen ( c ombination a daptive- i nnate immunotherapy r egimen (CAIR)) targeting adaptive and innate immunity in 9464D-GD2, an immunologically cold model of neuroblastoma. Here, we characterize the mechanism of CAIR and the role of major histocompatibility complex class I (MHC-I) in the treatment response., Methods: Mice bearing GD2-expressing 9464D-GD2 tumors were treated with CAIR (external beam radiotherapy, hu14.18-IL2 immunocytokine, CpG, anti-CD40, and anti-CTLA4) and tumor growth and survival were tracked. Depletion of specific immune cell lineages, as well as testing in immunodeficient R2G2 mice, were used to determine the populations necessary for treatment efficacy. Induction of MHC-I expression in 9464D-GD2 cells in response to interferon-γ (IFN-γ) and CAIR was measured in vitro and in vivo , respectively, by flow cytometry and quantitative real-time PCR. A cell line with IFN-γ-inducible MHC-I expression (9464D-GD2-I) was generated by transfecting a subclone of the parental cell line capable of expressing MHC-I with GD2 synthase and was used in vivo to assess the impact of MHC-I expression on responsiveness to CAIR., Results: CAIR cures some mice bearing small (50 mm
3 ) but not larger (100 mm3 ) 9464D-GD2 tumors and these cured mice develop weak memory responses against tumor rechallenge. Early suppression of 9464D-GD2 tumors by CAIR does not require T or natural killer (NK) cells, but eventual tumor cures are NK cell dependent. Unlike the parental 9464D cell line, 9464D-GD2 cells have uniformly very low MHC-I expression at baseline and fail to upregulate expression in response to IFN-γ. In contrast, 9464D-GD2-I upregulates MHC-I in response to IFN-γ and is less responsive to CAIR., Conclusion: Treatment with CAIR cures 9464D-GD2 tumors in a NK cell dependent manner and induction of MHC-I by tumors cells was associated with decreased efficacy. These results demonstrate that the early tumor response to this regimen is T and NK cell independent, but that NK cells have a role in generating lasting cures in the absence of MHC-I expression by tumor cells. Further strategies to better inhibit tumor outgrowth in this setting may require further NK activation or the ability to engage alternative immune effector cells., Competing Interests: Competing interests: SDG declares employment and ownership interests in Provenance Biopharmaceuticals., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2022
- Full Text
- View/download PDF
22. Short-course neoadjuvant in situ vaccination for murine melanoma.
- Author
-
Aiken TJ, Komjathy D, Rodriguez M, Stuckwisch A, Feils A, Subbotin V, Birstler J, Gillies SD, Rakhmilevich AL, Erbe AK, and Sondel PM
- Subjects
- Animals, Female, Mice, Disease Models, Animal, Survival Analysis, Melanoma, Experimental drug therapy, Melanoma, Experimental mortality, Neoadjuvant Therapy methods, Vaccination methods
- Abstract
Background: Surgical resection remains an important component of multimodality treatment for most solid tumors. Neoadjuvant immunotherapy has several potential advantages, including in-situ tumor vaccination and pathologic assessment of response in the surgical specimen. We previously described an in-situ tumor vaccination strategy in melanoma using local radiation (RT) and an intratumoral injection of tumor-specific anti-GD2 immunocytokine (IT-IC). Here we tested whether neoadjuvant in-situ tumor vaccination using anti-GD2 immunocytokine and surgical resection, without RT, could generate immunologic memory capable of preventing recurrence or distant metastasis., Methods: Mice bearing GD2 expressing B78 melanoma tumors were treated with neoadjuvant radiation, IT-IC, or combined RT + IT-IC. Surgical resection was performed following neoadjuvant immunotherapy. Immune infiltrate was assessed in the resection specimens. Mice were rechallenged with either B78 contralateral flank tumors or pulmonary seeding of non-GD2 expressing B16 melanoma metastasis induced experimentally. Rejection of rechallenge in mice treated with the various treatment regimens was considered evidence of immunologic memory., Results: Neoadjuvant IT-IC and surgical resection resulted in increased CD8 T cell infiltration, a higher CD8:regulatory T cell ratio, and immunologic memory against contralateral flank rechallenge. The timing of resection did not significantly impact the development of memory, which was present as early as the day of surgery. There was less local wound toxicity with neoadjuvant IT-IC compared with neoadjuvant RT +IT IC. Neoadjuvant IT-IC and resection resulted in the rejection of B16 lung metastasis in a CD4 T cell dependent manner., Conclusions: Neoadjuvant IT-IC generates immunologic memory capable of preventing distant metastasis despite limited efficacy against large primary melanoma tumors. By combining neoadjuvant tumor vaccination and surgery, the toxicity of local RT was avoided. These preclinical data support further investigation regarding the use of neoadjuvant IT-IC in patients with melanoma at high risk for occult distant disease., Competing Interests: Competing interests: VS declares employment in Arrowhead Pharmaceuticals. SDG declares employment and ownership interests in Provenance Biopharmaceuticals., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
23. Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models.
- Author
-
Pieper AA, Zangl LM, Speigelman DV, Feils AS, Hoefges A, Jagodinsky JC, Felder MA, Tsarovsky NW, Arthur IS, Brown RJ, Birstler J, Le T, Carlson PM, Bates AM, Hank JA, Rakhmilevich AL, Erbe AK, Sondel PM, Patel RB, and Morris ZS
- Subjects
- Animals, Cell Line, Tumor, Combined Modality Therapy, Disease Models, Animal, Female, Lymphocytes, Tumor-Infiltrating immunology, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Neoplasms, Experimental immunology, T-Lymphocytes, Regulatory immunology, Tumor Microenvironment, Cancer Vaccines immunology, Neoplasms, Experimental radiotherapy, Oligodeoxyribonucleotides therapeutic use, Receptors, OX40 immunology
- Abstract
Introduction: Combining CpG oligodeoxynucleotides with anti-OX40 agonist antibody (CpG+OX40) is able to generate an effective in situ vaccine in some tumor models, including the A20 lymphoma model. Immunologically "cold" tumors, which are typically less responsive to immunotherapy, are characterized by few tumor infiltrating lymphocytes (TILs), low mutation burden, and limited neoantigen expression. Radiation therapy (RT) can change the tumor microenvironment (TME) of an immunologically "cold" tumor. This study investigated the effect of combining RT with the in situ vaccine CpG+OX40 in immunologically "cold" tumor models., Methods: Mice bearing flank tumors (A20 lymphoma, B78 melanoma or 4T1 breast cancer) were treated with combinations of local RT, CpG, and/or OX40, and response to treatment was monitored. Flow cytometry and quantitative polymerase chain reaction (qPCR) experiments were conducted to study differences in the TME, secondary lymphoid organs, and immune activation after treatment., Results: An in situ vaccine regimen of CpG+OX40, which was effective in the A20 model, did not significantly improve tumor response or survival in the "cold" B78 and 4T1 models, as tested here. In both models, treatment with RT prior to CpG+OX40 enabled a local response to this in situ vaccine, significantly improving the anti-tumor response and survival compared to RT alone or CpG+OX40 alone. RT increased OX40 expression on tumor infiltrating CD4+ non-regulatory T cells. RT+CpG+OX40 increased the ratio of tumor-infiltrating effector T cells to T regulatory cells and significantly increased CD4+ and CD8+ T cell activation in the tumor draining lymph node (TDLN) and spleen., Conclusion: RT significantly improves the local anti-tumor effect of the in situ vaccine CpG+OX40 in immunologically "cold", solid, murine tumor models where RT or CpG+OX40 alone fail to stimulate tumor regression., Competing Interests: ZM is a member of the scientific advisory board for Archeus Technologies and Seneca Therapeutics and received equity options for these companies. ZM is an inventor on patents or filed patents managed by the Wisconsin Alumni Research Foundation relating to the interaction of targeted radionuclide therapies and immunotherapies, nanoparticles designed to augment the anti-tumor immune response following radiation therapy, and the development of a brachytherapy catheter capable of delivering intra-tumor injectables. PS is an inventor on patents or filed patents managed by the Wisconsin Alumni Research Foundation relating to mAb-related immunotherapies and the interaction of targeted radionuclide therapies and immunotherapies. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer WS declared a shared affiliation with one of the authors, RP, to the handling editor at the time of the review., (Copyright © 2021 Pieper, Zangl, Speigelman, Feils, Hoefges, Jagodinsky, Felder, Tsarovsky, Arthur, Brown, Birstler, Le, Carlson, Bates, Hank, Rakhmilevich, Erbe, Sondel, Patel and Morris.)
- Published
- 2021
- Full Text
- View/download PDF
24. Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice.
- Author
-
Pieper AA, Rakhmilevich AL, Spiegelman DV, Patel RB, Birstler J, Jin WJ, Carlson PM, Charych DH, Hank JA, Erbe AK, Overwijk WW, Morris ZS, and Sondel PM
- Subjects
- Animals, Female, Humans, Immune Checkpoint Inhibitors pharmacology, Interleukin-2 pharmacology, Interleukin-2 therapeutic use, Mice, Neoplasm Metastasis, Polyethylene Glycols pharmacology, Immune Checkpoint Inhibitors therapeutic use, Interleukin-2 analogs & derivatives, Neoplasms drug therapy, Neoplasms radiotherapy, Polyethylene Glycols therapeutic use, Radiotherapy methods
- Abstract
Background: Current clinical trials are using radiation therapy (RT) to enhance an antitumor response elicited by high-dose interleukin (IL)-2 therapy or immune checkpoint blockade (ICB). Bempegaldesleukin (BEMPEG) is an investigational CD122-preferential IL-2 pathway agonist with prolonged in vivo half-life and preferential intratumoral expansion of T effector cells over T regulatory cells. BEMPEG has shown encouraging safety and efficacy in clinical trials when used in combination with PD-1 checkpoint blockade. In this study, we investigated the antitumor effect of local RT combined with BEMPEG in multiple immunologically 'cold' tumor models. Additionally, we asked if ICB could further enhance the local and distant antitumor effect of RT+BEMPEG in the setting of advanced solid tumors or metastatic disease., Methods: Mice bearing flank tumors (B78 melanoma, 4T1 breast cancer, or MOC2 head and neck squamous cell carcinoma) were treated with combinations of RT and immunotherapy (including BEMPEG, high-dose IL-2, anti(α)-CTLA-4, and α-PD-L1). Mice bearing B78 flank tumors were injected intravenously with B16 melanoma cells to mimic metastatic disease and were subsequently treated with RT and/or immunotherapy. Tumor growth and survival were monitored. Peripheral T cells and tumor-infiltrating lymphocytes were assessed via flow cytometry., Results: A cooperative antitumor effect was observed in all models when RT was combined with BEMPEG, and RT increased IL-2 receptor expression on peripheral T cells. This cooperative interaction was associated with increased IL-2 receptor expression on peripheral T cells following RT. In the B78 melanoma model, RT+BEMPEG resulted in complete tumor regression in the majority of mice with a single ~400 mm
3 tumor. This antitumor response was T-cell dependent and supported by long-lasting immune memory. Adding ICB to RT+BEMPEG strengthened the antitumor response and cured the majority of mice with a single ~1000 mm3 B78 tumor. In models with disseminated metastasis (B78 primary with B16 metastasis, 4T1, and MOC2), the triple combination of RT, BEMPEG, and ICB significantly improved primary tumor response and survival., Conclusion: The combination of local RT, BEMPEG, and ICB cured mice with advanced, immunologically cold tumors and distant metastasis in a T cell-dependent manner, suggesting this triple combination warrants clinical testing., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2021
- Full Text
- View/download PDF
25. Depth of tumor implantation affects response to in situ vaccination in a syngeneic murine melanoma model.
- Author
-
Carlson PM, Mohan M, Rodriguez M, Subbotin V, Sun CX, Patel RB, Birstler J, Hank JA, Rakhmilevich AL, Morris ZS, Erbe AK, and Sondel PM
- Subjects
- Animals, Antibodies immunology, Cancer Vaccines immunology, Cell Line, Tumor, Female, Gangliosides immunology, Injections, Intralesional, Interleukin-2 immunology, Kinetics, Melanoma genetics, Melanoma immunology, Melanoma pathology, Mice, Inbred C57BL, Neoplasm Transplantation, Recombinant Fusion Proteins administration & dosage, Recombinant Fusion Proteins immunology, Skin Neoplasms genetics, Skin Neoplasms immunology, Skin Neoplasms pathology, Soft Tissue Neoplasms genetics, Soft Tissue Neoplasms immunology, Soft Tissue Neoplasms pathology, Transplantation, Isogeneic, Tumor Burden drug effects, Vaccination, Mice, Antibodies administration & dosage, Cancer Vaccines administration & dosage, Immunotherapy, Interleukin-2 administration & dosage, Melanoma drug therapy, Skin Neoplasms drug therapy, Soft Tissue Neoplasms drug therapy
- Abstract
An important component of research using animal models is ensuring rigor and reproducibility. This study was prompted after two experimenters performing virtually identical studies obtained different results when syngeneic B78 murine melanoma cells were implanted into the skin overlying the flank and treated with an in situ vaccine (ISV) immunotherapy. Although both experimenters thought they were using identical technique, we determined that one was implanting the tumors intradermally (ID) and the other was implanting them subcutaneously (SC). Though the baseline in vivo immunogenicity of tumors can depend on depth of their implantation, the response to immunotherapy as a function of tumor depth, particularly in immunologically 'cold' tumors, has not been well studied. The goal of this study was to evaluate the difference in growth kinetics and response to immunotherapy between identically sized melanoma tumors following ID versus SC implantation. We injected C57BL/6 mice with syngeneic B78 melanoma cells either ID or SC in the flank. When tumors reached 190-230 mm
3 , they were grouped into a 'wave' and treated with our previously published ISV regimen (12 Gy local external beam radiation and intratumoral hu14.18-IL2 immunocytokine). Physical examination demonstrated that ID-implanted tumors were mobile on palpation, while SC-implanted tumors became fixed to the underlying fascia. Histologic examination identified a critical fascial layer, the panniculus carnosus, which separated ID and SC tumors. SC tumors reached the target tumor volume significantly faster compared with ID tumors. Most ID tumors exhibited either partial or complete response to this immunotherapy, whereas most SC tumors did not. Further, the 'mobile' or 'fixed' phenotype of tumors predicted response to therapy, regardless of intended implantation depth. These findings were then extended to additional immunotherapy regimens in four separate tumor models. These data indicate that the physical 'fixed' versus 'mobile' characterization of the tumors may be one simple method of ensuring homogeneity among implanted tumors prior to initiation of treatment. Overall, this short report demonstrates that small differences in depth of tumor implantation can translate to differences in response to immunotherapy, and proposes a simple physical examination technique to ensure consistent tumor depth when conducting implantable tumor immunotherapy experiments., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2021
- Full Text
- View/download PDF
26. Tumor-Specific Antibody, Cetuximab, Enhances the In Situ Vaccine Effect of Radiation in Immunologically Cold Head and Neck Squamous Cell Carcinoma.
- Author
-
Jin WJ, Erbe AK, Schwarz CN, Jaquish AA, Anderson BR, Sriramaneni RN, Jagodinsky JC, Bates AM, Clark PA, Le T, Lan KH, Chen Y, Kim K, and Morris ZS
- Subjects
- Animals, Biomarkers, Biomarkers, Tumor, Cell Line, Tumor, Cell Survival drug effects, Combined Modality Therapy, Cytokines, Disease Models, Animal, ErbB Receptors metabolism, Humans, Immune Checkpoint Proteins genetics, Immune Checkpoint Proteins metabolism, Mice, Mice, Transgenic, Molecular Targeted Therapy, Signal Transduction drug effects, Squamous Cell Carcinoma of Head and Neck diagnosis, Treatment Outcome, Vaccination, Xenograft Model Antitumor Assays, Antibody-Dependent Cell Cytotoxicity, Antineoplastic Agents, Immunological pharmacology, Cetuximab pharmacology, Immunomodulation, Squamous Cell Carcinoma of Head and Neck immunology, Squamous Cell Carcinoma of Head and Neck therapy
- Abstract
In head and neck squamous cell carcinoma (HNSCC) tumors that over-expresses huEGFR, the anti-EGFR antibody, cetuximab, antagonizes tumor cell viability and sensitizes to radiation therapy. However, the immunologic interactions between cetuximab and radiation therapy are not well understood. We transduced two syngeneic murine HNSCC tumor cell lines to express human EGFR (MOC1- and MOC2-huEGFR) in order to facilitate evaluation of the immunologic interactions between radiation and cetuximab. Cetuximab was capable of inducing antibody-dependent cellular cytotoxicity (ADCC) in MOC1- and MOC2-huEGFR cells but showed no effect on the viability or radiosensitivity of these tumor cells, which also express muEGFR that is not targeted by cetuximab. Radiation enhanced the susceptibility of MOC1- and MOC2-huEGFR to ADCC, eliciting a type I interferon response and increasing expression of NKG2D ligands on these tumor cells. Co-culture of splenocytes with cetuximab and MOC2-huEGFR cells resulted in increased expression of IFNγ in not only NK cells but also in CD8+ T cells, and this was dependent upon splenocyte expression of FcγR. In MOC2-huEGFR tumors, combining radiation and cetuximab induced tumor growth delay that required NK cells, EGFR expression, and FcγR on host immune cells. Combination of radiation and cetuximab increased tumor infiltration with NK and CD8+ T cells but not regulatory T cells. Expression of PD-L1 was increased in MOC2-huEGFR tumors following treatment with radiation and cetuximab. Delivering anti-PD-L1 antibody with radiation and cetuximab improved survival and resulted in durable tumor regression in some mice. Notably, these cured mice showed evidence of an adaptive memory response that was not specifically directed against huEGFR. These findings suggest an opportunity to improve the treatment of HNSCC by combining radiation and cetuximab to engage an innate anti-tumor immune response that may prime an effective adaptive immune response when combined with immune checkpoint blockade. It is possible that this approach could be extended to any immunologically cold tumor that does not respond to immune checkpoint blockade alone and for which a tumor-specific antibody exists or could be developed., (Copyright © 2020 Jin, Erbe, Schwarz, Jaquish, Anderson, Sriramaneni, Jagodinsky, Bates, Clark, Le, Lan, Chen, Kim and Morris.)
- Published
- 2020
- Full Text
- View/download PDF
27. Intratumoral injection reduces toxicity and antibody-mediated neutralization of immunocytokine in a mouse melanoma model.
- Author
-
Baniel CC, Sumiec EG, Hank JA, Bates AM, Erbe AK, Pieper AA, Hoefges AG, Patel RB, Rakhmilevich AL, Morris ZS, and Sondel PM
- Subjects
- Animals, Disease Models, Animal, Female, Humans, Melanoma pathology, Mice, Injections, Intralesional methods, Melanoma drug therapy
- Abstract
Background: Some patients with cancer treated with anticancer monoclonal antibodies (mAbs) develop antidrug antibodies (ADAs) that recognize and bind the therapeutic antibody. This response may neutralize the therapeutic mAb, interfere with mAb effector function or cause toxicities. We investigated the potential influence of ADA to modify the tumor-binding capability of a tumor-reactive 'immunocytokine' (IC), namely, a fusion protein (hu14.18-IL2) consisting of a humanized, tumor-reactive, anti-GD2 mAb genetically linked to interleukin 2. We characterize the role of treatment delivery of IC (intravenous vs intratumoral) on the impact of ADA on therapeutic outcome following IC treatments in an established antimelanoma (MEL) regimen involving radiotherapy (RT) +IC., Methods: C57BL/6 mice were injected with human IgG or the hu14.18-IL2 IC to develop a mouse anti-human antibody (MAHA) response (MAHA
+ ). In vitro assays were performed to assess ADA binding to IC using sera from MAHA+ and MAHA- mice. In vivo experiments assessed the levels of IC bound to tumor in MAHA+ and MAHA- mice, and the influence of IC route of delivery on its ability to bind to B78 (GD2+) MEL tumors., Results: MAHA is inducible in C57BL/6 mice. In vitro assays show that MAHA is capable of inhibiting the binding of IC to GD2 antigen on B78 cells, resulting in impaired ADCC mediated by IC. When B78-bearing mice are injected intravenously with IC, less IC binds to B78-MEL tumors in MAHA+ mice than in MAHA- mice. In contrast, when IC is injected intratumorally in tumor-bearing mice, the presence of MAHA does not detectibly impact IC binding to the tumor. Combination therapy with RT+IT-IC showed improved tumor regression compared with RT alone in MAHA+ mice. If given intratumorally, IC could be safely readministered in tumor-bearing MAHA+ mice, while intravenous injections of IC in MAHA+ mice caused severe toxicity. Histamine levels were elevated in MAHA+ mice compared with MAHA- mice after reintroduction of IC., Conclusions: Intratumoral injection may be a means of overcoming ADA neutralization of therapeutic activity of tumor-reactive mAbs or ICs and may reduce systemic toxicity, which could have significant translational relevance., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)- Published
- 2020
- Full Text
- View/download PDF
28. In situ Vaccine Plus Checkpoint Blockade Induces Memory Humoral Response.
- Author
-
Baniel CC, Heinze CM, Hoefges A, Sumiec EG, Hank JA, Carlson PM, Jin WJ, Patel RB, Sriramaneni RN, Gillies SD, Erbe AK, Schwarz CN, Pieper AA, Rakhmilevich AL, Sondel PM, and Morris ZS
- Subjects
- Animals, Antigens, Neoplasm immunology, Antineoplastic Agents, Immunological pharmacology, B-Lymphocytes drug effects, B-Lymphocytes immunology, B-Lymphocytes metabolism, Biomarkers, Tumor, Cancer Vaccines administration & dosage, Cancer Vaccines immunology, Cell Line, Tumor, Combined Modality Therapy, Disease Models, Animal, Immune Checkpoint Proteins genetics, Immune Checkpoint Proteins metabolism, Immunomodulation drug effects, Immunophenotyping, Lung Neoplasms secondary, Lung Neoplasms therapy, Melanoma, Experimental, Mice, Neoplasms etiology, Neoplasms metabolism, Neoplasms pathology, Neoplasms therapy, T-Lymphocytes drug effects, T-Lymphocytes immunology, T-Lymphocytes metabolism, Vaccines administration & dosage, Immune Checkpoint Inhibitors pharmacology, Immunity, Humoral drug effects, Immunologic Memory drug effects, Vaccines immunology
- Abstract
In a syngeneic murine melanoma (MEL) model, we recently reported an in situ vaccination response to combined radiation (RT) and intra-tumoral (IT) injection of anti-GD2 hu14. 18-IL2 immunocytokine (IC). This combined treatment resulted in 71% complete and durable regression of 5-week tumors, a tumor-specific memory T cell response, and augmented response to systemic anti-CTLA-4 antibody checkpoint blockade. While the ability of radiation to diversify anti-tumor T cell response has been reported, we hypothesize that mice rendered disease-free (DF) by a RT-based ISV might also exhibit a heightened B cell response. C57BL/6 mice were engrafted with 2 × 10
6 GD2+ B78 MEL and treated at a target tumor size of ~200 mm3 with 12 Gy RT, IT-IC on day (D)6-D10, and anti-CTLA-4 on D3, 6, and 9. Serum was collected via facial vein before tumor injection, before treatment, during treatment, after becoming DF, and following rejection of subcutaneous 2 × 106 B78 MEL re-challenge on D90. Flow cytometry demonstrated the presence of tumor-specific IgG in sera from mice rendered DF and rejecting re-challenge with B78 MEL at D90 after starting treatment. Consistent with an adaptive endogenous anti-tumor humoral memory response, these anti-tumor antibodies bound to B78 cells and parental B16 cells (GD2-), but not to the unrelated syngeneic Panc02 or Panc02 GD2+ cell lines. We evaluated the kinetics of this response and observed that tumor-specific IgG was consistently detected by D22 after initiation of treatment, corresponding to a time of rapid tumor regression. The amount of tumor-specific antibody binding to tumor cells (as measured by flow MFI) did not correlate with host animal prognosis. Incubation of B16 MEL cells in DF serum, vs. naïve serum, prior to IV injection, did not delay engraftment of B16 metastases and showed similar overall survival rates. B cell depletion using anti-CD20 or anti-CD19 and anti-B220 did not impact the efficacy of ISV treatment. Thus, treatment with RT + IC + anti-CTLA-4 results in adaptive anti-tumor humoral memory response. This endogenous tumor-specific antibody response does not appear to have therapeutic efficacy but may serve as a biomarker for an anti-tumor T cell response., (Copyright © 2020 Baniel, Heinze, Hoefges, Sumiec, Hank, Carlson, Jin, Patel, Sriramaneni, Gillies, Erbe, Schwarz, Pieper, Rakhmilevich, Sondel and Morris.)- Published
- 2020
- Full Text
- View/download PDF
29. Outcome-Related Signatures Identified by Whole Transcriptome Sequencing of Resectable Stage III/IV Melanoma Evaluated after Starting Hu14.18-IL2.
- Author
-
Yang RK, Kuznetsov IB, Ranheim EA, Wei JS, Sindiri S, Gryder BE, Gangalapudi V, Song YK, Patel V, Hank JA, Zuleger C, Erbe AK, Morris ZS, Quale R, Kim K, Albertini MR, Khan J, and Sondel PM
- Subjects
- Antibodies, Monoclonal administration & dosage, Antibodies, Monoclonal adverse effects, Antibodies, Monoclonal therapeutic use, Computational Biology methods, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic drug effects, Humans, Interleukin-2 administration & dosage, Interleukin-2 adverse effects, Interleukin-2 therapeutic use, Kaplan-Meier Estimate, Lymphocytes, Tumor-Infiltrating immunology, Lymphocytes, Tumor-Infiltrating metabolism, Male, Melanoma pathology, Melanoma therapy, Neoplasm Staging, Prognosis, Proportional Hazards Models, Transcriptome, Treatment Outcome, Exome Sequencing, Biomarkers, Tumor, Melanoma genetics, Melanoma mortality
- Abstract
Purpose: We analyzed whole transcriptome sequencing in tumors from 23 patients with stage III or IV melanoma from a pilot trial of the anti-GD2 immunocytokine, hu14.18-IL2, to identify predictive immune and/or tumor biomarkers in patients with melanoma at high risk for recurrence., Experimental Design: Patients were randomly assigned to receive the first of three monthly courses of hu14.18-IL2 immunotherapy either before (Group A) or after (Group B) complete surgical resection of all known diseases. Tumors were evaluated by histology and whole transcriptome sequencing., Results: Tumor-infiltrating lymphocyte (TIL) levels directly associated with relapse-free survival (RFS) and overall survival (OS) in resected tumors from Group A, where early responses to the immunotherapy agent could be assessed. TIL levels directly associated with a previously reported immune signature, which associated with RFS and OS, particularly in Group A tumors. In Group A tumors, there were decreased cell-cycling gene RNA transcripts, but increased RNA transcripts for repair and growth genes. We found that outcome (RFS and OS) was directly associated with several immune signatures and immune-related RNA transcripts and inversely associated with several tumor growth-associated transcripts, particularly in Group A tumors. Most of these associations were not seen in Group B tumors., Conclusions: We interpret these data to signify that both immunologic and tumoral cell processes, as measured by RNA-sequencing analyses detected shortly after initiation of hu14.18-IL2 therapy, are associated with long-term survival and could potentially be used as prognostic biomarkers in tumor resection specimens obtained after initiating neoadjuvant immunotherapy., (©2020 American Association for Cancer Research.)
- Published
- 2020
- Full Text
- View/download PDF
30. Pre-existing antitherapeutic antibodies against the Fc region of the hu14.18K322A mAb are associated with outcome in patients with relapsed neuroblastoma.
- Author
-
Goldberg JL, Navid F, Hank JA, Erbe AK, Santana V, Gan J, de Bie F, Javaid AM, Hoefges A, Merdler M, Carmichael L, Kim K, Bishop MW, Meager MM, Gillies SD, Pandey JP, and Sondel PM
- Subjects
- Animals, Antibodies, Monoclonal, Humanized pharmacology, Female, Humans, Mice, Neoplasm Recurrence, Local, Neuroblastoma, Treatment Outcome, Antibodies, Monoclonal, Humanized therapeutic use
- Abstract
Purpose: Patients with cancer receiving tumor-reactive humanized monoclonal antibody (mAb) therapy can develop a human antihuman antibody (HAHA) response against the therapeutic mAb. We evaluated for HAHA in patients with neuroblastoma treated in a phase I study of humanized anti-GD2 mAb (immunoglobulin (Ig)G1 isotype), hu14.18K322A (NCT00743496). The pretreatment sera (collected prior to mAb treatment) from 9 of 38 patients contained antitherapeutic antibodies, even though they had no prior mAb exposure. We sought to characterize these pre-existing antitherapeutic antibodies (PATA)., Experimental Design: The PATA+ pretreatment samples were characterized via ELISA; clinical associations with PATA status were evaluated., Results: Pretreatment sera from eight of nine PATA+ patients also bound rituximab and demonstrated preferential ELISA reactivity against the Fc portions of hu14.18K322A and rituximab as compared with the Fab portions of these mAbs. These PATA+ sera also recognized dinutuximab (human IgG1 isotype) and mouse IgG2a isotype mAbs, but not a mouse IgG1 isotype or the fully human panitumumab (IgG2 isotype) mAb. Of the 38 treated patients, only 4 patients (all in the PATA+ cohort) demonstrated no disease progression for > 2.5 years without receiving further therapy (p=0.002)., Conclusions: This study demonstrates an association between clinical outcome and the presence of PATA against determinant(s) on the Fc component of the therapeutic mAb, suggesting that the PATA may be playing a role in augmenting mAb-based antitumor effects. Further analyses for the presence of PATA in a larger cohort of patients with relapsed neuroblastoma, analyses of their clinical correlates, identification of their immunological targets, and potential antitumor mechanisms are warranted., Competing Interests: Competing interests: Dr S. Gillies declares employment and ownership interests in Provenance Biopharmaceuticals., (© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2020
- Full Text
- View/download PDF
31. Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition.
- Author
-
Voeller J, Erbe AK, Slowinski J, Rasmussen K, Carlson PM, Hoefges A, VandenHeuvel S, Stuckwisch A, Wang X, Gillies SD, Patel RB, Farrel A, Rokita JL, Maris J, Hank JA, Morris ZS, Rakhmilevich AL, and Sondel PM
- Subjects
- Animals, Cell Line, Tumor, Cytokines metabolism, Disease Models, Animal, Female, Immunohistochemistry, Immunologic Memory, Mice, Neuroblastoma drug therapy, Neuroblastoma metabolism, Neuroblastoma pathology, Tumor Cells, Cultured, Tumor Microenvironment drug effects, Tumor Microenvironment genetics, Tumor Microenvironment immunology, Adaptive Immunity, Antineoplastic Agents, Immunological pharmacology, Biomarkers, Tumor, Drug Resistance, Neoplasm drug effects, Drug Resistance, Neoplasm immunology, Immunity, Innate, Neuroblastoma etiology
- Abstract
Background: Unlike some adult cancers, most pediatric cancers are considered immunologically cold and generally less responsive to immunotherapy. While immunotherapy has already been incorporated into standard of care treatment for pediatric patients with high-risk neuroblastoma, overall survival remains poor. In a mouse melanoma model, we found that radiation and tumor-specific immunocytokine generate an in situ vaccination response in syngeneic mice bearing large tumors. Here, we tested whether a novel immunotherapeutic approach utilizing radiation and immunocytokine together with innate immune stimulation could generate a potent antitumor response with immunologic memory against syngeneic murine neuroblastoma., Methods: Mice bearing disialoganglioside (GD2)-expressing neuroblastoma tumors (either NXS2 or 9464D-GD2) were treated with radiation and immunotherapy (including anti-GD2 immunocytokine with or without anti-CTLA-4, CpG and anti-CD40 monoclonal antibody). Tumor growth, animal survival and immune cell infiltrate were analyzed in the tumor microenvironment in response to various treatment regimens., Results: NXS2 had a moderate tumor mutation burden (TMB) while N-MYC driven 9464D-GD2 had a low TMB, therefore the latter served as a better model for high-risk neuroblastoma (an immunologically cold tumor). Radiation and immunocytokine induced a potent in situ vaccination response against NXS2 tumors, but not in the 9464D-GD2 tumor model. Addition of checkpoint blockade with anti-CTLA-4 was not effective alone against 9464D-GD2 tumors; inclusion of CpG and anti-CD40 achieved a potent antitumor response with decreased T regulatory cells within the tumors and induction of immunologic memory., Conclusions: These data suggest that a combined innate and adaptive immunotherapeutic approach can be effective against immunologically cold syngeneic murine neuroblastoma. Further testing is needed to determine how these concepts might translate into development of more effective immunotherapeutic approaches for the treatment of clinically high-risk neuroblastoma.
- Published
- 2019
- Full Text
- View/download PDF
32. Follicular lymphoma patients with KIR2DL2 and KIR3DL1 and their ligands (HLA-C1 and HLA-Bw4) show improved outcome when receiving rituximab.
- Author
-
Erbe AK, Wang W, Carmichael L, Hoefges A, Grzywacz B, Reville PK, Ranheim EA, Hank JA, Kim K, Seo S, Mendonca EA, Song Y, Kenkre VP, Hong F, Gascoyne RD, Paietta E, Horning SJ, Miller JS, Kahl B, and Sondel PM
- Subjects
- Female, Genotype, Humans, Lymphoma, Follicular genetics, Maintenance Chemotherapy, Male, Proportional Hazards Models, Rituximab therapeutic use, Treatment Outcome, HLA-B Antigens genetics, HLA-C Antigens genetics, Lymphoma, Follicular drug therapy, Receptors, KIR2DL2 genetics, Receptors, KIR3DL1 genetics, Rituximab administration & dosage
- Abstract
Background: The ECOG-ACRIN Cancer Research Group evaluated rituximab treatment schedules for patients with newly-diagnosed low-tumor-burden follicular-lymphoma (FL). All patients received 4-weekly rituximab treatments as induction therapy. Clinically-responding patients were randomized to receive rituximab every 13 weeks ("maintenance") vs. no additional rituximab until progression ("non-maintenance"). Based on "time-to-rituximab-failure (TTRF)", the study-committee reported there was no overall-benefit for maintenance rituximab in this setting. Tumor-reactive mAbs, like rituximab, trigger natural killer (NK) cells. NK-cell responses are regulated, in part, by interactions between killer immunoglobulin-like receptors (KIRs) on NK cells and their interactions with KIR-ligands. In a separate study of children with neuroblastoma treated with a different mAb, we found certain KIR/KIR-ligand genotypes associated with improved outcome. Here, we assessed whether a subset of FL patients show improved outcome from the maintenance rituximab based on these same KIR/KIR-ligand genotypes., Methods: Genotypes for KIR/KIR-ligand were determined and assessed for associations with outcome [duration of response, TTRF and % tumor shrinkage] as a post-hoc analysis of this phase III trial. Our primary objective was to assess specific KIR/KIR-ligand genotype associations, followed by separate prespecified KIR/KIR-ligand genotype associations in follow-up analyses. Statistical analyses for association of genotype with clinical outcome included: Log-rank tests and Cox proportional hazards regression models to assess duration of response and TTRF; analysis of variance (ANOVA) was used for assessment of % tumor shrinkage., Results: We found that patients inheriting KIR2DL2 and its ligand (HLA-C1) along with KIR3DL1 and its ligand (HLA-Bw4) had improved outcome over patients without this genotype. In addition, patients with KIR2DL2 and HLA-C1 along with KIR3DL1 and HLA-Bw4 also showed improved duration of response and tumor shrinkage if they received maintenance, while patients without this genotype showed no such improvement when receiving maintenance., Conclusions: The data presented here indicate that a subset of FL patients, identified by certain KIRs/KIR-ligands, have improved outcome and may benefit from additional rituximab treatment. Taken together, this suggests that the efficacy of tumor-reactive mAb treatment for some patients is influenced by KIRs on NK cells. However, prior to considering these genotypes in a clinically-actionable manner, these findings need independent validation in other studies.
- Published
- 2019
- Full Text
- View/download PDF
33. Tumor-Specific Inhibition of In Situ Vaccination by Distant Untreated Tumor Sites.
- Author
-
Morris ZS, Guy EI, Werner LR, Carlson PM, Heinze CM, Kler JS, Busche SM, Jaquish AA, Sriramaneni RN, Carmichael LL, Loibner H, Gillies SD, Korman AJ, Erbe AK, Hank JA, Rakhmilevich AL, Harari PM, and Sondel PM
- Subjects
- Animals, CTLA-4 Antigen antagonists & inhibitors, CTLA-4 Antigen immunology, CTLA-4 Antigen metabolism, Cancer Vaccines therapeutic use, Cell Line, Tumor, Combined Modality Therapy, Disease Models, Animal, Humans, Immune Tolerance, Melanoma immunology, Melanoma metabolism, Melanoma pathology, Melanoma therapy, Mice, Neoplasms metabolism, Neoplasms pathology, Neoplasms therapy, T-Lymphocytes, Regulatory immunology, T-Lymphocytes, Regulatory metabolism, Vaccination, Xenograft Model Antitumor Assays, Cancer Vaccines immunology, Neoplasms immunology
- Abstract
In situ vaccination is an emerging cancer treatment strategy that uses local therapies to stimulate a systemic antitumor immune response. We previously reported an in situ vaccination effect when combining radiation (RT) with intratumor (IT) injection of tumor-specific immunocytokine (IC), a fusion of tumor-specific antibody and IL2 cytokine. In mice bearing two tumors, we initially hypothesized that delivering RT plus IT-IC to the "primary" tumor would induce a systemic antitumor response causing regression of the "secondary" tumor. To test this, mice bearing one or two syngeneic murine tumors of B78 melanoma and/or Panc02 pancreatic cancer were treated with combined external beam RT and IT-IC to the designated "primary" tumor only. Primary and secondary tumor response as well as animal survival were monitored. Immunohistochemistry and quantitative real-time PCR were used to quantify tumor infiltration with regulatory T cells (Treg). Transgenic "DEREG" mice or IgG2a anti-CTLA-4 were used to transiently deplete tumor Tregs. Contrary to our initial hypothesis, we observed that the presence of an untreated secondary tumor antagonized the therapeutic effect of RT + IT-IC delivered to the primary tumor. We observed reciprocal tumor specificity for this effect, which was circumvented if all tumors received RT or by transient depletion of Tregs. Primary tumor treatment with RT + IT-IC together with systemic administration of Treg-depleting anti-CTLA-4 resulted in a renewed in situ vaccination effect. Our findings show that untreated tumors can exert a tumor-specific, Treg-dependent, suppressive effect on the efficacy of in situ vaccination and demonstrate clinically viable approaches to overcome this effect. Untreated tumor sites antagonize the systemic and local antitumor immune response to an in situ vaccination regimen. This effect is radiation sensitive and may be mediated by tumor-specific regulatory T cells harbored in the untreated tumor sites. Cancer Immunol Res; 6(7); 825-34. ©2018 AACR ., (©2018 American Association for Cancer Research.)
- Published
- 2018
- Full Text
- View/download PDF
34. Neuroblastoma Patients' KIR and KIR-Ligand Genotypes Influence Clinical Outcome for Dinutuximab-based Immunotherapy: A Report from the Children's Oncology Group.
- Author
-
Erbe AK, Wang W, Carmichael L, Kim K, Mendonça EA, Song Y, Hess D, Reville PK, London WB, Naranjo A, Hank JA, Diccianni MB, Reisfeld RA, Gillies SD, Matthay KK, Cohn SL, Hogarty MD, Maris JM, Park JR, Ozkaynak MF, Gilman AL, Yu AL, and Sondel PM
- Subjects
- Antibodies, Monoclonal pharmacology, Antibodies, Monoclonal therapeutic use, Antineoplastic Agents, Immunological pharmacology, Antineoplastic Agents, Immunological therapeutic use, Cell Line, Tumor, Clinical Trials, Phase III as Topic, Female, Humans, Immunotherapy, Ligands, Male, Neuroblastoma immunology, Neuroblastoma therapy, Receptors, KIR2DL1 genetics, Receptors, KIR2DL1 metabolism, Receptors, KIR3DL1 genetics, Receptors, KIR3DL1 metabolism, Genotype, Neuroblastoma genetics, Neuroblastoma mortality, Receptors, KIR genetics
- Abstract
Purpose: In 2010, a Children's Oncology Group (COG) phase III randomized trial for patients with high-risk neuroblastoma (ANBL0032) demonstrated improved event-free survival (EFS) and overall survival (OS) following treatment with an immunotherapy regimen of dinutuximab, GM-CSF, IL2, and isotretinoin compared with treatment with isotretinoin alone. Dinutuximab, a chimeric anti-GD2 monoclonal antibody, acts in part via natural killer (NK) cells. Killer immunoglobulin-like receptors (KIR) on NK cells and their interactions with KIR-ligands can influence NK cell function. We investigated whether KIR/KIR-ligand genotypes were associated with EFS or OS in this trial. Experimental Design: We genotyped patients from COG study ANBL0032 and evaluated the effect of KIR/KIR-ligand genotypes on clinical outcomes. Cox regression models and log-rank tests were used to evaluate associations of EFS and OS with KIR/KIR-ligand genotypes. Results: In this trial, patients with the "all KIR-ligands present" genotype as well as patients with inhibitory KIR2DL2 with its ligand (HLA-C1) together with inhibitory KIR3DL1 with its ligand (HLA-Bw4) were associated with improved outcome if they received immunotherapy. In contrast, for patients with the complementary KIR/KIR-ligand genotypes, clinical outcome was not significantly different for patients who received immunotherapy versus those receiving isotretinoin alone. Conclusions: These data show that administration of immunotherapy is associated with improved outcome for neuroblastoma patients with certain KIR/KIR-ligand genotypes, although this was not seen for patients with other KIR/KIR-ligand genotypes. Further investigation of KIR/KIR-ligand genotypes may clarify their role in cancer immunotherapy and may enable KIR/KIR-ligand genotyping to be used prospectively for identifying patients likely to benefit from certain cancer immunotherapy regimens. Clin Cancer Res; 24(1); 189-96. ©2017 AACR See related commentary by Cheung and Hsu, p. 3 ., (©2017 American Association for Cancer Research.)
- Published
- 2018
- Full Text
- View/download PDF
35. Transcriptional-mediated effects of radiation on the expression of immune susceptibility markers in melanoma.
- Author
-
Werner LR, Kler JS, Gressett MM, Riegert M, Werner LK, Heinze CM, Kern JG, Abbariki M, Erbe AK, Patel RB, Sriramaneni RN, Harari PM, and Morris ZS
- Subjects
- Animals, B7-1 Antigen biosynthesis, B7-1 Antigen immunology, B7-H1 Antigen biosynthesis, B7-H1 Antigen immunology, Cell Line, Tumor, Female, Flow Cytometry, Gene Knockdown Techniques, Humans, Immunoblotting, Melanoma genetics, Melanoma immunology, Melanoma, Experimental genetics, Melanoma, Experimental immunology, Melanoma, Experimental radiotherapy, Mice, Mice, Inbred C57BL, Phosphorylation, Receptors, TNF-Related Apoptosis-Inducing Ligand biosynthesis, Receptors, TNF-Related Apoptosis-Inducing Ligand immunology, STAT1 Transcription Factor genetics, STAT1 Transcription Factor immunology, Transcription, Genetic, Up-Regulation, Melanoma radiotherapy
- Abstract
Background and Purpose: We recently reported a time-sensitive, cooperative, anti-tumor effect elicited by radiation (RT) and intra-tumoral-immunocytokine injection in vivo. We hypothesized that RT triggers transcriptional-mediated changes in tumor expression of immune susceptibility markers at delayed time points, which may explain these previously observed time-dependent effects., Materials and Methods: We examined the time course of changes in expression of immune susceptibility markers following in vitro or in vivo RT in B78 murine melanoma and A375 human melanoma using flow cytometry, immunoblotting, and qPCR., Results: Flow cytometry and immunoblot revealed time-dependent increases in expression of death receptors and T cell co-stimulatory/co-inhibitory ligands following RT in murine and human melanoma. Using high-throughput qPCR, we observed comparable time courses of RT-induced transcriptional upregulation for multiple immune susceptibility markers. We confirmed analogous changes in B78 tumors irradiated in vivo. We observed upregulated expression of DNA damage response markers days prior to changes in immune markers, whereas phosphorylation of the STAT1 transcription factor occurred concurrently with changes following RT., Conclusion: This study highlights time-dependent, transcription-mediated changes in tumor immune susceptibility marker expression following RT. These findings may help in the design of strategies to optimize sequencing of RT and immunotherapy in translational and clinical studies., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
36. HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy.
- Author
-
Erbe AK, Wang W, Reville PK, Carmichael L, Kim K, Mendonca EA, Song Y, Hank JA, London WB, Naranjo A, Hong F, Hogarty MD, Maris JM, Park JR, Ozkaynak MF, Miller JS, Gilman AL, Kahl B, Yu AL, and Sondel PM
- Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are a family of glycoproteins expressed primarily on natural killer cells that can regulate their function. Inhibitory KIRs recognize MHC class I molecules (KIR-ligands) as ligands. We have reported associations of KIRs and KIR-ligands for patients in two monoclonal antibody (mAb)-based trials: (1) A Children's Oncology Group (COG) trial for children with high-risk neuroblastoma randomized to immunotherapy treatment with dinutuximab (anti-GD2 mAb) + GM-CSF + IL-2 + isotretinion or to treatment with isotretinoin alone and (2) An Eastern Cooperative Oncology Group (ECOG) trial for adults with low-tumor burden follicular lymphoma responding to an induction course of rituximab (anti-CD20 mAb) and randomized to treatment with maintenance rituximab or no-maintenance rituximab. In each trial, certain KIR/KIR-ligand genotypes were associated with clinical benefit for patients randomized to immunotherapy treatment (immunotherapy in COG; maintenance rituximab in ECOG) as compared to patients that did not receive the immunotherapy [isotretinoin alone (COG); no-maintenance (ECOG)]. Namely, patients with both KIR3DL1 and its HLA-Bw4 ligand (KIR3DL1+/HLA-Bw4+ genotype) had improved clinical outcomes if randomized to immunotherapy regimens, as compared to patients with the KIR3DL1+/HLA-Bw4+ genotype randomized to the non-immunotherapy regimen. Conversely, patients that did not have the KIR3DL1+/HLA-Bw4+ genotype showed no evidence of a difference in outcome if receiving the immunotherapy vs. no-immunotherapy. For each trial, HLA-Bw4 status was determined by assessing the genotypes of three separate isoforms of HLA-Bw4: (1) HLA-B-Bw4 with threonine at amino acid 80 (B-Bw4-T80); (2) HLA-B-Bw4 with isoleucine at amino acid 80 (HLA-B-Bw4-I80); and (3) HLA-A with a Bw4 epitope (HLA-A-Bw4). Here, we report on associations with clinical outcome for patients with KIR3DL1 and these separate isoforms of HLA-Bw4. Patients randomized to immunotherapy with KIR3DL1+/A-Bw4+ or with KIR3DL1+/B-Bw4-T80+ had better outcome vs. those randomized to no-immunotherapy, whereas for those with KIR3DL1+/B-Bw4-I80+ there was no evidence of a difference based on immunotherapy vs. no-immunotherapy. Additionally, we observed differences within treatment types (either within immunotherapy or no-immunotherapy) that were associated with the genotype status for the different KIR3DL1/HLA-Bw4-isoforms. These studies suggest that specific HLA-Bw4 isoforms may differentially influence response to these mAb-based immunotherapy, further confirming the involvement of KIR-bearing cells in tumor-reactive mAb-based cancer immunotherapy.
- Published
- 2017
- Full Text
- View/download PDF
37. Donor selection for ex vivo-expanded natural killer cells as adoptive cancer immunotherapy.
- Author
-
Wang W, Erbe AK, DeSantes KB, and Sondel PM
- Subjects
- Cell Differentiation genetics, Donor Selection, Humans, Ligands, Neoplasms immunology, Receptors, KIR genetics, Receptors, KIR immunology, Immunotherapy, Adoptive, Killer Cells, Natural immunology, Neoplasms therapy
- Published
- 2017
- Full Text
- View/download PDF
38. FCGR Polymorphisms Influence Response to IL2 in Metastatic Renal Cell Carcinoma.
- Author
-
Erbe AK, Wang W, Goldberg J, Gallenberger M, Kim K, Carmichael L, Hess D, Mendonca EA, Song Y, Hank JA, Cheng SC, Signoretti S, Atkins M, Carlson A, Mier JW, Panka DJ, McDermott DF, and Sondel PM
- Subjects
- Adaptive Immunity genetics, Adult, Aged, Carcinoma, Renal Cell genetics, Carcinoma, Renal Cell immunology, Carcinoma, Renal Cell pathology, Disease-Free Survival, Female, Genetic Association Studies, Genotype, Humans, Immunity, Innate genetics, Interleukin-2 administration & dosage, Interleukin-2 analogs & derivatives, Interleukin-2 genetics, Interleukin-2 immunology, Male, Middle Aged, Neoplasm Metastasis, Polymorphism, Single Nucleotide, Receptors, IgG immunology, Recombinant Proteins administration & dosage, Treatment Outcome, Carcinoma, Renal Cell drug therapy, Receptors, IgG genetics
- Abstract
Purpose: Fc-gamma receptors (FCGRs) are expressed on immune cells, bind to antibodies, and trigger antibody-induced cell-mediated antitumor responses when tumor-reactive antibodies are present. The affinity of the FCGR/antibody interaction is variable and dependent upon FCGR polymorphisms. Prior studies of patients with cancer treated with immunotherapy indicate that FCGR polymorphisms can influence antitumor response for certain immunotherapies that act via therapeutically administered mAbs or via endogenous tumor-reactive antibodies induced from tumor antigen vaccines. The previously published "SELECT" trial of high-dose aldesleukin (HD-IL2) for metastatic renal cell carcinoma resulted in an objective response rate of 25%. We evaluated the patients in this SELECT trial to determine whether higher-affinity FCGR polymorphisms are associated with outcome. Experimental Design: SNPs in FCGR2A, FCGR3A , and FCGR2C were analyzed, individually and in combination, for associations between genotype and clinical outcome. Results: When higher-affinity genotypes for FCGR2A, FCGR3A , and FCGR2C were considered together, they were associated with significantly increased tumor shrinkage and prolonged survival in response to HD-IL2. Conclusions: Although associations of higher-affinity FCGR genotype with clinical outcome have been demonstrated with mAb therapy and with idiotype vaccines, to our knowledge, this is the first study to show associations of FCGR genotypes with outcome following HD-IL2 treatment. We hypothesize that endogenous antitumor antibodies may engage immune cells through their FCGRs, and HD-IL2 may enhance antibody-induced tumor destruction, or antibody-enhanced tumor antigen presentation, via augmented activation of innate or adaptive immune responses; this FCGR-mediated immune activity would be augmented through immunologically favorable FCGRs. Clin Cancer Res; 23(9); 2159-68. ©2016 AACR ., (©2016 American Association for Cancer Research.)
- Published
- 2017
- Full Text
- View/download PDF
39. Killer immunoglobulin-like receptor (KIR) and KIR-ligand genotype do not correlate with clinical outcome of renal cell carcinoma patients receiving high-dose IL2.
- Author
-
Wang W, Erbe AK, Gallenberger M, Kim K, Carmichael L, Hess D, Mendonca EA, Song Y, Hank JA, Cheng SC, Signoretti S, Atkins M, Carlson A, Weiss JM, Mier J, Panka D, McDermott DF, and Sondel PM
- Subjects
- Adult, Aged, Antineoplastic Agents administration & dosage, Antineoplastic Agents pharmacology, Carcinoma, Renal Cell pathology, Genotype, Humans, Interleukin-2 pharmacology, Ligands, Middle Aged, Antineoplastic Agents therapeutic use, Carcinoma, Renal Cell genetics, Interleukin-2 therapeutic use, Receptors, KIR genetics
- Abstract
NK cells play a role in many cancer immunotherapies. NK cell activity is tightly regulated by killer immunoglobulin-like receptor (KIR) and KIR-ligand interactions. Inhibitory KIR-ligands have been identified as HLA molecules, while activating KIR-ligands are largely unknown. Individuals that have not inherited the corresponding KIR-ligand for at least one inhibitory KIR gene are termed the "KIR-ligand missing" genotype, and they are thought to have a subset of NK cells that express inhibitory KIRs for which the corresponding KIR-ligand is missing on autologous tissue, and thus will not be inhibited through KIR-ligand recognition. In some settings where an anticancer immunotherapeutic effect is likely mediated by NK cells, individuals with a KIR-ligand missing genotype have shown improved clinical outcome compared to individuals with an "all KIR-ligands present" genotype. In addition, patients receiving hematopoietic stem cell transplants for leukemia may do better if their donor has more activating KIR genes (i.e., KIR haplotype-B). In a recent multi-institution clinical trial of patients with metastatic renal cell carcinoma receiving high-dose IL2 (HD-IL2), 25 % of patients showed a complete or partial tumor response to this therapy. We genotyped KIR and KIR-ligand genes for these patients (n = 107) and tested whether KIR/KIR-ligand genotypes correlated with patient clinical outcomes. In these analyses, we did not find any significant association of KIR/KIR-ligand genotype (either KIR-ligand missing or the presence of KIR haplotype-B) with patient outcome in response to the HD-IL2 therapy., Competing Interests: The authors have no financial conflicts of interest.
- Published
- 2016
- Full Text
- View/download PDF
40. Human NK cells maintain licensing status and are subject to killer immunoglobulin-like receptor (KIR) and KIR-ligand inhibition following ex vivo expansion.
- Author
-
Wang W, Erbe AK, Alderson KA, Phillips E, Gallenberger M, Gan J, Campana D, Hank JA, and Sondel PM
- Subjects
- Antibody-Dependent Cell Cytotoxicity, Cell Line, Tumor, Genotyping Techniques, Humans, K562 Cells, Ligands, Transfection, HLA-C Antigens immunology, Killer Cells, Natural immunology, Receptors, KIR immunology
- Abstract
Infusion of allogeneic NK cells is a potential immunotherapy for both hematopoietic malignancies and solid tumors. Interactions between killer immunoglobulin-like receptors (KIR) on human NK cells and KIR-ligands on tumor cells influence the magnitude of NK function. To obtain sufficient numbers of activated NK cells for infusion, one potent method uses cells from the K562 human erythroleukemia line that have been transfected to express activating 41BB ligand (41BBL) and membrane-bound interleukin 15 (mbIL15). The functional importance of KIRs on ex vivo expanded NK cells has not been studied in detail. We found that after a 12-day co-culture with K562-mbIL15-41BBL cells, expanded NK cells maintained inhibition specificity and prior in vivo licensing status determined by KIR/KIR-ligand interactions. Addition of an anti-CD20 antibody (rituximab) induced NK-mediated antibody-dependent cellular cytotoxicity and augmented killing of CD20+ target cells. However, partial inhibition induced by KIR/KIR-ligand interactions persisted. Finally, we found that extended co-cultures of NK cells with stimulatory cells transduced to express various KIR-ligands modified both the inhibitory and activating KIR repertoires of the expanded NK cell product. These studies demonstrate that the licensing interactions known to occur during NK ontogeny also influence NK cell function following NK expansion ex vivo with HLA-null stimulatory cells.
- Published
- 2016
- Full Text
- View/download PDF
41. Genotyping Single Nucleotide Polymorphisms and Copy Number Variability of the FCGRs Expressed on NK Cells.
- Author
-
Erbe AK, Wang W, Gallenberger M, Hank JA, and Sondel PM
- Subjects
- Gene Dosage, Humans, Immunotherapy, Killer Cells, Natural immunology, Neoplasms genetics, Neoplasms immunology, Neoplasms therapy, Pharmacogenomic Variants, Sensitivity and Specificity, Genotyping Techniques methods, Polymorphism, Single Nucleotide, Receptors, IgG genetics
- Abstract
Natural killer (NK) cells are one of the main effector immune cells involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Upon recognition of cell-bound IgG antibodies, which occurs through Fc gamma receptors (FCGRs) expressed on the cell surface of NK cells, NK cells become activated and lyse target tumor or infected cells. The FCGRs, FCGR3A and FCGR2C, expressed on the surface of NK cells have single nucleotide polymorphisms (SNPs) that result in differential activity of NK cells. In addition to SNP genetic variation within each of these genes, the FCGRs are subject to copy number variation (CNV), which leads to variable protein expression levels on the cell surface. Studies have found that FCGR genotype for FCGR3A and FCGR2C is associated with variation in the response to immunotherapy.Due to high sequence homology within FCGR3 and FCGR2 families, there are difficulties associated with genotyping these specific receptors related to cross-amplification of non-targeted FCGRs. To improve specificity for both FCGR3A and FCGR2C, Rnase-H (RH) primers were designed to amplify specifically FCGR3A (while not co-amplifying FCGR3B) and FCGR2C (while not co-amplifying FCGR2B). In addition, fluorescently labeled locked nucleic acid (LNA) probes provide additional precision for determination of the SNPs within both FCGR3A and FCGR2C. For CNV determination, separate fluorescently labeled probes for FCGR3A, and for FCGR2C, can be used with the same RH primers for each gene. These probes can be combined in the same well with control primers/probe for a known diploid gene and used to calculate the copy number of both FCGR3A and FCGR2C. Here we provide new detailed methodology that allows for the specific amplification of these FCGRs in a single PCR reaction, allowing for genotyping of both the SNPs and CNVs using real-time PCR.
- Published
- 2016
- Full Text
- View/download PDF
42. NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity in Cancer Immunotherapy.
- Author
-
Wang W, Erbe AK, Hank JA, Morris ZS, and Sondel PM
- Abstract
Natural killer (NK) cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs). NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be "specifically activated" through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC) of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called killer immunoglobulin-like receptors (KIRs), which regulate the function and response of NK cells toward target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR-ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.
- Published
- 2015
- Full Text
- View/download PDF
43. Effects of task-irrelevant emotional stimuli on working memory processes in mild cognitive impairment.
- Author
-
Berger C, Erbe AK, Ehlers I, Marx I, Hauenstein K, and Teipel S
- Subjects
- Aged, Aged, 80 and over, Brain Mapping, Cognitive Dysfunction psychology, Female, Humans, Magnetic Resonance Imaging, Male, Neuropsychological Tests, Photic Stimulation, Psychomotor Performance physiology, Visual Perception physiology, Brain physiopathology, Cognitive Dysfunction physiopathology, Emotions physiology, Memory, Short-Term physiology
- Abstract
Background: Research suggests generally impaired cognitive control functions in working memory (WM) processes in amnestic mild cognitive impairment (MCI) and incipient Alzheimer's disease (AD). Little is known how emotional salience of task-irrelevant stimuli may modulate cognitive control of WM performance and neurofunctional activation in MCI and AD individuals., Objective: We investigated the impact of emotional task-irrelevant visual stimuli on cortical activation during verbal WM., Methods: Twelve AD/MCI individuals and 12 age-matched healthy individuals performed a verbal WM (nback-) task with task-irrelevant emotionally neutral and emotionally negative background pictures during fMRI measurement., Results: AD/MCI individuals showed decreased WM performance compared with controls; both AD/MCI and control groups reacted slower during presentation of negative pictures, regardless of WM difficulty. The AD/MCI group showed increased activation in the left hemispheric prefrontal network, higher amygdala and less cerebellar activation with increasing WM task difficulty compared to healthy controls. Correlation analysis between neurofunctional activation and WM performance revealed a negative correlation between task sensitivity and activation in the dorsal anterior cingulum for the healthy controls but not for the AD/MCI group., Conclusion: Our data suggest compensatory activation in prefrontal cortex and amygdala, but also dysfunctional inhibition of distracting information in the AD/MCI group during higher WM task difficulty. Additionally, attentional processes affecting the correlation between WM performance and neurofunctional activation seem to be different between incipient AD and healthy aging.
- Published
- 2015
- Full Text
- View/download PDF
44. Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma.
- Author
-
Koehn TA, Trimble LL, Alderson KL, Erbe AK, McDowell KA, Grzywacz B, Hank JA, and Sondel PM
- Abstract
Disease recurrence is frequent in high-risk neuroblastoma (NBL) patients even after multi-modality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation, and cis-retinoic acid (CRA)]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs) that bind to disialoganglioside (GD(2)), highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC). Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD(2) mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF), a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD(2) mAb directly linked to IL2, and anti-tumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and natural killer (NK) cell function [Fc receptor (FcR), killer immunoglublin-like receptor (KIR), and KIR-ligand (KIR-L)] suggest patients with anti-tumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome. In this review, we discuss factors that affect response to mAb-based tumor therapies such as hu14.18-IL2. Many of our observations have been made in the context of NBL; however, we will also include some observations made with mAbs targeting other tumor types that are consistent with results in NBL. Therefore, we hypothesize that the NBL observations discussed here may also be relevant to mAb therapy for other cancers, in which ADCC is known to play a role.
- Published
- 2012
- Full Text
- View/download PDF
45. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1.
- Author
-
Song C, Li Z, Erbe AK, Savic A, and Dovat S
- Abstract
The Ikaros gene encodes a zinc finger, DNA-binding protein that regulates gene transcription and chromatin remodeling. Ikaros is a master regulator of hematopoiesis and an established tumor suppressor. Moderate alteration of Ikaros activity (e.g. haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells. This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia. The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation. Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization. As a consequence, the ability of Ikaros to regulate cell cycle progression, chromatin remodeling, target gene expression, and thymocyte differentiation are controlled by CK2. In addition, hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitin-mediated degradation. Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization. Thus, the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor. This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.
- Published
- 2011
- Full Text
- View/download PDF
46. Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposure.
- Author
-
Bunderson-Schelvan M, Erbe AK, Schwanke C, and Pershouse MA
- Subjects
- Animals, Apoptosis genetics, Cell Line, Genes, p53, Humans, Mice, Oligonucleotide Array Sequence Analysis, Cell Cycle genetics, Epithelium radiation effects, Gene Silencing, Proto-Oncogene Proteins genetics, Ubiquitin-Protein Ligases genetics, Ultraviolet Rays
- Abstract
The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1alpha, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.