46 results on '"Emmanuel Giudice"'
Search Results
2. Structures of tmRNA and SmpB as they transit through the ribosome
- Author
-
Charlotte Guyomar, Gaetano D’Urso, Sophie Chat, Emmanuel Giudice, and Reynald Gillet
- Subjects
Science - Abstract
Trans-translation, mediated by small protein B (SmpB) and transfer-messenger RNA (tmRNA), enables recycling of the ribosomes stalled on defective mRNAs in bacteria. Here, the authors report structures of the ribosome during trans-translation that reveal a translocation intermediate and elucidate the movements of the tmRNA-SmpB complex in the ribosome.
- Published
- 2021
- Full Text
- View/download PDF
3. Capsicumicine, a New Bioinspired Peptide from Red Peppers Prevents Staphylococcal Biofilm In Vitro and In Vivo via a Matrix Anti-Assembly Mechanism of Action
- Author
-
Rafael Gomes Von Borowski, Sophie Chat, Rafael Schneider, Sylvie Nonin-Lecomte, Serge Bouaziz, Emmanuel Giudice, Aline Rigon Zimmer, Simone Cristina Baggio Gnoatto, Alexandre José Macedo, and Reynald Gillet
- Subjects
antibiofilm ,biofilm ,matrix ,peptides ,anti-assembly ,resistance ,Microbiology ,QR1-502 - Abstract
ABSTRACT Staphylococci are pathogenic biofilm-forming bacteria and a source of multidrug resistance and/or tolerance causing a broad spectrum of infections. These bacteria are enclosed in a matrix that allows them to colonize medical devices, such as catheters and tissues, and that protects against antibiotics and immune systems. Advances in antibiofilm strategies for targeting this matrix are therefore extremely relevant. Here, we describe the development of the Capsicum pepper bioinspired peptide “capsicumicine.” By using microbiological, microscopic, and nuclear magnetic resonance (NMR) approaches, we demonstrate that capsicumicine strongly prevents methicillin-resistant Staphylococcus epidermidis biofilm via an extracellular “matrix anti-assembly” mechanism of action. The results were confirmed in vivo in a translational preclinical model that mimics medical device-related infection. Since capsicumicine is not cytotoxic, it is a promising candidate for complementary treatment of infectious diseases. IMPORTANCE Pathogenic biofilms are a global health care concern, as they can cause extensive antibiotic resistance, morbidity, mortality, and thereby substantial economic loss. So far, no effective treatments targeting the bacteria in biofilms have been developed. Plants are constantly attacked by a wide range of pathogens and have protective factors, such as peptides, to defend themselves. These peptides are common components in Capsicum baccatum (red pepper). Here, we provide insights into an antibiofilm strategy based on the development of capsicumicine, a natural peptide that strongly controls biofilm formation by Staphylococcus epidermidis, the most prevalent pathogen in device-related infections.
- Published
- 2021
- Full Text
- View/download PDF
4. Trans-Translation Is an Appealing Target for the Development of New Antimicrobial Compounds
- Author
-
Rodrigo Campos-Silva, Gaetano D’Urso, Olivier Delalande, Emmanuel Giudice, Alexandre José Macedo, and Reynald Gillet
- Subjects
antibiotics ,ribosome ,SmpB ,tmRNA ,trans-translation ,Biology (General) ,QH301-705.5 - Abstract
Because of the ever-increasing multidrug resistance in microorganisms, it is crucial that we find and develop new antibiotics, especially molecules with different targets and mechanisms of action than those of the antibiotics in use today. Translation is a fundamental process that uses a large portion of the cell’s energy, and the ribosome is already the target of more than half of the antibiotics in clinical use. However, this process is highly regulated, and its quality control machinery is actively studied as a possible target for new inhibitors. In bacteria, ribosomal stalling is a frequent event that jeopardizes bacterial wellness, and the most severe form occurs when ribosomes stall at the 3′-end of mRNA molecules devoid of a stop codon. Trans-translation is the principal and most sophisticated quality control mechanism for solving this problem, which would otherwise result in inefficient or even toxic protein synthesis. It is based on the complex made by tmRNA and SmpB, and because trans-translation is absent in eukaryotes, but necessary for bacterial fitness or survival, it is an exciting and realistic target for new antibiotics. Here, we describe the current and future prospects for developing what we hope will be a novel generation of trans-translation inhibitors.
- Published
- 2021
- Full Text
- View/download PDF
5. Computational study of the human dystrophin repeats: interaction properties and molecular dynamics.
- Author
-
Baptiste Legrand, Emmanuel Giudice, Aurélie Nicolas, Olivier Delalande, and Elisabeth Le Rumeur
- Subjects
Medicine ,Science - Abstract
Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.
- Published
- 2011
- Full Text
- View/download PDF
6. Structural insights into the binding of bS1 to the ribosome
- Author
-
Gaetano D’Urso, Sophie Chat, Reynald Gillet, Emmanuel Giudice, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Agence Nationale pour la Recherche, JPIAMR, Region Bretagne, CNRS, Rennes University, and ANR-18-JAM2-0005,RIBOTARGET(2018)
- Subjects
[SDV]Life Sciences [q-bio] ,Genetics - Abstract
The multidomain ribosomal protein bS1 is the biggest and the most flexible and dynamic protein in the 30S small subunit. Despite being essential for mRNA recruitment and its primary role in the accommodation of the start codon within the decoding centre, there has not yet been a high-resolution description of its structure. Here, we present a 3D atomic model of OB1 and OB2, bS1’s first two N-terminal domains, bound to an elongation-competent 70S ribosome. Our structure reveals that, as previously reported, bS1 is anchored both by a π-stacking to the 30S subunit and via a salt bridge with the Zn2+ pocket of bS1. These contacts are further stabilized by other interactions with additional residues on OB1. Our model also shows a new conformation of OB2, interacting with the Shine–Dalgarno portion of the mRNA. This study confirms that OB1 plays an anchoring role, but also highlights a novel function for OB2, which is directly involved in the modulation and support of mRNA binding and accommodation on the ribosome.
- Published
- 2023
- Full Text
- View/download PDF
7. Insights into the ribosomal trans ‐translation rescue system: lessons from recent structural studies
- Author
-
Gaetano D’Urso, Charlotte Guyomar, Sophie Chat, Emmanuel Giudice, Reynald Gillet, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Agence Nationale pour la Recherche, RIBOTARGET under the JPI AMR framework French National Research Agency (ANR) [18-JAM2-0005-03], French Direction Generale de l'Armement French National Research Agency (ANR), Universite de Rennes 1, European Union's ERASMUS+ program, Region Bretagne Region Bretagne, and ANR-18-JAM2-0005,RIBOTARGET(2018)
- Subjects
tmRNA ,ribosome ,[SDV]Life Sciences [q-bio] ,cryo-EM ,Cell Biology ,SmpB ,Molecular Biology ,Biochemistry ,trans-translation - Abstract
International audience; The arrest of protein synthesis caused when ribosomes stall on an mRNA lacking a stop codon is a deadly risk for all cells. In bacteria, this situation is remedied by the trans-translation quality control system. Trans-translation occurs because of the synergistic action of two main partners, transfer-messenger RNA (tmRNA) and small protein B (SmpB). These act in complex to monitor protein synthesis, intervening when necessary to rescue stalled ribosomes. During this process, incomplete nascent peptides are tagged for destruction, problematic mRNAs are degraded and the previously stalled ribosomes are recycled. In this 'Structural Snapshot' article, we describe the mechanism at the molecular level, a view updated after the most recent structural studies using cryo-electron microscopy.
- Published
- 2022
- Full Text
- View/download PDF
8. Structures of tmRNA and SmpB as they transit through the ribosome
- Author
-
Emmanuel Giudice, Sophie Chat, Reynald Gillet, Gaetano D’Urso, Charlotte Guyomar, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), This article is in memory of Professor Brice Felden. The authors gratefully acknowledge aid from the Agence Nationale pour la Recherche as part of the RIBOTARGET 18-JAM2-0005-03 project under the JPI AMR framework. Funding was also received from the French Direction Générale de l’Armement (C.G.), the Université de Rennes 1 (C.G.) and the European Union’s ERASMUS+ program (G.U.), as well as from the Région Bretagne (G.U.). Thanks are also due for electron microscope use at the Centre de Microscopie et d’Imagerie de Rennes (MRic), the EMBL Heidelberg Cryo-Electron Microscopy Service Platform and the Integrated Structural Biology platform of the Strasbourg Instruct-ERIC center IGBMC-CBI supported by FRISBI (ANR-10-INBS-0005-001)., ANR-18-JAM2-0005,RIBOTARGET(2018), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
- Subjects
Models, Molecular ,Science ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,Ribosome ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,0302 clinical medicine ,Protein Domains ,RNA, Transfer ,Escherichia coli ,RNA, Messenger ,Small protein B ,030304 developmental biology ,0303 health sciences ,Binding Sites ,Multidisciplinary ,Chemistry ,Escherichia coli Proteins ,Cryoelectron Microscopy ,RNA-Binding Proteins ,RNA ,Translation (biology) ,General Chemistry ,Ribosomal RNA ,Cell biology ,Elongation factor ,RNA, Bacterial ,Protein Biosynthesis ,Nucleic Acid Conformation ,Ribosomes ,030217 neurology & neurosurgery ,Protein Binding - Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation., Trans-translation, mediated by small protein B (SmpB) and transfer-messenger RNA (tmRNA), enables recycling of the ribosomes stalled on defective mRNAs in bacteria. Here, the authors report structures of the ribosome during trans-translation that reveal a translocation intermediate and elucidate the movements of the tmRNA-SmpB complex in the ribosome.
- Published
- 2021
- Full Text
- View/download PDF
9. First-in-class matrix anti-assembly peptide prevents staphylococcal biofilm in vitro and in vivo
- Author
-
Reynald Gillet, Aline Rigon Zimmer, Alexandre José Macedo, Rafael Gomes Von Borowski, Simone Cristina Baggio Gnoatto, Sylvie Nonin-Lecomte, Emmanuel Giudice, Rafael de Oliveira Schneider, Sophie Chat, Serge Bouaziz, Cibles Thérapeutiques et conception de médicaments (CiTCoM - UMR 8038), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
medicine.drug_class ,Antibiotics ,Peptide ,Matrix (biology) ,biofilm ,Microbiology ,resistance ,03 medical and health sciences ,Immune system ,In vivo ,medicine ,Extracellular ,030304 developmental biology ,2. Zero hunger ,chemistry.chemical_classification ,0303 health sciences ,tolerance ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,biology ,antibiofilm ,030306 microbiology ,Biofilm ,biology.organism_classification ,matrix ,chemistry ,peptides ,anti-assembly ,Bacteria - Abstract
Staphylococci are pathogenic biofilm-forming bacteria, source of multidrug-resistance and/or – tolerance causing a broad spectrum of infections. These bacteria are enclosed in a matrix that allows them to colonize medical devices such as catheters and tissue, and which protects against antibiotics and immune systems. Advances in antibiofilm strategies for targeting this matrix are therefore extremely relevant. Plants are constantly attacked by a wide range of pathogens, and have protective factors such as peptides to defend themselves. These peptides are common components in Capsicum peppers (CP). Here, we describe the development of CP bioinspired peptide “capsicumicine”. We demonstrate that capsicumicine strongly prevents methicillin-resistant S. epidermidis biofilm via a new extracellular “matrix anti-assembly” mechanism of action. Catheters pre-coated with capsicumicine decreased S. aureus colonization leading to the attenuation of infection, decreasing mice systemic infection. Capsicumicine is the first-in-class non-antibiotic, carbohydrate-binding peptide.
- Published
- 2020
- Full Text
- View/download PDF
10. Red pepper peptide coatings control Staphylococcus epidermidis adhesion and biofilm formation
- Author
-
Simone Cristina Baggio Gnoatto, Muriel Primon de Barros, Reynald Gillet, Aline Rigon Zimmer, Alexandre José Macedo, Rafael Gomes Von Borowski, Norberto Peporine Lopes, Cristiane Bernardes de Oliveira, Karine Rigon Zimmer, Emmanuel Giudice, Denise Brentan Silva, Charley Christian Staats, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), Universidade de São Paulo = University of São Paulo (USP), 303353/2016-3, Conselho Nacional de Desenvolvimento Científico e Tecnológico, PRONEM 16/2551-0000244-4, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, 88887.130212/2017-01, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Universidade Federal do Rio Grande do Sul, 2009/54098-6, Fundação de Amparo à Pesquisa do Estado de São Paulo, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Universidade de São Paulo (USP), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
- Subjects
medicine.drug_class ,Antibiotics ,Pharmaceutical Science ,Peptide ,02 engineering and technology ,030226 pharmacology & pharmacy ,Bacterial Adhesion ,Microbiology ,Coating ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,Coated Materials, Biocompatible ,Staphylococcus epidermidis ,Tandem Mass Spectrometry ,Cell Line, Tumor ,medicine ,Humans ,Pathogen ,chemistry.chemical_classification ,biology ,Chemistry ,Biofilm ,STAPHYLOCOCCUS ,Adhesion ,Staphylococcal Infections ,021001 nanoscience & nanotechnology ,biology.organism_classification ,HCT116 Cells ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Capsicum baccatum ,Antibiofilm ,3. Good health ,Anti-Bacterial Agents ,Biofilms ,PC-3 Cells ,MCF-7 Cells ,Antiadhesive ,0210 nano-technology ,Capsicum ,Peptides - Abstract
International audience; Medical devices (indwelling) have greatly improved healthcare. Nevertheless, infections related to the use of these apparatuses continue to be a major clinical concern. Biofilms form on surfaces after bacterial adhesion, and they function as bacterial reservoirs and as resistance and tolerance factors against antibiotics and the host immune response. Technological strategies to control biofilms and bacterial adhesion, such as the use of surface coatings, are being explored more frequently, and natural peptides may promote their development. In this study, we purified and identified antibiofilm peptides from Capsicum baccatum (red pepper) using chromatography-tandem mass spectrometry, MALDI-MS, MS/MS and bioinformatics. These peptides strongly controlled biofilm formation by Staphylococcus epidermidis, the most prevalent pathogen in device-related infections, without any antibiotic activity. Furthermore, natural peptide-coated surfaces dislayed effective antiadhesive proprieties and showed no cytotoxic effects against different representative human cell lines. Finally, we determined the lead peptide predicted by Mascot and identified CSP37, which may be useful as a prime structure for the design of new antibiofilm agents. Together, these results shed light on natural Capsicum peptides as a possible antiadhesive coat to prevent medical device colonization.
- Published
- 2019
- Full Text
- View/download PDF
11. Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions
- Author
-
Olivier Delalande, Angélique Chéron, Céline Raguénès-Nicol, Mirjam Czjzek, Arnaud Bondon, Christophe Tascon, Jean-François Hubert, Nicolas Ferey, Elisabeth Le Rumeur, Emmanuel Giudice, Aurélie Nicolas, Émeline Pollet, Marc Baaden, Javier Pérez, Raphael Dos Santos Morais, Marine Guilbaud, Pierre Roblin, Anne-Elisabeth Molza, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), European Synchrotron Radiation Facility (ESRF), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de recherche en Myologie – U974 SU-INSERM, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Laboratoire de biochimie théorique [Paris] (LBT (UPR_9080)), Institut de biologie physico-chimique (IBPC (FR_550)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Institut National de la Recherche Agronomique (INRA), Laboratoire de Biologie Intégrative des Modèles Marins (LBI2M), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Association Francaise Contre les Myopathies, AFM-Telethon, Conseil Regional de Bretagne, RTR Biologie-Sante of the Universite Europeenne de Bretagne, Grand Equipement National de Calcul Intensif-GENCI Program (DYSIM Project), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche en myologie, Université Pierre et Marie Curie - Paris 6 (UPMC)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), AP-HP - Hôpital Cochin Broca Hôtel Dieu [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Delalande, Olivier, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Unité de Recherche sur les Biopolymères leurs Interactions et Assemblages (URBIA), Sorbonne Universités, Institut de recherche en santé, environnement et travail (Irset), Université d'Angers (UA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Biochimie et Génétique Moléculaire, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Cochin [AP-HP], Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff (SBR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Jonchère, Laurent
- Subjects
0301 basic medicine ,Reading Frames ,multiresolution modeling ,Duchenne muscular dystrophy ,[SDV]Life Sciences [q-bio] ,small-angle X-ray scattering (SAXS) ,Small angle X-ray scattering ,Nitric Oxide Synthase Type I ,Biochemistry ,Exon ,0302 clinical medicine ,dystrophin central domain ,X-Ray Diffraction ,dystrophin ,molecular docking ,muscular dystrophy ,nitric oxide synthase ,Becker muscular dystrophy ,Spectrin ,Muscular dystrophy ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Molecular Bases of Disease ,Exons ,musculoskeletal system ,Phenotype ,Cell biology ,Nitric oxide synthase ,Molecular Docking Simulation ,Solutions ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,medicine.symptom ,Dystrophin ,Muscle contraction ,musculoskeletal diseases ,congenital, hereditary, and neonatal diseases and abnormalities ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,03 medical and health sciences ,Protein Domains ,Scattering, Small Angle ,medicine ,Humans ,Molecular Biology ,Binding Sites ,neuronal Nitric Oxide Synthase ,Cell Biology ,medicine.disease ,Muscular Dystrophy, Duchenne ,030104 developmental biology ,multi resolution modeling ,biology.protein ,030217 neurology & neurosurgery ,Gene Deletion - Abstract
International audience; Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45–47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD
- Published
- 2018
- Full Text
- View/download PDF
12. La synthèse des protéines par le ribosome
- Author
-
Reynald Gillet, Emmanuel Giudice, and Kevin Macé
- Subjects
0303 health sciences ,030306 microbiology ,Cell ,RNA ,General Medicine ,Computational biology ,Biology ,Ribosome ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,medicine.anatomical_structure ,medicine ,Protein biosynthesis ,Small protein B ,030304 developmental biology - Abstract
La synthèse des protéines, également appelée traduction, est assurée dans chaque cellule par des machines moléculaires très sophistiquées : les ribosomes. Compte tenu de l’immense quantité de données biologiques à traiter, il arrive régulièrement que ces machines se bloquent et mettent en péril la survie de la cellule. Chez les bactéries, le principal processus de sauvetage des ribosomes bloqués est la trans-traduction. Il est assuré par un acide ribonucléique (ARN) hybride, l’ARN transfert-messager (ARNtm), associé à une petite protéine basique, SmpB (small protein B). Plusieurs autres systèmes de contrôle qualité ont récemment été mis en évidence, révélant un réseau de maintien de la survie cellulaire très sophistiqué. Cette machinerie du contrôle qualité de la synthèse protéique est une cible très prometteuse pour le développement de futurs antibiotiques.
- Published
- 2015
- Full Text
- View/download PDF
13. A Genetic Tool to Quantify trans-Translation Activity in Vivo
- Author
-
Renan Goude, Kevin Macé, Carlos Blanco, Reynald Gillet, Emmanuel Giudice, Sylvie Georgeault, Gwennola Ermel, Annie Trautwetter, Charlotte Guyomar, Fanny Demay, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Institut Universitaire de France, ANR-14-ASTR-0001, Agence Nationale pour la Recherche, the Direction Générale de l'Armement, ANR-14-ASTR-0001,antibio,Une nouvelle classe d'antibiotiques inhibiteurs de la trans-traduction bactérienne(2014), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
- Subjects
0301 basic medicine ,tmRNA ,medicine.medical_treatment ,Proteolysis ,Mutant ,Messenger ,Biology ,Ribosome ,antibiotics ,03 medical and health sciences ,Bacterial Proteins ,Structural Biology ,In vivo ,medicine ,RNA, Messenger ,Molecular Biology ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Protease ,medicine.diagnostic_test ,Bacteria ,screening ,Bacterial ,RNA ,RNA-Binding Proteins ,Translation (biology) ,RNA, Bacterial ,030104 developmental biology ,Biochemistry ,ribosome ,Protein Biosynthesis ,fluorescence ,Ribosomes ,Trans-translation - Abstract
International audience; In bacteria, trans-translation is the main quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a critical role in the viability and virulence of many pathogens. We developed a reliable in vivo double-fluorescence reporter system for the simultaneous quantification of both trans-translation and the associated proteolysis activities in bacteria. The assay was validated using mutant bacteria lacking tmRNA, SmpB, and the ClpP protease. Both antisense tmRNA-binding RNA and a peptide mimicking the SmpB C-terminal tail proved to be potent inhibitors of trans-translation in vivo. The double-fluorescent reporter was also tested with KKL-35, an oxadiazole derivative that is supposed to be a promising trans-translation inhibitor, and it surprisingly turns out that trans-translation is not the only target of KKL-35 in vivo.
- Published
- 2017
- Full Text
- View/download PDF
14. Molecular Clues about the Dystrophin–Neuronal Nitric Oxide Synthase Interaction: A Theoretical Approach
- Author
-
Aurélie Nicolas, Anne-Elisabeth Molza, Elisabeth Le Rumeur, Olivier Delalande, Yoann Laurin, Emmanuel Giudice, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Structures et interactions moléculaires, Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
- Subjects
musculoskeletal diseases ,Amino Acid Motifs ,MESH: Protein Structure, Secondary ,MESH: Nitric Oxide Synthase Type I ,Nitric Oxide Synthase Type I ,Molecular Dynamics Simulation ,Biology ,Biochemistry ,Protein Structure, Secondary ,Dystrophin ,MESH: Amino Acid Motifs ,03 medical and health sciences ,0302 clinical medicine ,MESH: Dystrophin ,In vivo ,Utrophin ,MESH: Protein Binding ,Humans ,Myocyte ,MESH: Molecular Dynamics Simulation ,Homology modeling ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,030304 developmental biology ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,0303 health sciences ,MESH: Humans ,Protein superfamily ,musculoskeletal system ,In vitro ,Cell biology ,Cytosol ,biology.protein ,030217 neurology & neurosurgery ,Protein Binding - Abstract
International audience; Dystrophin is a large skeletal muscle protein located at the internal face of the plasma membrane and interacting with membrane phospholipids and a number of cytosolic proteins. Binding of neuronal nitric oxide synthase (nNOS) to dystrophin appears to be crucial for exercise-induced increases in blood supply in muscle cells. By contrast, utrophin, the developmental homologous protein of dystrophin, does not display nNOS interaction. Recent in vitro and in vivo experiments showed that the dystrophin region involved in nNOS binding is located in spectrin-like repeats R16 and R17 of its filamentous central domain. Using homology modeling and atomistic molecular dynamics simulation, we compared the structural organization and surface potentials of dystrophin, utrophin, and chimeric fragments, thus revisiting the dystrophin-nNOS binding region. Our simulation results are in good agreement with experimental data. They provide a three-dimensional representation of the repeats and give insight into the molecular organization of the regions involved in dystrophin-nNOS interaction. This study also further elucidates the physical properties crucial for this interaction, particularly the presence of a large hydrophobic patch. These results will be helpful to improving our understanding of the phenotypic features of patients bearing mutations in the nNOS-binding region of dystrophin.
- Published
- 2013
- Full Text
- View/download PDF
15. The task force that rescues stalled ribosomes in bacteria
- Author
-
Reynald Gillet, Emmanuel Giudice, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Institut universitaire de France, Martin, Clémence, Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
- Subjects
Ribosomal Proteins ,tmRNA ,translation ,Biology ,Models, Biological ,Biochemistry ,Ribosome ,trans-translation ,03 medical and health sciences ,Bacterial Proteins ,RNA, Transfer ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Protein biosynthesis ,Initiation factor ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,RNA, Messenger ,quality control ,Molecular Biology ,stalling ,030304 developmental biology ,Genetics ,0303 health sciences ,Task force ,030302 biochemistry & molecular biology ,RNA-Binding Proteins ,Translation (biology) ,biology.organism_classification ,Cell biology ,Elongation factor ,RNA, Bacterial ,ribosome ,Protein Biosynthesis ,Ribosomes ,Bacteria ,Trans-translation - Abstract
International audience; In bacteria, the main quality control mechanism for rescuing ribosomes that have arrested during translation is trans-translation, performed by transfer-mRNA (tmRNA) associated with small protein B (SmpB). Intriguingly, this very elegant mechanism is not always necessary to maintain cell viability, suggesting the existence of alternatives. Other rescue systems have recently been discovered, revealing a far more complicated story than expected. These include the alternative ribosome rescue factors ArfA and ArfB, the elongation factors EF4 and EF-P, the peptidyl-tRNA hydrolase Pth, and several protein synthesis factors. These discoveries make it possible to describe a large network of factors dedicated to ribosome rescue, thus ensuring cell survival during stresses that induce ribosome stalling.
- Published
- 2013
- Full Text
- View/download PDF
16. Structural organization of the polysomes adjacent to mammalian processing bodies (P-bodies)
- Author
-
Reynald Gillet, Emmanuel Giudice, Annie Cavalier, Anne-Elisabeth Molza, Daniel Thomas, Nicolas Cougot, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Touya, Véronique, and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
Electron Microscope Tomography ,RNA Stability ,mRNA ,Eukaryotic Initiation Factor-4E ,electron tomography ,[SDV.GEN] Life Sciences [q-bio]/Genetics ,Biology ,Cytoplasmic Granules ,Ribosome ,RNA Transport ,ribosomes ,03 medical and health sciences ,Polysome ,P-bodies ,Protein biosynthesis ,Humans ,Initiation factor ,RNA, Messenger ,Molecular Biology ,030304 developmental biology ,polysomes ,Regulation of gene expression ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,0303 health sciences ,030302 biochemistry & molecular biology ,Translation (biology) ,Cell Biology ,initiation ,Cell biology ,Polyribosomes ,Protein Biosynthesis ,Eukaryotic Initiation Factor-4G ,HeLa Cells ,Research Paper - Abstract
International audience; A finely tuned balance of translation, storage and decay of mRNAs (mRNAs) is important for the regulation of gene expression. In eukaryotic cells, this takes place in dynamic cytoplasmic RNA-protein granules termed Processing bodies (P-bodies). In this study, by using immunoelectron tomography, 3D modeling and template matching, we analyze the size and the organization of the polysomes in the vicinity of human P-bodies. Our results show the presence of several polysomes that are compatible with a translational activity around P-bodies. Therefore, movement of mRNAs between polysomes and P-bodies can take place when the two compartments are in close contact. The presence of initiation factors in the proximity of P-bodies also suggests that translation of mRNAs can resume at the periphery of these granules.
- Published
- 2013
- Full Text
- View/download PDF
17. Structure of an elongation factor G-ribosome complex captured in the absence of any inhibitor
- Author
-
Kevin Mace, Sophie Chat, Daniel Thomas, Emmanuel Giudice, and Reynald Gillet
- Published
- 2016
- Full Text
- View/download PDF
18. Mechanism of eIF6 release from the nascent 60S ribosomal subunit
- Author
-
David Traynor, Alan J. Warren, Emmanuel Giudice, Li Jin, Robert R. Kay, Christine Hilcenko, Mark J. Churcher, Chi C. Wong, Felix Weis, Department of Haematology, University of Cambridge [UK] (CAM), Cambridge Institute for Medical Research (CIMR), Medical Research Council Laboratory of Molecular Biology, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), The Wellcome Trust Sanger Institute [Cambridge], Supported by a Federation of European Biochemical Societies Long termFellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), theMedical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK),Wellcome Trust strategic award to the Cambridge Institute for Medal Research[100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHRBiomedical Research Centre., Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Jonchère, Laurent, Hilcenko, Christine [0000-0002-9596-7833], Warren, Alan [0000-0001-9277-4553], and Apollo - University of Cambridge Repository
- Subjects
Models, Molecular ,Protein subunit ,[SDV]Life Sciences [q-bio] ,Molecular Conformation ,Protozoan Proteins ,Diseases ,Biology ,Ribosome ,Models, Biological ,GTP Phosphohydrolases ,03 medical and health sciences ,0302 clinical medicine ,Structural Biology ,Eukaryotic initiation factor ,Humans ,Dictyostelium ,Eukaryotic Initiation Factors ,Peptide Chain Initiation, Translational ,Molecular Biology ,Ribonucleoprotein, U5 Small Nuclear ,030304 developmental biology ,Cancer ,0303 health sciences ,Eukaryotic Large Ribosomal Subunit ,Cryoelectron Microscopy ,Proteins ,Ribosomal RNA ,SBDS ,Ribosome Subunits, Large, Eukaryotic ,Peptide Elongation Factors ,Molecular biology ,Cell biology ,[SDV] Life Sciences [q-bio] ,EIF6 ,Ribosome Subunits ,030220 oncology & carcinogenesis ,RNA - Abstract
International audience; SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.
- Published
- 2015
- Full Text
- View/download PDF
19. [Protein synthesis by the ribosome: a pathway full of pitfalls]
- Author
-
Kevin, Macé, Emmanuel, Giudice, and Reynald, Gillet
- Subjects
Protein Synthesis Inhibitors ,Quality Control ,Time Factors ,Protein Biosynthesis ,Codon, Terminator ,Animals ,Humans ,Molecular Targeted Therapy ,RNA, Messenger ,Ribosomes ,Metabolic Networks and Pathways - Abstract
Protein synthesis is accomplished through a process known as translation and is carried out by the ribosome, a large macromolecular complex found in every living organism. Given the huge amount of biological data that must be deciphered, it is not uncommon for ribosomes to regularly stall during the process of translation. Any disruption of this finely tuned process will jeopardize the viability of the cell. In bacteria, the main quality-control mechanism for rescuing ribosomes that undergo arrest during translation is trans-translation, which is performed by transfer-messenger RNA (tmRNA) in association with small protein B (SmPB). However, other rescue systems have been discovered recently, revealing a far more complicated network of factors dedicated to ribosome rescue. These discoveries make it possible to consider inhibition of these pathways as a very promising target for the discovery of new antibiotics.
- Published
- 2015
20. Becker muscular dystrophy severity is linked to the structure of dystrophin
- Author
-
Aurélie Nicolas, Céline Raguénès-Nicol, Rabah Ben Yaou, Sarah Ameziane-Le Hir, Angélique Chéron, Véronique Vié, Mireille Claustres, France Leturcq, Olivier Delalande, Jean-François Hubert, Sylvie Tuffery-Giraud, Emmanuel Giudice, Elisabeth Le Rumeur, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Thérapie des maladies du muscle strié, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), CHU Montpellier, Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Université Montpellier 1 (UM1), Laboratoire de génétique des maladies rares. Pathologie moleculaire, etudes fonctionnelles et banque de données génétiques (LGMR), Université Montpellier 1 (UM1)-IFR3, Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Service de biochimie et de génétique moléculaire [CHU Cochin], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Cochin [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), IFR3, and Université Montpellier 1 (UM1)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Adult ,Cardiomyopathy, Dilated ,Models, Molecular ,musculoskeletal diseases ,Reading Frames ,Adolescent ,Becker's muscular dystrophy ,Duchenne muscular dystrophy ,[SDV]Life Sciences [q-bio] ,Cardiomyopathy ,Biology ,Protein Structure, Secondary ,Dystrophin ,Young Adult ,03 medical and health sciences ,Exon ,0302 clinical medicine ,Protein structure ,Genetics ,medicine ,Humans ,Cloning, Molecular ,Allele ,Muscular dystrophy ,Molecular Biology ,Alleles ,Genetics (clinical) ,Aged ,Retrospective Studies ,Sequence Deletion ,030304 developmental biology ,Aged, 80 and over ,0303 health sciences ,Exons ,General Medicine ,Middle Aged ,medicine.disease ,Molecular biology ,Muscular Dystrophy, Duchenne ,Gene Expression Regulation ,Disease Progression ,biology.protein ,Hydrophobic and Hydrophilic Interactions ,030217 neurology & neurosurgery - Abstract
International audience; In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e. Δ45-47, Δ45-48, Δ45-49 and Δ45-51. Molecular homology modelling revealed that the proteins corresponding to deletions Δ45-48 and Δ45-51 displayed a similar structure (hybrid repeat) than the wild-type dystrophin, whereas deletions Δ45-47 and Δ45-49 lead to proteins with an unrelated structure (fractional repeat). All four proteins in vitro expressed in a fragment encoding repeats 16-21 were folded in α-helices and remained highly stable. Refolding dynamics were slowed and molecular surface hydrophobicity were higher in fractional repeat containing Δ45-47 and Δ45-49 deletions compared with hybrid repeat containing Δ45-48 and Δ45-51 deletions. By retrospectively collecting data for a series of French BMD patients, we showed that the age of dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in Δ45-48 and Δ45-49 compared with Δ45-47 patients, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ45-47 and Δ45-49 patients compared with Δ45-48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site.
- Published
- 2015
- Full Text
- View/download PDF
21. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations
- Author
-
Emmanuel Giudice, Péter Várnai, Richard Lavery, and Deleage, Gilbert
- Subjects
Binding Sites ,Pyrimidine ,Base pair ,Hoogsteen base pair ,Water ,Hydrogen Bonding ,Articles ,DNA ,Biology ,Oligomer ,chemistry.chemical_compound ,Crystallography ,Molecular dynamics ,chemistry ,Biochemistry ,Duplex (building) ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Genetics ,Nucleic Acid Conformation ,Thermodynamics ,Computer Simulation ,Umbrella sampling ,Base Pairing - Abstract
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)* d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)* d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.
- Published
- 2003
- Full Text
- View/download PDF
22. Analysis of peptide rotational diffusion by homonuclear NMR
- Author
-
Emmanuel Giudice and Thérèse E. Malliavin
- Subjects
Models, Molecular ,Magnetic Resonance Spectroscopy ,Hydrocarbons, Fluorinated ,Biophysics ,Peptide ,Nuclear Overhauser effect ,Peptides, Cyclic ,Biochemistry ,Homonuclear molecule ,Diffusion ,Biomaterials ,Molecular dynamics ,Nuclear magnetic resonance ,Molecule ,Spectroscopy ,Conformational isomerism ,chemistry.chemical_classification ,Chemistry ,Organic Chemistry ,Water ,Rotational diffusion ,General Medicine ,Anti-Bacterial Agents ,Anisotropy ,Peptides ,Protein Binding - Abstract
The analysis of the rotational diffusion of a molecule using homonuclear NMR is investigated. The homonuclear longitudinal and transverse cross-relaxation rates, which can be quantitatively measured using off-Resonance Rotating frame nuclear Overhauser Effect Spectroscopy (ROESY), are used to build a distribution, which exhibits a solid-state-like pattern characteristic of the diffusion tensor. The distributions of the antimicrobial peptide ranalexin in water and in 30% of trifluoracetic acid (TFE) are compared, and the peptide rotational diffusion is shown to be more isotropic in water than in 30% TFE. This difference is further supported by the analysis of NMR ranalexin conformers in 30% TFE, and by the analysis of a molecular dynamics simulation of peptide in water.
- Published
- 2002
- Full Text
- View/download PDF
23. Trans-translation exposed: understanding the structures and functions of tmRNA-SmpB
- Author
-
Reynald Gillet, Kevin Macé, Emmanuel Giudice, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), the Agence Nationale pour la Recherche (ANR-08JCJC-0027-01 and ANR-09-MIE) and the Institut Universitaire de France., and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
Microbiology (medical) ,Genetics ,tmRNA ,lcsh:QR1-502 ,Translation (biology) ,Computational biology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Review Article ,Biology ,SmpB ,Ribosome ,Microbiology ,lcsh:Microbiology ,trans-translation ,ribosome ,structure ,Cell survival ,Small protein B ,Trans-translation - Abstract
International audience; Ribosome stalling is a serious issue for cell survival. In bacteria, the primary rescue system is trans-translation, performed by tmRNA and its protein partner small protein B (SmpB). Since its discovery almost 20 years ago, biochemical, genetic, and structural studies have paved the way to a better understanding of how this sophisticated process takes place at the cellular and molecular levels. Here we describe the molecular details of trans-translation, with special mention of recent cryo-electron microscopy and crystal structures that have helped explain how the huge tmRNA-SmpB complex targets and delivers stalled ribosomes without interfering with canonical translation.
- Published
- 2014
- Full Text
- View/download PDF
24. Bacterial trans-Translation: From Functions to Applications
- Author
-
Reynald Gillet, Emmanuel Giudice, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
Genetics ,0303 health sciences ,Messenger RNA ,[SDV]Life Sciences [q-bio] ,030302 biochemistry & molecular biology ,5.8S ribosomal RNA ,RNA ,Translation (biology) ,Biology ,Ribosome ,Cell biology ,03 medical and health sciences ,Ribosome profiling ,Cell survival ,Trans-translation ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology - Abstract
Ribosome stalling is a serious issue for cell survival. In bacteria, the primary rescue system is trans-translation, performed by transfer-messenger RNA (tmRNA) and its protein partner small protein B (SmpB). This multitask process releases the stalled ribosomes while destroying the faulty protein and messenger RNA (mRNA). In this chapter, the cellular and molecular details of trans-translation are described, with special mention of technological developments and potential therapeutics suggested by the process. Keywords: Ribosome; Ribosome stalling; SmpB; tmRNA; Trans -translation
- Published
- 2014
- Full Text
- View/download PDF
25. Energetic and Conformational Aspects of A:T Base-Pair Opening within the DNA Double Helix
- Author
-
Richard Lavery, Emmanuel Giudice, Péter Várnai, and Deleage, Gilbert
- Subjects
Base pair ,Hydrogen bond ,Stereochemistry ,Solvation ,Stacking ,Hydrogen Bonding ,DNA ,Molecular Dynamics Simulation ,Atomic and Molecular Physics, and Optics ,Thymine ,chemistry.chemical_compound ,Crystallography ,Molecular dynamics ,chemistry ,Helix ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Nucleic Acid Conformation ,Thermodynamics ,A-DNA ,Physical and Theoretical Chemistry ,Base Pairing - Abstract
Free energy profiles of opening of a centrally placed A:T pair within a DNA oligomer exhibits two regimes: Elastic deformation due to hydrogen bond rupture and a roughly linear region due to loss of stacking and solvation. Thymine opens equally easily into the minor and major grooves, while adenine favors the major groove direction. No significant variations from canonical backbone conformations were observed; however base opening induces considerable changes in surrounding solvent distribution, leading finally to a water channel which passes through the double helix.
- Published
- 2001
- Full Text
- View/download PDF
26. Analysis of alkenes by copper ion chemical ionization gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry
- Author
-
J.-P. Morizur, Jeanine Tortajada, J. Chamot-Rooke, Emmanuel Giudice, and P. J. Fordham
- Subjects
Chemical ionization ,Gas Chromatography/Tandem Mass Spectrometry ,Collision-induced dissociation ,Chemistry ,Analytical chemistry ,Atmospheric-pressure chemical ionization ,Fast atom bombardment ,Thermal ionization mass spectrometry ,Mass spectrometry ,Spectroscopy ,Ion source - Abstract
A novel chemical ionization/fast atom bombardment (CI/FAB) source was used to analyse alkenes by chemical ionization mass spectrometry (CI-MS) using copper ions as the ionizing agent. The Cu(+)-CI mass spectra showed abundant pseudomolecular adduct ions [alkene-Cu](+) and characteristic fragment ions. Mass-analysed ion kinetic energy spectroscopy was used to study the product ions resulting from the decomposition of adduct ions and to eliminate background interferences derived from the copper ions. The major fragmentations permitted the localization of double bonds and minor fragments allowed the differentiation of alkene isomers. The CI/FAB source was coupled to a gas chromatograph and simple and complex mixtures of octene isomers were analysed by gas chromatography (GC)/Cu(+)-CI-MS and GC/Cu(+)-CI-MS/MS. Copyright 1999 John Wiley & Sons, Ltd.
- Published
- 1999
- Full Text
- View/download PDF
27. Visualizing Compaction of Polysomes in Bacteria
- Author
-
Jérémy Delesques, Annie Cavalier, Anne-Elisabeth Molza, Jean-Paul Rolland, Emmanuel Giudice, Reynald Gillet, Gwennola Ermel, Carlos Blanco, Daniel Thomas, Nicolas Cougot, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Microbiologie : Risques Infectieux, Université de Rennes (UR)-CHU Pontchaillou [Rennes]-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Université de Rennes - UFR d'Odontologie (UR Odontologie), Université de Rennes (UR)-Université de Rennes (UR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-Faculté de Chirurgie Dentaire de Rennes-Faculté d'Odontologie-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
tmRNA ,Electron Microscope Tomography ,BSA ,Macromolecular Substances ,mRNA ,RT-PCR ,electron tomography ,Biology ,Ribosome ,03 medical and health sciences ,Imaging, Three-Dimensional ,reverse transcription PCR ,Structural Biology ,Polysome ,bovine serum albumin ,transmission electron microscopy ,Escherichia coli ,Protein biosynthesis ,RNA, Messenger ,GST ,Molecular Biology ,030304 developmental biology ,Polyproline helix ,glutathione S-transferase ,polysomes ,0303 health sciences ,Messenger RNA ,030302 biochemistry & molecular biology ,RNA ,transfer-messenger RNA ,Ribosomal RNA ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Cell biology ,Biochemistry ,ribosome ,Polyribosomes ,Protein Biosynthesis ,TEM ,Peptides ,three dimensional ,Transfer-messenger RNA ,3D - Abstract
International audience; During protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses. In Escherichia coli, we overexpressed an mRNA carrying a polyproline motif known to induce pausing during translation. When working with a strain lacking transfer-messenger RNA, the principle actor in the "trans-translation" rescuing system, the cells survived the hijacking of the translation machinery but this resulted in a sharp modification of the ribosomal network. The results of our experiments demonstrate that single ribosomes are replaced with large amounts of compacted polysomes. These polysomes are highly organized, principally forming hairpins and dimers of hairpins that stack together. We propose that these spatial arrangements help maintain translation efficiency when the rescue systems are absent or overwhelmed.
- Published
- 2013
- Full Text
- View/download PDF
28. Importance of viral genomic composition in modulating glycoprotein content on the surface of influenza virus particles
- Author
-
Jean-Paul Rolland, Christine Moriscot, Emmanuel Giudice, Bruno Lina, Vincent Moules, Olivier Terrier, Guy Schoehn, Emilie Frobert, Thomas Julien, M. Bouscambert-Duchamp, Yi Pu Lin, Béatrice Riteau, Olivier Ferraris, Alan J. Hay, Daniel Thomas, Alexandra Erny, Matthieu Yver, Manuel Rosa-Calatrava, Virologie et pathologie humaine (VirPath), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Inserm European Associated Laboratory, University of Dundee, Unit for Virus Host-Cell Interactions [Grenoble] (UVHCI), Centre National de la Recherche Scientifique (CNRS)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Interactions cellulaires et moléculaires (ICM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), World Health Organization Collaborating Centre Medical Research Council/National Institute of Medical Research, CNRS, Virologie et pathologie humaine ( VirPath ), Université Claude Bernard Lyon 1 ( UCBL ), Unit of Virus Host Cell Interactions ( UVHCI ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de biologie structurale ( IBS - UMR 5075 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Interactions cellulaires et moléculaires ( ICM ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -IFR140-Centre National de la Recherche Scientifique ( CNRS ), Université Joseph Fourier - Grenoble 1 (UJF)-European Molecular Biology Laboratory [Grenoble] (EMBL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
MESH : Cell Line ,viruses ,Hemagglutinin Glycoproteins, Influenza Virus ,law.invention ,MESH: Dogs ,Influenza A Virus, H1N1 Subtype ,MESH : Dogs ,law ,Virus Components ,MESH: Animals ,MESH : Neuraminidase ,MESH : Viral Proteins ,chemistry.chemical_classification ,0303 health sciences ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,030302 biochemistry & molecular biology ,Spike density ,MESH: Hemagglutinin Glycoproteins, Influenza Virus ,MESH: Neuraminidase ,Neuraminidase (NA) ,Orthomyxoviridae ,Cryo-electron microscopy (cryo-EM) ,MESH : Influenza A Virus, H1N1 Subtype ,MESH : RNA Replicase ,Recombinant DNA ,MESH: Virion ,MESH: Cryoelectron Microscopy ,MESH: RNA Replicase ,MESH : Influenza A Virus, H3N2 Subtype ,Neuraminidase ,MESH: Influenza A Virus, H3N2 Subtype ,Virus ,Cell Line ,MESH: Influenza A Virus, H1N1 Subtype ,Viral Proteins ,03 medical and health sciences ,Dogs ,Virology ,MESH : Virion ,Animals ,Humans ,Polymerase Gene ,Haemagglutinin (HA) ,030304 developmental biology ,MESH: Humans ,Host (biology) ,Influenza A Virus, H3N2 Subtype ,Cryoelectron Microscopy ,MESH : Humans ,Virion ,MESH : Cryoelectron Microscopy ,RNA-Dependent RNA Polymerase ,biology.organism_classification ,MESH: Viral Proteins ,Influenza ,Viral glycoprotein ,MESH: Cell Line ,MESH : Hemagglutinin Glycoproteins, Influenza Virus ,chemistry ,MESH : Animals ,Glycoprotein ,[ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] - Abstract
International audience; Despite progress in our knowledge of the internal organisation of influenza virus particles, little is known about the determinants of their morphology and, more particularly, of the actual abundance of structural proteins at the virion level. To address these issues, we used cryo-EM to focus on viral (and host) factors that might account for observed differences in virion morphology and characteristics such as size, shape and glycoprotein (GP) spike density. Twelve recombinant viruses were characterised in terms of their morphology, neuraminidase activity and virus growth. The genomic composition was shown to be important in determining the GP spike density. In particular, polymerase gene segments and especially PB1/PB2 were shown to have a prominent influence in addition to that for HA in determining GP spike density, a feature consistent with a functional link between these virus components important for virus fitness.
- Published
- 2011
- Full Text
- View/download PDF
29. tmRNA-SmpB: a journey to the centre of the bacterial ribosome
- Author
-
Felix Weis, Brice Felden, Patrick Bron, Reynald Gillet, Daniel Thomas, Emmanuel Giudice, Jean-Paul Rolland, Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Fonction, structure et inactivation d'ARN bactériens, Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre de Biochimie Structurale [Montpellier] (CBS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ANR : ANR-08JCJC-0027-01 ANR-09-MIE Ministere de l'Enseignement Superieur et de la Recherche, ANR-08-JCJC-0027,tmRNA,Structural analysis of the late steps of trans-translation by means of cryo-electron microscopy(2008), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), De Villemeur, Hervé, and Jeunes chercheuses et jeunes chercheurs - Structural analysis of the late steps of trans-translation by means of cryo-electron microscopy - - tmRNA2008 - ANR-08-JCJC-0027 - JCJC - VALID
- Subjects
tmRNA ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,cryo-electron microscopy ,MESH: Thermus thermophilus ,Biology ,MESH: Base Sequence ,Ribosome ,General Biochemistry, Genetics and Molecular Biology ,trans-translation ,03 medical and health sciences ,MESH: Protein Conformation ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Protein biosynthesis ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Ribosome profiling ,Molecular Biology ,MESH: Bacterial Proteins ,030304 developmental biology ,0303 health sciences ,Messenger RNA ,MESH: Molecular Sequence Data ,General Immunology and Microbiology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,General Neuroscience ,030302 biochemistry & molecular biology ,RNA ,Ribosomal RNA ,SmpB ,Cell biology ,MESH: RNA-Binding Proteins ,MESH: Nucleic Acid Conformation ,Biochemistry ,ribosome ,MESH: Protein Biosynthesis ,MESH: Cryoelectron Microscopy ,Eukaryotic Ribosome ,MESH: RNA, Bacterial ,MESH: Ribosomes ,Trans-translation ,MESH: Models, Molecular - Abstract
International audience; Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.
- Published
- 2010
- Full Text
- View/download PDF
30. In vitro characterization of naturally occurring influenza H3NA- viruses lacking the NA gene segment: toward a new mechanism of viral resistance?
- Author
-
E. Fournier, Daniel Thomas, Matthieu Yver, C. Boule, Vincent Moules, Emmanuel Giudice, Manuel Rosa-Calatrava, Bruno Lina, Corinne Bergeron, Roland Marquet, Nadia Naffakh, Guy Schoehn, Yi Pu Lin, Alan Hay, Martine Valette, Aurélien Traversier, Olivier Ferraris, A. Rivoire, M. Bouscambert-Duchamp, Michèle Ottmann, Jean-Paul Rolland, Olivier Terrier, Virologie et Pathologie Humaine ( VirPath ), École normale supérieure - Lyon ( ENS Lyon ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactions cellulaires et moléculaires ( ICM ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -IFR140-Centre National de la Recherche Scientifique ( CNRS ), Architecture et Réactivité de l'ARN ( ARN ), Institut de biologie moléculaire et cellulaire ( IBMC ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Génétique moléculaire des virus à ARN, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Institut de biologie structurale ( IBS - UMR 5075 ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Virologie et Pathologie Humaine (VirPath), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075 ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,viral resistance ,Protein Conformation ,viruses ,neuraminidase ,medicine.disease_cause ,Virus Replication ,Influenza A virus ,Enzyme Inhibitors ,chemistry.chemical_classification ,0303 health sciences ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,virus diseases ,Orthomyxoviridae ,3. Good health ,influenza ,Gene Expression Regulation, Viral ,Hemagglutinin (influenza) ,Antiviral Agents ,Gene Expression Regulation, Enzymologic ,Cell Line ,03 medical and health sciences ,Dogs ,Oseltamivir ,Virology ,Drug Resistance, Viral ,medicine ,Animals ,Humans ,Amino Acid Sequence ,hemagglutinin ,Gene ,030304 developmental biology ,030306 microbiology ,Influenza A Virus, H3N2 Subtype ,Cryoelectron Microscopy ,Virion ,biology.organism_classification ,Reverse genetics ,Viral replication ,chemistry ,biology.protein ,cryo-EM ,Glycoprotein ,Neuraminidase ,Sequence Alignment ,[ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] - Abstract
International audience; Among a panel of 788 clinical influenza H3N2 isolates, two isolates were characterized by an oseltamivir-resistant phenotype linked to the absence of any detectable NA activity. Here, we established that the two H3NA- isolates lack any detectable full-length NA segment, and one of these could be rescued by reverse genetics in the absence of any NA segment sequence. We found that the absence of NA segment induced a moderate growth defect of the H3NA- viruses as on cultured cells. The glycoproteins density at the surface of H3NA- virions was unchanged as compared to H3N2 virions. The HA protein as well as residues 188 and 617 of the PB1 protein were shown to be strong determinants of the ability of H3NA- viruses to grow in the absence of the NA segment. The significance of these findings about naturally occurring seven-segment influenza A viruses is discussed.
- Published
- 2010
- Full Text
- View/download PDF
31. ChemInform Abstract: Simulations of Nucleic Acids and Their Complexes
- Author
-
Richard Lavery and Emmanuel Giudice
- Subjects
Molecular dynamics ,chemistry.chemical_compound ,Biochemistry ,chemistry ,Nucleic acid ,RNA ,Base sequence ,General Medicine ,DNA - Abstract
Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.
- Published
- 2010
- Full Text
- View/download PDF
32. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers
- Author
-
Alexis Nazabal, Diane Allegro, Cyrille Garnier, Laura Moullintraffort, Pascale Barbier, Franck Zal, Matthieu Bruneaux, Emmanuel Giudice, Vincent Peyrot, Daniel Thomas, Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Adaptation et diversité en milieu marin (AD2M), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches en Oncologie biologique et Oncopharmacologie (CRO2), Aix Marseille Université (AMU)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Santé et de la Recherche Médicale (INSERM)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Aix Marseille Université (AMU)
- Subjects
Swine ,Size-exclusion chromatography ,Random hexamer ,Biochemistry ,Oligomer ,03 medical and health sciences ,chemistry.chemical_compound ,Biopolymers ,0302 clinical medicine ,Protein structure ,Microscopy, Electron, Transmission ,Tetramer ,Heat shock protein ,Animals ,Magnesium ,HSP90 Heat-Shock Proteins ,Molecular Biology ,Chromatography, High Pressure Liquid ,030304 developmental biology ,0303 health sciences ,Molecular mass ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Cell Biology ,Crystallography ,chemistry ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,030220 oncology & carcinogenesis ,Protein Structure and Folding ,Electrophoresis, Polyacrylamide Gel ,Protein folding ,Ultracentrifugation - Abstract
International audience; The 90-kDa heat shock protein (Hsp90) is involved in the regulation and activation of numerous client proteins essential for diverse functions such as cell growth and differentiation. Although the function of cytosolic Hsp90 is dependent on a battery of cochaperone proteins regulating both its ATPase activity and its interaction with client proteins, little is known about the real Hsp90 molecular mechanism. Besides its highly flexible dimeric state, Hsp90 is able to self-oligomerize in the presence of divalent cations or under heat shock. In addition to dimers, oligomers exhibit a chaperone activity. In this work, we focused on Mg(2+)-induced oligomers that we named Type I, Type II, and Type III in increasing molecular mass order. After stabilization of these quaternary structures, we optimized a purification protocol. Combining analytical ultracentrifugation, size exclusion chromatography coupled to multiangle laser light scattering, and high mass matrix-assisted laser desorption/ionization time of flight mass spectrometry, we determined biochemical and biophysical characteristics of each Hsp90 oligomer. We demonstrate that Type I oligomer is a tetramer, and Type II is an hexamer, whereas Type III is a dodecamer. These even-numbered structures demonstrate that the building brick for oligomerization is the dimer up to the Type II, whereas Type III probably results from the association of two Type II. Moreover, the Type II oligomer structure, studied by negative stain transmission electron microscopy tomography, exhibits a "nest-like" shape that forms a "cozy chaperoning chamber" where the client protein folding/protection could occur.
- Published
- 2010
- Full Text
- View/download PDF
33. Analysis of molecular dynamics by 3D cryo-EM: the examples of HSP90 and Ribosomal complexes
- Author
-
Daniel Thomas, Felix Weis, Laura Moullintraffort, Emmanuel Giudice, Patrick Bron, Jean-Paul Rolland, Cyrille GARNIER, Reynald Gillet, Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), De Villemeur, Hervé, Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,ComputingMethodologies_GENERAL ,ComputingMilieux_MISCELLANEOUS - Abstract
Mc 2009. Microscopy Conference, Graz, Austria. 30 August - 4 September 2009. First Joint Meeting Of Dreiländertagung And Multinational Congress On Microscopy.
- Published
- 2009
34. Integrative study of the aggregation of amyloid peptide, PHF6 a test case
- Author
-
Emmanuel Giudice, Maxime Louet, Margot Le Cornec, Sandrine Pawlicki, Antony Le Béchec, Laura Moullintraffort, Cyrille GARNIER, Christian Delamarche, Daniel Thomas, Interactions cellulaires et moléculaires (ICM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), De Villemeur, Hervé, and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] - Abstract
Poster présenté par C. Garnier
- Published
- 2009
35. Apo-Hsp90 coexists in two open conformational states in solution
- Author
-
Patrick Bron, Emmanuel Giudice, Jean-Paul Rolland, Daniel Thomas, Cyrille GARNIER, Interactions cellulaires et moléculaires (ICM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), De Villemeur, Hervé, and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,ComputingMethodologies_GENERAL - Abstract
Poster
- Published
- 2008
36. Apo-Hsp90 coexists in two open conformational states in solution
- Author
-
J. Fernando Díaz, Daniel Thomas, Patrick Bron, Vincent Peyrot, Pascale Barbier, Jean-Paul Rolland, Emmanuel Giudice, Rubén M. Buey, Cyrille Garnier, Interactions cellulaires et moléculaires (ICM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches en Oncologie biologique et Oncopharmacologie (CRO2), Aix Marseille Université (AMU)- Hôpital de la Timone [CHU - APHM] (TIMONE)-Institut National de la Santé et de la Recherche Médicale (INSERM), This work was supported by the Italian Cystic Fibrosis Research Foundation (FFC no. 1/2005) and by the Cystic Fibrosis Association (Agrigento, Sicily), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Background information ,Models, Molecular ,Protein Folding ,Protein Conformation ,Swine ,Dimer ,small-angle X-ray scattering (SAXS) ,Chaperone ,Crystallography, X-Ray ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,polycyclic compounds ,Animals ,Nucleotide ,HSP90 Heat-Shock Proteins ,structure ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Partial closure ,030304 developmental biology ,chemistry.chemical_classification ,Adenosine Triphosphatases ,0303 health sciences ,biology ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,90 kDa heat-shock protein (Hsp90) ,Cell Biology ,General Medicine ,Hsp90 ,Cryo-electron microscopy (cryo-EM) ,3. Good health ,Cell biology ,Solutions ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,intrinsic flexibility ,Microscopy, Electron ,chemistry ,Chaperone (protein) ,Cell cycle control ,biology.protein ,Biophysics ,Signal transduction ,030217 neurology & neurosurgery - Abstract
13 páginas, 8 figuras -- PAGS nros. 413-425, Background information. Hsp90 (90 kDa heat-shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide-binding-dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue). Results and discussion. Here, we present the first nucleotide-free structures of the entire eukaryotic Hsp90 (apo-Hsp90) obtained by small-angle X-ray scattering and single-particle cryo-EM (cryo-electron microscopy). We show that, in solution, apo-Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo-EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo-forms require large movements of the NTD (N-terminal domain) and MD (middle domain) around two flexible hinge regions. Conclusions. The present study shows, for the first time, the structure of the entire eukaryotic apo-Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle, This work was partly funded by Daresbury's Synchrotron grant number 40116 (to C.G., V.P., P.B., R.M.B. and J.F.D.), by grant BIO2007-61336 from the Ministerio de Educación y Ciencia (to J.F.D.) and by Rennes Métropole (to E.G. and D.T.).
- Published
- 2008
- Full Text
- View/download PDF
37. Cryo-Microscopic Structural Analysis of Small Complexes : The Example of the Protein Hsp90
- Author
-
Patrick Bron, Emmanuel Giudice, Jean-Paul Rolland, Daniel Thomas, Cyrille GARNIER, De Villemeur, Hervé, Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,ComputingMethodologies_GENERAL - Abstract
Poster
- Published
- 2008
38. Cycle de chaperonnage de la Hsp90 : de la structure à la flexibilité intrinsèque du dimère
- Author
-
Cyrille GARNIER, Emmanuel Giudice, Jean-Paul Rolland, Daniel Thomas, Patrick Bron, Interactions cellulaires et moléculaires (ICM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), and De Villemeur, Hervé
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,stomatognathic diseases ,InformationSystems_MODELSANDPRINCIPLES ,ComputingMilieux_THECOMPUTINGPROFESSION ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,GeneralLiterature_INTRODUCTORYANDSURVEY ,ComputingMilieux_COMPUTERSANDEDUCATION - Abstract
Communication orale
- Published
- 2007
39. Analyse structurale par cryo-microscopie de petits complexes : cas particulier de la protéine chaperon Hsp90
- Author
-
Patrick Bron, Emmanuel Giudice, Jean-Paul Rolland, Daniel Thomas, Cyrille GARNIER, De Villemeur, Hervé, Interactions cellulaires et moléculaires (ICM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,ComputingMethodologies_GENERAL - Abstract
Poster
- Published
- 2007
40. Nucleic acid base pair dynamics: the impact of sequence and structure using free-energy calculations
- Author
-
Emmanuel Giudice, Richard Lavery, and Deleage, Gilbert
- Subjects
Base pair ,Nucleic acid sequence ,RNA ,Sequence (biology) ,General Chemistry ,DNA ,Biochemistry ,Catalysis ,Nucleic acid secondary structure ,chemistry.chemical_compound ,Molecular dynamics ,Structure-Activity Relationship ,Colloid and Surface Chemistry ,chemistry ,Chemical physics ,Nucleic acid ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Nucleic Acid Conformation ,Thermodynamics ,Base Pairing - Abstract
Molecular dynamics free-energy calculations of base pair opening within double helical DNA and RNA are used to explain why A-tracts (oligo-adenine repeats) greatly increase the lifetimes of AT base pairs, whereas the structural and the chemical changes involved in passing from B-DNA to A-RNA have comparatively small effects.Molecular dynamics free-energy calculations of base pair opening within double helical DNA and RNA are used to explain why A-tracts (oligo-adenine repeats) greatly increase the lifetimes of AT base pairs, whereas the structural and the chemical changes involved in passing from B-DNA to A-RNA have comparatively small effects.
- Published
- 2003
41. Simulations of nucleic acids and their complexes
- Author
-
Emmanuel Giudice, Richard Lavery, and Deleage, Gilbert
- Subjects
RNA ,General Medicine ,General Chemistry ,Computational biology ,Ligands ,DNA-binding protein ,DNA-Binding Proteins ,Molecular dynamics ,chemistry.chemical_compound ,chemistry ,Nucleic Acids ,Nucleic acid ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Nucleic Acid Conformation ,Base sequence ,Computer Simulation ,DNA - Abstract
Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.
- Published
- 2002
42. Computational Study of the Human Dystrophin Repeats: Interaction Properties and Molecular Dynamics
- Author
-
Aurélie Nicolas, Baptiste Legrand, Olivier Delalande, Elisabeth Le Rumeur, and Emmanuel Giudice
- Subjects
musculoskeletal diseases ,Protein Structure ,Biophysics ,lcsh:Medicine ,Sequence alignment ,Context (language use) ,Computational biology ,Molecular Dynamics Simulation ,Biology ,Molecular Dynamics ,Biochemistry ,Dystrophin ,03 medical and health sciences ,Computational Chemistry ,Tandem repeat ,Macromolecular Structure Analysis ,Biochemical Simulations ,medicine ,Humans ,Homology modeling ,Muscular dystrophy ,Protein Interactions ,lcsh:Science ,Cytoskeleton ,030304 developmental biology ,Genetics ,0303 health sciences ,Multidisciplinary ,Sarcolemma ,lcsh:R ,030302 biochemistry & molecular biology ,Proteins ,Computational Biology ,medicine.disease ,Protein Structure, Tertiary ,Cytoskeletal Proteins ,Chemistry ,biology.protein ,lcsh:Q ,Structural Proteins ,Sequence Analysis ,Research Article - Abstract
Dystrophin is a large protein involved in the rare genetic disease Duchenne muscular dystrophy (DMD). It functions as a mechanical linker between the cytoskeleton and the sarcolemma, and is able to resist shear stresses during muscle activity. In all, 75% of the dystrophin molecule consists of a large central rod domain made up of 24 repeat units that share high structural homology with spectrin-like repeats. However, in the absence of any high-resolution structure of these repeats, the molecular basis of dystrophin central domain's functions has not yet been deciphered. In this context, we have performed a computational study of the whole dystrophin central rod domain based on the rational homology modeling of successive and overlapping tandem repeats and the analysis of their surface properties. Each tandem repeat has very specific surface properties that make it unique. However, the repeats share enough electrostatic-surface similarities to be grouped into four separate clusters. Molecular dynamics simulations of four representative tandem repeats reveal specific flexibility or bending properties depending on the repeat sequence. We thus suggest that the dystrophin central rod domain is constituted of seven biologically relevant sub-domains. Our results provide evidence for the role of the dystrophin central rod domain as a scaffold platform with a wide range of surface features and biophysical properties allowing it to interact with its various known partners such as proteins and membrane lipids. This new integrative view is strongly supported by the previous experimental works that investigated the isolated domains and the observed heterogeneity of the severity of dystrophin related pathologies, especially Becker muscular dystrophy.
- Published
- 2011
- Full Text
- View/download PDF
43. Apo-Hsp90 coexists in two open conformational states in solution.
- Author
-
Patrick Bron, Emmanuel Giudice, Jean-Paul Rolland, Rubén M. Buey, Pascale Barbier, J. Fernando Díaz, Vincent Peyrot, Daniel Thomas, and Cyrille Garnier
- Subjects
CELL cycle ,X-ray scattering ,CELL proliferation ,MICROBIAL cell cycle - Abstract
Background information. Hsp90 (90 kDa heat-shock protein) plays a key role in the folding and activation of many client proteins involved in signal transduction and cell cycle control. The cycle of Hsp90 has been intimately associated with large conformational rearrangements, which are nucleotide-binding-dependent. However, up to now, our understanding of Hsp90 conformational changes derives from structural information, which refers to the crystal states of either recombinant Hsp90 constructs or the prokaryotic homologue HtpG (Hsp90 prokaryotic homologue).Results and discussion. Here, we present the first nucleotide-free structures of the entire eukaryotic Hsp90 (apo-Hsp90) obtained by small-angle X-ray scattering and single-particle cryo-EM (cryo-electron microscopy). We show that, in solution, apo-Hsp90 is in a conformational equilibrium between two open states that have never been described previously. By comparing our cryo-EM maps with HtpG and known Hsp90 structures, we establish that the structural changes involved in switching between the two Hsp90 apo-forms require large movements of the NTD (N-terminal domain) and MD (middle domain) around two flexible hinge regions.Conclusions. The present study shows, for the first time, the structure of the entire eukaryotic apo-Hsp90, along with its intrinsic flexibility. Although large structural rearrangements, leading to partial closure of the Hsp90 dimer, were previously attributed to the binding of nucleotides, our results reveal that they are in fact mainly due to the intrinsic flexibility of Hsp90 dimer. Taking into account the preponderant role of the dynamic nature of the structure of Hsp90, we reconsider the Hsp90 ATPase cycle. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
44. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. II: Sequence Context Effects on the Dynamical Structures of the 10 Unique Dinucleotide Steps
- Author
-
David L. Beveridge, David A. Case, Filip Lankaš, Richard Lavery, John H. Maddocks, Thomas E. Cheatham, Surjit B. Dixit, Heinz Sklenar, Emmanuel Giudice, Péter Várnai, Kelly M. Thayer, Roman Osman, MDC Library, and Deleage, Gilbert
- Subjects
Models, Molecular ,Cancer Research ,Base pair ,Sequence analysis ,Molecular Sequence Data ,Biophysics ,570 Life Sciences ,Biophysical Theory and Modeling ,Biology ,010402 general chemistry ,01 natural sciences ,Force field (chemistry) ,610 Medical Sciences, Medicine ,Structure-Activity Relationship ,03 medical and health sciences ,Molecular dynamics ,chemistry.chemical_compound ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Models ,Computer Simulation ,Statistical physics ,Base Pairing ,030304 developmental biology ,Genetics ,0303 health sciences ,Base Sequence ,Oligonucleotide ,DNA ,Sequence Analysis, DNA ,Chemical Models ,0104 chemical sciences ,Models, Chemical ,CpG site ,Structural biology ,chemistry ,Nucleic Acid Conformation ,CpG Islands ,DNA Sequence Analysis ,Microsatellite Repeats - Abstract
Molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide basepair steps are reported. The objective is to obtain the calculated dynamical structure for at least two copies of each case, use the results to examine issues with regard to convergence and dynamical stability of MD on DNA, and determine the significance of sequence context effects on all unique dinucleotide steps. This information is essential to understand sequence effects on DNA structure and has implications on diverse problems in the structural biology of DNA. Calculations were carried out on the 136 cases embedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All simulations were carried out using a well-defined state-of-the-art MD protocol, the AMBER suite of programs, and the parm94 force field. In a previous article (Beveridge et al. 2004. Biophysical Journal. 87:3799-3813), the research design, details of the simulation protocol, and informatics issues were described. Preliminary results from 15 ns MD trajectories were presented for the d(CpG) step in all 10 unique sequence contexts. The results indicated the sequence context effects to be small for this step, but revealed that MD on DNA at this length of trajectory is subject to surprisingly persistent cooperative transitions of the sugar-phosphate backbone torsion angles alpha and gamma. In this article, we report detailed analysis of the entire trajectory database and occurrence of various conformational substates and its impact on studies of context effects. The analysis reveals a possible direct correspondence between the sequence-dependent dynamical tendencies of DNA structure and the tendency to undergo transitions that "trap" them in nonstandard conformational substates. The difference in mean of the observed basepair step helicoidal parameter distribution with different flanking sequence sometimes differs by as much as one standard deviation, indicating that the extent of sequence effects could be significant. The observations reveal that the impact of a flexible dinucleotide such as CpG could extend beyond the immediate basepair neighbors. The results in general provide new insight into MD on DNA and the sequence-dependent dynamical structural characteristics of DNA.Molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide basepair steps are reported. The objective is to obtain the calculated dynamical structure for at least two copies of each case, use the results to examine issues with regard to convergence and dynamical stability of MD on DNA, and determine the significance of sequence context effects on all unique dinucleotide steps. This information is essential to understand sequence effects on DNA structure and has implications on diverse problems in the structural biology of DNA. Calculations were carried out on the 136 cases embedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All simulations were carried out using a well-defined state-of-the-art MD protocol, the AMBER suite of programs, and the parm94 force field. In a previous article (Beveridge et al. 2004. Biophysical Journal. 87:3799-3813), the research design, details of the simulation protocol, and informatics issues were described. Preliminary results from 15 ns MD trajectories were presented for the d(CpG) step in all 10 unique sequence contexts. The results indicated the sequence context effects to be small for this step, but revealed that MD on DNA at this length of trajectory is subject to surprisingly persistent cooperative transitions of the sugar-phosphate backbone torsion angles alpha and gamma. In this article, we report detailed analysis of the entire trajectory database and occurrence of various conformational substates and its impact on studies of context effects. The analysis reveals a possible direct correspondence between the sequence-dependent dynamical tendencies of DNA structure and the tendency to undergo transitions that "trap" them in nonstandard conformational substates. The difference in mean of the observed basepair step helicoidal parameter distribution with different flanking sequence sometimes differs by as much as one standard deviation, indicating that the extent of sequence effects could be significant. The observations reveal that the impact of a flexible dinucleotide such as CpG could extend beyond the immediate basepair neighbors. The results in general provide new insight into MD on DNA and the sequence-dependent dynamical structural characteristics of DNA.
- Full Text
- View/download PDF
45. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps
- Author
-
Surjit B. Dixit, Gautier Stoll, K. Suzie Byun, Richard Lavery, Thomas E. Cheatham, David A. Case, Péter Várnai, Matthew A. Young, Kelly M. Thayer, Emmanuel Giudice, Eleanore Seibert, Gabriela Barreiro, Filip Lankaš, John H. Maddocks, Heinz Sklenar, Roman Osman, David L. Beveridge, and Deleage, Gilbert
- Subjects
Models, Molecular ,Research groups ,Base pair ,Molecular Sequence Data ,Biophysics ,Computational biology ,Biophysical Theory and Modeling ,010402 general chemistry ,01 natural sciences ,Force field (chemistry) ,03 medical and health sciences ,chemistry.chemical_compound ,Molecular dynamics ,Motion ,Structure-Activity Relationship ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Base sequence ,Computer Simulation ,030304 developmental biology ,Genetics ,0303 health sciences ,Base Sequence ,Chemistry ,Oligonucleotide ,DNA ,0104 chemical sciences ,Kinetics ,CpG site ,Models, Chemical ,Oligodeoxyribonucleotides ,Nucleic Acid Conformation - Abstract
We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium" (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of approximately 0.6 mus of simulation for systems containing approximately 24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent approximately 400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed.We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium" (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of approximately 0.6 mus of simulation for systems containing approximately 24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent approximately 400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed.
- Full Text
- View/download PDF
46. Caractérisation structurale du mécanisme de sauvetage de la synthèse des protéines chez les bactéries
- Author
-
d'Urso, Gaetano, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes, Reynald Gillet, and Emmanuel Giudice
- Subjects
Trans-Traduction ,TmRNA ,Bs1 ,ARNtm ,RNase R ,Trans-Translation ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,SmpB ,Cryo-EM - Abstract
The present work carried out in the course of this PhD is focused on the most important mechanism involved in the quality control of bacterial protein synthesis, called trans-translation. trans-translation is essential for bacteria cell survival as it allows the rescue of stalled ribosomes on non-stop mRNA during the translation, enabling their recycling with simultaneous degradation of the defective messenger and degradation of the non-functional nascent polypeptide chain. The two main players involved in this process are the transfer-messenger RNA (tmRNA), a chimeric RNA molecule capable of playing the role of both a tRNA and an mRNA, and its partner the small basic protein B (SmpB), which is essential for the ribosome binding, the correct positioning of the resume codon and the expulsion of non-stop mRNA from the ribosome. In the first section of this manuscript, we explain the structural study, by cryo- EM, of the trans-translation process that allowed us to reconstruct four high- resolution atomic structures of the ribosome in four different consecutive steps of this mechanism (pre-accommodation, accommodation, translocation and post-translocation). In this way, we were able to highlight the molecular interactions at the atomic level that are essential to the whole process and are of particular interest since they can be used as targets against which new molecules with antibacterial activity can be developed.In the second part of the work we focused our attention on the structural characterisation of a third component involved in trans-translation, known as RNase R. The RNase R is an ribonuclease essential for the degradation of non-stop mRNA. It has been observed to compete for the same binding site on the ribosome with tmRNA, and to be highly dynamic when interacting with the ribosome itself. For this reason, the study was extended to a more complex system in which we sought to understand the exact role of all three players (tmRNA, SmpB and RNase R) during the stalling of two ribosomes on the same defective mRNA. This study is still ongoing. In the last chapter, we described a particular new conformation for one of the most important proteins of the ribosome, known as bS1. This protein is essential in the early stages of translation. In this case, one of its six domains, normally known to be involved in the interaction with the ribosome, shows a particular conformation that allows it to interact with the Shine-Dalgarno portion of the mRNA, stabilising its binding to its counterpart at the 3' end of the 16S rRNA. This observation may open the door to a better understanding of the mechanism of action of this protein.; Le présent travail effectué au cours de cette thèse se concentre sur le mécanisme le plus important impliqué dans le contrôle de la qualité de la synthèse des protéines bactériennes, appelé trans-traduction. La trans- traduction est essentielle pour la survie des cellules bactériennes car elle permet le sauvetage des ribosomes bloqués sur l'ARNm non-stop pendant la traduction, permettant leur recyclage avec la dégradation simultanée du messager défectueux et la dégradation de la chaîne polypeptidique naissante non fonctionnelle. Les deux principaux acteurs impliqués dans ce processus sont l'ARN transfert-messager (ARNtm), une molécule d'ARN chimérique capable de jouer à la fois le rôle d'un ARNt et d'un ARNm, et son partenaire la petite protéine basique B (SmpB), qui est essentielle pour la liaison au ribosome, le positionnement correct du codon de reprise et l'expulsion de l'ARNm non-stop du ribosome. Dans a première section de ce manuscrit, nous expliquons l'étude structurale, par cryo-EM, du processus de trans-traduction qui nous a permis de reconstruire quatre structures atomiques à haute résolution du ribosome dans quatre différentes étapes consécutives de ce mécanisme (pré- accommodation, accommodation, translocation et post-translocation). De cette façon, nous avons pu mettre en évidence les interactions moléculaires au niveau atomique qui sont essentielles à l'ensemble du processus et qui sont particulièrement intéressantes car elles peuvent être utilisées comme cibles contre lesquelles de nouvelles molécules à activité antibactérienne peuvent être développées. Dans la deuxième partie du travail, nous avons concentré notre attention sur la caractérisation structurelle d'un troisième composant impliqué dans la trans-traduction, connu sous le nom de RNase R. La RNase R est une ribonucléase essentielle pour la dégradation de l'ARNm non-stop. Il a été observé qu'elle entre en compétition avec l'ARNtm pour le même site de liaison sur le ribosome, et qu'elle est très dynamique lorsqu'elle interagit avec le ribosome lui-même. Pour cette raison, l'étude a été étendue à un système plus complexe dans lequel nous avons cherché à comprendre le rôle exact des trois acteurs (ARNtm, SmpB et RNase R) lors du décrochage de deux ribosomes sur le même ARNm défectueux (disomes). Cette étude est toujours en cours. Dans le dernier chapitre, nous avons décrit une nouvelle conformation particulière pour l'une des protéines les plus importantes du ribosome, connue sous le nom de bS1. Cette protéine est essentielle dans les premières étapes de la traduction. Dans ce cas, l'un de ses six domaines, normalement connu pour être impliqué dans l'interaction avec le ribosome, présente une conformation particulière qui lui permet d'interagir avec la portion Shine-Dalgarno de l'ARNm, stabilisant ainsi sa liaison avec son homologue à l'extrémité 3' de l'ARNr 16S. Cette observation pourrait ouvrir la porte à une meilleure compréhension du mécanisme d'action de cette protéine.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.