1. Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces
- Author
-
Babamahdi, Z., Svetovoy, V. B., Enache, M., Stohr, M., and Palasantzas, G.
- Subjects
Physics - Applied Physics - Abstract
Comprehensive knowledge of Casimir forces and associated electrostatics from conductive SiC and Ru surfaces can be essential in diverse areas ranging from micro/nanodevice operation in harsh environments to multilayer coatings in advanced lithography technologies. Hence, the Casimir force was measured between an Au-coated microsphere and N-doped SiC samples with Si- and C-terminated faces, and the results were compared with the measurements using the same microsphere and a metallic Ruthenium surface. Electrostatic calibration showed that the Si- and C-faces behave differently with a nearly ~0.6-0.7 V difference in the contact potentials V0Si/C. We attribute this to a higher incorporation of N on the C-terminated face in the near surface region resulting in the formation of NOx and an increased work function compared to the Si-terminated surface which is in agreement with x-ray photoelectron spectroscopy data. Notably, the contact potential of the SiC-C face was closer to the metallic Ru-Au system. However, the measured optical properties of the SiC-Si/C terminated surfaces with ellipsometry did not show any substantial differences indicating that the effective depth of the Si/C terminating surface layers are significantly smaller than the photon penetration depth not leading to any differences in the calculated forces via Lifshitz theory. Nonetheless, the measured Casimir forces, after compensation of the electrostatics contributions, showed differences between the Si/C faces, whereas the comparison with the Lifshitz theory prediction shows better agreement for the SiC-Si face. Finally, comparison of the Casimir forces below 40 nm separations between the SiC-Si/C and Ru surfaces indicated that the short-range roughness effects on the Casimir force increase in magnitude with increasing metallic behavior of the plate surface., Comment: 25 pages, 6 figures
- Published
- 2019
- Full Text
- View/download PDF