1. PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta†.
- Author
-
Zhang ET, Hannibal RL, Badillo Rivera KM, Song JHT, McGowan K, Zhu X, Meinhardt G, Knöfler M, Pollheimer J, Urban AE, Folkins AK, Lyell DJ, and Baker JC
- Subjects
- Eosinophil Major Basic Protein metabolism, Female, Humans, Metalloproteases metabolism, Pregnancy, Proteoglycans metabolism, Eosinophil Major Basic Protein genetics, Extraembryonic Membranes metabolism, Gene Expression Regulation, Metalloproteases genetics, Placenta Accreta metabolism, Placenta Previa metabolism, Proteoglycans genetics
- Abstract
The obstetrical conditions placenta accreta spectrum (PAS) and placenta previa are a significant source of pregnancy-associated morbidity and mortality, yet the specific molecular and cellular underpinnings of these conditions are not known. In this study, we identified misregulated gene expression patterns in tissues from placenta previa and percreta (the most extreme form of PAS) compared with control cases. By comparing this gene set with existing placental single-cell and bulk RNA-Seq datasets, we show that the upregulated genes predominantly mark extravillous trophoblasts. We performed immunofluorescence on several candidate molecules and found that PRG2 and AQPEP protein levels are upregulated in both the fetal membranes and the placental disk in both conditions. While this increased AQPEP expression remains restricted to trophoblasts, PRG2 is mislocalized and is found throughout the fetal membranes. Using a larger patient cohort with a diverse set of gestationally aged-matched controls, we validated PRG2 as a marker for both previa and PAS and AQPEP as a marker for only previa in the fetal membranes. Our findings suggest that the extraembryonic tissues surrounding the conceptus, including both the fetal membranes and the placental disk, harbor a signature of previa and PAS that is characteristic of EVTs and that may reflect increased trophoblast invasiveness., (© The Author(s) 2021. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF