1. Glucocorticoid-Induced Hyperinsulinism in a Preterm Neonate with Inherited ABCC8 Variant
- Author
-
Emmanuelle Motte-Signoret, Cécile Saint-Martin, Christine Bellané-Chantelot, Bernard Portha, and Pascal Boileau
- Subjects
neonatology ,diabetes mellitus ,K+ channels ,Microbiology ,QR1-502 - Abstract
Glucose homeostasis is a real challenge for extremely preterm infants (EPIs) who have both limited substrate availability and immature glucose metabolism regulation. In the first days of life, EPIs frequently develop transient glucose intolerance, which has a complex pathophysiology that associates unregulated gluconeogenesis, immature insulin secretion, and peripheral insulin resistance. In this population, glucocorticoid therapy is frequently administrated to prevent severe bronchopulmonary dysplasia. During this treatment, glucose intolerance classically increases and may lead to hyperglycemia. We report a case of neonatal hypoglycemia that was concomitant to a glucocorticoids administration, and that led to a congenital hyperinsulinism diagnosis in an EPI with a heterozygous ABCC8 variant. The variant was inherited from his mother, who had developed monogenic onset diabetes of the youth (MODY) at the age of 23. ABCC8 encodes a beta-cell potassium channel unit and causes congenital hyperinsulinism or MODY depending on the mutation location. Moreover, some mutations have been observed in the same patient to cause both hyperinsulinism in infancy and MODY in adulthood. In our case, the baby showed repeated and severe hypoglycemias, which were undoubtedly time-associated with the betamethasone intravenous administration. This hyperinsulinism was transient, and the infant has not yet developed diabetes at three years of age. We take the opportunity presented by this unusual clinical presentation to provide a review of the literature, suggesting new insights regarding the pathophysiology of the beta-pancreatic cells’ insulin secretion: glucocorticoids may potentiate basal insulin secretion in patients with ABCC8 mutation.
- Published
- 2022
- Full Text
- View/download PDF