1. Eosinophil specialization is regulated by exposure to the esophageal epithelial microenvironment.
- Author
-
Dunn JLM, Szep A, Gonzalez Galan E, Zhang S, Marlman J, Caldwell JM, Troutman TD, and Rothenberg ME
- Subjects
- Humans, Interleukin-13 metabolism, Interleukin-13 pharmacology, Esophagus pathology, Esophagus metabolism, Epithelial Cells metabolism, Transforming Growth Factor beta metabolism, Transforming Growth Factor beta pharmacology, Fibroblasts metabolism, Fibroblasts pathology, Cytokines metabolism, Esophageal Mucosa pathology, Esophageal Mucosa metabolism, Cells, Cultured, Eosinophils metabolism, Eosinophils immunology, Coculture Techniques, Cellular Microenvironment, Eosinophilic Esophagitis pathology, Eosinophilic Esophagitis metabolism, Eosinophilic Esophagitis immunology
- Abstract
Distinct subsets of eosinophils are reported in inflammatory and healthy tissues, yet the functions of uniquely specialized eosinophils and the signals that elicit them, particularly in eosinophilic esophagitis, are not well understood. Herein, we report an ex vivo system wherein freshly isolated human eosinophils were cocultured with esophageal epithelial cells and disease-relevant proinflammatory (IL-13) or profibrotic (TGF-β) cytokines. Compared with untreated cocultures, IL-13 increased expression of CD69 on eosinophils, whereas TGF-β increased expression of CD81, CD62L, and CD25. Eosinophils from IL-13-treated cocultures demonstrated increased secretion of GRO-α, IL-8, and macrophage colony-stimulating factor and also generated increased extracellular peroxidase activity following activation. Eosinophils from TGF-β-treated cocultures secreted increased IL-6 and exhibited increased chemotactic response to CCL11 compared with eosinophils from untreated or IL-13-treated coculture conditions. When eosinophils from TGF-β-treated cocultures were cultured with fibroblasts, they upregulated SERPINE1 expression and fibronectin secretion by fibroblasts compared with eosinophils that were cultured with granulocyte macrophage colony-stimulating factor alone. Translational studies revealed that CD62L was heterogeneously expressed by eosinophils in patient biopsy specimens. Our results demonstrate that disease-relevant proinflammatory and profibrotic signals present in the esophagus of patients with eosinophilic esophagitis cause distinct profiles of eosinophil activation and gene expression., Competing Interests: Conflict of interest statement. M.E.R. is a consultant for Pulm One, Spoon Guru, ClostraBio, Serpin Pharm, Allakos, Celldex, Nexstone One, Santa Ana Bio, EnZen Therapeutics, Bristol Myers Squibb, Astra Zeneca, Pfizer, GlaxoSmith Kline, Regeneron/Sanofi, Revolo Biotherapeutics, and Guidepoint and has an equity interest in the first 9 listed and royalties from reslizumab (Teva Pharmaceuticals), PEESSv2 (Mapi Research Trust), and UpToDate. M.E.R. is an inventor of patents owned by Cincinnati Children's Hospital., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Leukocyte Biology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF