1. Drinking water QMRA and decision-making: Sensitivity of risk to common independence assumptions about model inputs.
- Author
-
de Brito Cruz D, Schmidt PJ, and Emelko MB
- Subjects
- Risk Assessment, Water Microbiology, Water Supply, Models, Theoretical, Water Purification, Drinking Water microbiology, Monte Carlo Method, Decision Making
- Abstract
When assessing risk posed by waterborne pathogens in drinking water, it is common to use Monte Carlo simulations in Quantitative Microbial Risk Assessment (QMRA). This method accounts for the variables that affect risk and their different values in a given system. A common underlying assumption in such analyses is that all random variables are independent (i.e., one is not associated in any way with another). Although the independence assumption simplifies the analysis, it is not always correct. For example, treatment efficiency can depend on microbial concentrations if changes in microbial concentrations either affect treatment themselves or are associated with water quality changes that affect treatment (e.g., during/after climate shocks like extreme precipitation events or wildfires). Notably, the effects of erroneous assumptions of independence in QMRA have not been widely discussed. Due to the implications of drinking water safety decisions on public health protection, it is critical that risk models accurately reflect the context being studied to meaningfully support decision-making. This work illustrates how dependence between pathogen concentration and either treatment efficiency or water consumption can impact risk estimates using hypothetical scenarios of relevance to drinking water QMRA. It is shown that the mean and variance of risk estimates can change substantially with different degrees of correlation. Data from a water supply system in Calgary, Canada are also used to illustrate the effect of dependence on risk. Recognizing the difficulty of obtaining data to empirically assess dependence, a framework to guide evaluation of the effect of dependence is presented to enhance support for decision making. This work emphasizes the importance of acknowledging and discussing assumptions implicit to models., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF