34 results on '"Emde AK"'
Search Results
2. Mid-pass whole-genome sequencing in a Malagasy cohort uncovers body composition associations.
- Author
-
Hamid I, Raveloson SNS, Spiral GJ, Ravelonjanahary S, Raharivololona BM, Randria JM, Zafimaro M, Randriambola TA, Andriantsoa RM, Andriamahefa TJ, Rafidison BFL, Mughal M, Emde AK, Hendershott M, LeBaron von Baeyer S, Wasik KA, Ranaivoarisoa JF, Yerges-Armstrong L, Castel SE, and Rakotoarivony R
- Subjects
- Humans, Madagascar, Male, Female, Cohort Studies, Adult, Genome, Human genetics, Middle Aged, Polymorphism, Single Nucleotide, Genetic Variation genetics, Malaria genetics, Malaria epidemiology, Phenotype, Whole Genome Sequencing, Genome-Wide Association Study, Body Composition genetics
- Abstract
The majority of human genomic research studies have been conducted in European-ancestry cohorts, reducing the likelihood of detecting potentially novel and globally impactful findings. Here, we present mid-pass whole-genome sequencing data and a genome-wide association study in a cohort of 264 self-reported Malagasy individuals from three locations on the island of Madagascar. We describe genetic variation in this Malagasy cohort, providing insight into the shared and unique patterns of genetic variation across the island. We observe phenotypic variation by location and find high rates of hypertension, particularly in the Southern Highlands sampling site, as well as elevated self-reported malaria prevalence in the West Coast site relative to other sites. After filtering to a subset of 214 minimally related individuals, we find a number of genetic associations with body composition traits, including many variants that are only observed in African populations or populations with admixed African ancestry from the 1000 Genomes Project. This study highlights the importance of including diverse populations in genomic research for the potential to gain novel insights, even with small cohort sizes. This project was conducted in partnership and consultation with local stakeholders in Madagascar and serves as an example of genomic research that prioritizes community engagement and potentially impacts our understanding of human health and disease., Competing Interests: Declaration of interests I.H., M.M., A.-K.E., M.H., S.L.v.B., K.A.W., L.Y.-A., and S.E.C. are employees and option or shareholders of Variant Bio, Inc.; K.A.W. and S.E.C. are co-founders of Variant Bio, Inc., and S.E.C. is a member of its board of directors. L.Y.-A. is a shareholder of GSK., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. The gout epidemic in French Polynesia: a modelling study of data from the Ma'i u'u epidemiological survey.
- Author
-
Pascart T, Wasik KA, Preda C, Chune V, Torterat J, Prud'homme N, Nassih M, Martin A, Le Masson J, Rodière V, Frogier S, Canova G, Pescheux JP, Shan Sei Fan C, Jauffret C, Claeys P, von Baeyer SL, Castel SE, Emde AK, Yerges-Armstrong L, Fox K, Leask M, Vitagliano JJ, Graf S, Norberciak L, Raynal J, Dalbeth N, Merriman T, Bardin T, and Oehler E
- Subjects
- Adult, Humans, Male, Female, Uric Acid, Cross-Sectional Studies, Prospective Studies, Polynesia epidemiology, HLA-B Antigens, Hyperuricemia epidemiology, Hyperuricemia genetics, Diabetes Mellitus, Type 2, Gout epidemiology, Gout genetics
- Abstract
Background: Gout is the most common cause of inflammatory arthritis worldwide, particularly in Pacific regions. We aimed to establish the prevalence of gout and hyperuricaemia in French Polynesia, their associations with dietary habits, their comorbidities, the prevalence of the HLA-B*58:01 allele, and current management of the disease., Methods: The Ma'i u'u survey was epidemiological, prospective, cross-sectional, and gout-focused and included a random sample of adults from the general adult population of French Polynesia. It was conducted and data were collected between April 13 and Aug 16, 2021. Participants were randomly selected to represent the general adult population of French Polynesia on the basis of housing data collected during the 2017 territorial census. Each selected household was visited by a research nurse from the Ma'i u'u survey who collected data via guided, 1-h interviews with participants. In each household, the participant was the individual older than 18 years with the closest upcoming birthday. To estimate the frequency of HLA-B*58:01, we estimated HLA-B haplotypes on individuals who had whole-genome sequencing to approximately 5× average coverage (mid-pass sequencing). A subset of individuals who self-reported Polynesian ancestry and not European, Chinese, or other ancestry were used to estimate Polynesian-ancestry specific allele frequencies. Bivariate associations were reported for weighted participants; effect sizes were estimated through the odds ratio (OR) of the association calculated on the basis of a logistic model fitted with weighted observations., Findings: Among the random sample of 2000 households, 896 participants were included, 140 individuals declined, and 964 households could not be contacted. 22 participants could not be weighted due to missing data, so the final weighted analysis included 874 participants (449 [51·4%] were female and 425 [48·6%] were male) representing the 196 630 adults living in French Polynesia. The estimated prevalence of gout was 14·5% (95% CI 9·9-19·2), representing 28 561 French Polynesian adults, that is 25·5% (18·2-32·8) of male individuals and 3·5% (1·0-6·0) of female individuals. The prevalence of hyperuricaemia was estimated at 71·6% (66·7-76·6), representing 128 687 French Polynesian adults. In multivariable analysis, age (OR 1·5, 95% CI 1·2-1·8 per year), male sex (10·3, 1·8-60·7), serum urate (1·6, 1·3-2·0 per 1 mg/dL), uraturia (0·8, 0·8-0·8 per 100 mg/L), type 2 diabetes (2·1, 1·4-3·1), BMI more than 30 kg/m
2 (1·1, 1·0-1·2 per unit), and percentage of visceral fat (1·7, 1·1-2·7 per 1% increase) were associated with gout. There were seven heterozygous HLA-B*58:01 carriers in the full cohort of 833 individuals (seven [0·4%] of 1666 total alleles) and two heterozygous carriers in a subset of 696 individuals of Polynesian ancestry (two [0·1%])., Interpretation: French Polynesia has an estimated high prevalence of gout and hyperuricaemia, with gout affecting almost 15% of adults. Territorial measures that focus on increasing access to effective urate-lowering therapies are warranted to control this major public health problem., Funding: Variant Bio, the French Polynesian Health Administration, Lille Catholic University Hospitals, French Society of Rheumatology, and Novartis., Competing Interests: Declaration of interests TP receives honorary fees from Novartis and a research grant (DREAMER grant) for the conduct of this study and consulting fees from Horizon Pharmaceuticals. KAW, SLvB, SEC, A-KE, and LY-A are employees and stock owners of Variant Bio. LY-A is a stock owner of GlaxoSmithKline. ND has received consulting fees, speaker fees, or grants from AstraZeneca, Novartis, Dyve Biosciences, Horizon, Selecta, Arthrosi, JW Pharmaceutical, PK Med, LG Chem, Al-Jazeera Pharmaceutical Industries, PTC Therapeutics, Protalix, Unlocked Labs, and Hikma. TM has research contracts from Variant Bio. TB has received consulting fees from Novartis. All other authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Somatic whole genome dynamics of precancer in Barrett's esophagus reveals features associated with disease progression.
- Author
-
Paulson TG, Galipeau PC, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Hadi K, Shah M, Arora K, Shelton J, Johnson M, Corvelo A, Maley CC, Yao X, Sanghvi R, Venturini E, Emde AK, Hubert B, Imielinski M, Robine N, Reid BJ, and Li X
- Subjects
- Disease Progression, Humans, Adenocarcinoma pathology, Barrett Esophagus genetics, Barrett Esophagus pathology, Esophageal Neoplasms pathology
- Abstract
While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett's esophagus compared to 40 Barrett's patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett's tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett's versus those who progress to cancer is acquisition and expansion of TP53-/- cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett's esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
5. Diverse tumorigenic consequences of human papillomavirus integration in primary oropharyngeal cancers.
- Author
-
Symer DE, Akagi K, Geiger HM, Song Y, Li G, Emde AK, Xiao W, Jiang B, Corvelo A, Toussaint NC, Li J, Agrawal A, Ozer E, El-Naggar AK, Du Z, Shewale JB, Stache-Crain B, Zucker M, Robine N, Coombes KR, and Gillison ML
- Subjects
- Carcinogenesis, Humans, Papillomaviridae genetics, Papillomaviridae metabolism, Papillomavirus E7 Proteins genetics, Papillomavirus E7 Proteins metabolism, Virus Integration genetics, Alphapapillomavirus metabolism, Oncogene Proteins, Viral genetics, Oropharyngeal Neoplasms genetics
- Abstract
Human papillomavirus (HPV) causes 5% of all cancers and frequently integrates into host chromosomes. The HPV oncoproteins E6 and E7 are necessary but insufficient for cancer formation, indicating that additional secondary genetic events are required. Here, we investigate potential oncogenic impacts of virus integration. Analysis of 105 HPV-positive oropharyngeal cancers by whole-genome sequencing detects virus integration in 77%, revealing five statistically significant sites of recurrent integration near genes that regulate epithelial stem cell maintenance (i.e., SOX2, TP63, FGFR, MYC ) and immune evasion (i.e., CD274 ). Genomic copy number hyperamplification is enriched 16-fold near HPV integrants, and the extent of focal host genomic instability increases with their local density. The frequency of genes expressed at extreme outlier levels is increased 86-fold within ±150 kb of integrants. Across 95% of tumors with integration, host gene transcription is disrupted via intragenic integrants, chimeric transcription, outlier expression, gene breaking, and/or de novo expression of noncoding or imprinted genes. We conclude that virus integration can contribute to carcinogenesis in a large majority of HPV-positive oropharyngeal cancers by inducing extensive disruption of host genome structure and gene expression., (© 2022 Symer et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2022
- Full Text
- View/download PDF
6. Mid-pass whole genome sequencing enables biomedical genetic studies of diverse populations.
- Author
-
Emde AK, Phipps-Green A, Cadzow M, Gallagher CS, Major TJ, Merriman ME, Topless RK, Takei R, Dalbeth N, Murphy R, Stamp LK, de Zoysa J, Wilcox PL, Fox K, Wasik KA, Merriman TR, and Castel SE
- Subjects
- Genome, Genome, Human, Genomics, Genotype, Humans, Whole Genome Sequencing, Genome-Wide Association Study, Polymorphism, Single Nucleotide
- Abstract
Background: Historically, geneticists have relied on genotyping arrays and imputation to study human genetic variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global genetic variation, and a lack of reference panels. This has contributed to deepening global health disparities. Whole genome sequencing (WGS) better captures genetic variation but remains prohibitively expensive. Thus, we explored WGS at "mid-pass" 1-7x coverage., Results: Here, we developed and benchmarked methods for mid-pass sequencing. When applied to a population without an existing genomic reference panel, 4x mid-pass performed consistently well across ethnicities, with high recall (98%) and precision (97.5%)., Conclusion: Compared to array data imputed into 1000 Genomes, mid-pass performed better across all metrics and identified novel population-specific variants with potential disease relevance. We hope our work will reduce financial barriers for geneticists from underrepresented populations to characterize their genomes prior to biomedical genetic applications., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
7. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
- Author
-
Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, Gogarten SM, Kang HM, Pitsillides AN, LeFaive J, Lee SB, Tian X, Browning BL, Das S, Emde AK, Clarke WE, Loesch DP, Shetty AC, Blackwell TW, Smith AV, Wong Q, Liu X, Conomos MP, Bobo DM, Aguet F, Albert C, Alonso A, Ardlie KG, Arking DE, Aslibekyan S, Auer PL, Barnard J, Barr RG, Barwick L, Becker LC, Beer RL, Benjamin EJ, Bielak LF, Blangero J, Boehnke M, Bowden DW, Brody JA, Burchard EG, Cade BE, Casella JF, Chalazan B, Chasman DI, Chen YI, Cho MH, Choi SH, Chung MK, Clish CB, Correa A, Curran JE, Custer B, Darbar D, Daya M, de Andrade M, DeMeo DL, Dutcher SK, Ellinor PT, Emery LS, Eng C, Fatkin D, Fingerlin T, Forer L, Fornage M, Franceschini N, Fuchsberger C, Fullerton SM, Germer S, Gladwin MT, Gottlieb DJ, Guo X, Hall ME, He J, Heard-Costa NL, Heckbert SR, Irvin MR, Johnsen JM, Johnson AD, Kaplan R, Kardia SLR, Kelly T, Kelly S, Kenny EE, Kiel DP, Klemmer R, Konkle BA, Kooperberg C, Köttgen A, Lange LA, Lasky-Su J, Levy D, Lin X, Lin KH, Liu C, Loos RJF, Garman L, Gerszten R, Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning AK, Mathias RA, McManus DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear MA, Mitchell BD, Mohanty S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, Natale A, Natarajan P, Nelson SC, North KE, O'Connell JR, Palmer ND, Pankratz N, Peloso GM, Peyser PA, Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner AP, Roden D, Rotter JI, Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo JS, Seshadri S, Sheehan VA, Sheu WH, Shoemaker MB, Smith NL, Smith JA, Sotoodehnia N, Stilp AM, Tang W, Taylor KD, Telen M, Thornton TA, Tracy RP, Van Den Berg DJ, Vasan RS, Viaud-Martinez KA, Vrieze S, Weeks DE, Weir BS, Weiss ST, Weng LC, Willer CJ, Zhang Y, Zhao X, Arnett DK, Ashley-Koch AE, Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, Silverman EK, Qasba P, Gan W, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, Zöllner S, Wilson JG, Cupples LA, Laurie CC, Jaquish CE, Hernandez RD, O'Connor TD, and Abecasis GR
- Subjects
- Cytochrome P-450 CYP2D6 genetics, Haplotypes genetics, Heterozygote, Humans, INDEL Mutation, Loss of Function Mutation, Mutagenesis, Phenotype, Polymorphism, Single Nucleotide, Population Density, Quality Control, Sample Size, United States, Whole Genome Sequencing standards, Genetic Variation genetics, Genome, Human genetics, Genomics, National Heart, Lung, and Blood Institute (U.S.), Precision Medicine standards
- Abstract
The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)
1 . In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.- Published
- 2021
- Full Text
- View/download PDF
8. Author Correction: PGBD5 promotes site-specific oncogenic mutations in human tumors.
- Author
-
Henssen AG, Koche R, Zhuang J, Jiang E, Reed C, Eisenberg A, Still E, MacArthur IC, Rodríguez-Fos E, Gonzalez S, Puiggròs M, Blackford AN, Mason CE, de Stanchina E, Gönen M, Emde AK, Shah M, Arora K, Reeves C, Socci ND, Perlman E, Antonescu CR, Roberts CWM, Steen H, Mullen E, Jackson SP, Torrents D, Weng Z, Armstrong SA, and Kentsis A
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
9. Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
- Author
-
Hadi K, Yao X, Behr JM, Deshpande A, Xanthopoulakis C, Tian H, Kudman S, Rosiene J, Darmofal M, DeRose J, Mortensen R, Adney EM, Shaiber A, Gajic Z, Sigouros M, Eng K, Wala JA, Wrzeszczyński KO, Arora K, Shah M, Emde AK, Felice V, Frank MO, Darnell RB, Ghandi M, Huang F, Dewhurst S, Maciejowski J, de Lange T, Setton J, Riaz N, Reis-Filho JS, Powell S, Knowles DA, Reznik E, Mishra B, Beroukhim R, Zody MC, Robine N, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Galipeau PC, Paulson TG, Reid BJ, Li X, Wilkes D, Sboner A, Mosquera JM, Elemento O, and Imielinski M
- Subjects
- Chromosome Inversion genetics, Chromothripsis, DNA Copy Number Variations genetics, Gene Rearrangement genetics, Genome, Human genetics, Humans, Mutation genetics, Whole Genome Sequencing methods, Genomic Structural Variation genetics, Genomics methods, Neoplasms genetics
- Abstract
Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis., Competing Interests: Declaration of Interests J.S.R.-F. reports receiving personal/consultancy fees from VolitionRx, Paige.AI, Goldman Sachs, REPARE Therapeutics, GRAIL, Ventana Medical Systems, Roche, Genentech, and InviCRO outside of the scope of the submitted work., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
10. Correction to: Sequencing and curation strategies for identifying candidate glioblastoma treatments.
- Author
-
Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Geiger H, Felice V, Dikoglu E, Rahman S, Fang X, Vacic V, Bergmann EA, Moore Vogel JL, Reeves C, Khaira D, Calabro A, Kim D, Lamendola-Essel MF, Esteves C, Agius P, Stolte C, Boockvar J, Demopoulos A, Placantonakis DG, Golfinos JG, Brennan C, Bruce J, Lassman AB, Canoll P, Grommes C, Daras M, Diamond E, Omuro A, Pentsova E, Orange DE, Harvey SJ, Posner JB, Michelini VV, Jobanputra V, Zody MC, Kelly J, Parida L, Wrzeszczynski KO, Royyuru AK, and Darnell RB
- Abstract
Following publication of the original article [1], it was reported that the given name of the fourteenth author was incorrectly published. The incorrect and the correct names are given below.
- Published
- 2019
- Full Text
- View/download PDF
11. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia.
- Author
-
McNeer NA, Philip J, Geiger H, Ries RE, Lavallée VP, Walsh M, Shah M, Arora K, Emde AK, Robine N, Alonzo TA, Kolb EA, Gamis AS, Smith M, Gerhard DS, Guidry-Auvil J, Meshinchi S, and Kentsis A
- Subjects
- Child, Drug Resistance, Neoplasm, Genes, Wilms Tumor, Genes, p53, Humans, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute drug therapy, Mutation
- Abstract
Acute myeloid leukemias (AML) are characterized by mutations of tumor suppressor and oncogenes, involving distinct genes in adults and children. While certain mutations have been associated with the increased risk of AML relapse, the genomic landscape of primary chemotherapy-resistant AML is not well defined. As part of the TARGET initiative, we performed whole-genome DNA and transcriptome RNA and miRNA sequencing analysis of pediatric AML with failure of induction chemotherapy. We identified at least three genetic groups of patients with induction failure, including those with NUP98 rearrangements, somatic mutations of WT1 in the absence of apparent NUP98 mutations, and additional recurrent variants including those in KMT2C and MLLT10. Comparison of specimens before and after chemotherapy revealed distinct and invariant gene expression programs. While exhibiting overt therapy resistance, these leukemias nonetheless showed diverse forms of clonal evolution upon chemotherapy exposure. This included selection for mutant alleles of FRMD8, DHX32, PIK3R1, SHANK3, MKLN1, as well as persistence of WT1 and TP53 mutant clones, and elimination of FLT3, PTPN11, and NRAS mutant clones. These findings delineate genetic mechanisms of primary chemotherapy resistance in pediatric AML, which should inform improved approaches for its diagnosis and therapy.
- Published
- 2019
- Full Text
- View/download PDF
12. Sequencing and curation strategies for identifying candidate glioblastoma treatments.
- Author
-
Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Geiger H, Felice V, Dikoglu E, Rahman S, Fang A, Vacic V, Bergmann EA, Vogel JLM, Reeves C, Khaira D, Calabro A, Kim D, Lamendola-Essel MF, Esteves C, Agius P, Stolte C, Boockvar J, Demopoulos A, Placantonakis DG, Golfinos JG, Brennan C, Bruce J, Lassman AB, Canoll P, Grommes C, Daras M, Diamond E, Omuro A, Pentsova E, Orange DE, Harvey SJ, Posner JB, Michelini VV, Jobanputra V, Zody MC, Kelly J, Parida L, Wrzeszczynski KO, Royyuru AK, and Darnell RB
- Subjects
- Adult, Aged, Aged, 80 and over, Female, High-Throughput Nucleotide Sequencing, Humans, Male, Middle Aged, Molecular Targeted Therapy, Ploidies, Reproducibility of Results, Glioblastoma drug therapy, Glioblastoma genetics, Whole Genome Sequencing
- Abstract
Background: Prompted by the revolution in high-throughput sequencing and its potential impact for treating cancer patients, we initiated a clinical research study to compare the ability of different sequencing assays and analysis methods to analyze glioblastoma tumors and generate real-time potential treatment options for physicians., Methods: A consortium of seven institutions in New York City enrolled 30 patients with glioblastoma and performed tumor whole genome sequencing (WGS) and RNA sequencing (RNA-seq; collectively WGS/RNA-seq); 20 of these patients were also analyzed with independent targeted panel sequencing. We also compared results of expert manual annotations with those from an automated annotation system, Watson Genomic Analysis (WGA), to assess the reliability and time required to identify potentially relevant pharmacologic interventions., Results: WGS/RNAseq identified more potentially actionable clinical results than targeted panels in 90% of cases, with an average of 16-fold more unique potentially actionable variants identified per individual; 84 clinically actionable calls were made using WGS/RNA-seq that were not identified by panels. Expert annotation and WGA had good agreement on identifying variants [mean sensitivity = 0.71, SD = 0.18 and positive predictive value (PPV) = 0.80, SD = 0.20] and drug targets when the same variants were called (mean sensitivity = 0.74, SD = 0.34 and PPV = 0.79, SD = 0.23) across patients. Clinicians used the information to modify their treatment plan 10% of the time., Conclusion: These results present the first comprehensive comparison of technical and machine augmented analysis of targeted panel and WGS/RNA-seq to identify potential cancer treatments.
- Published
- 2019
- Full Text
- View/download PDF
13. Human papillomavirus and the landscape of secondary genetic alterations in oral cancers.
- Author
-
Gillison ML, Akagi K, Xiao W, Jiang B, Pickard RKL, Li J, Swanson BJ, Agrawal AD, Zucker M, Stache-Crain B, Emde AK, Geiger HM, Robine N, Coombes KR, and Symer DE
- Subjects
- Female, Humans, Male, Mutation, Papillomaviridae genetics, Papillomaviridae metabolism, Carcinoma, Squamous Cell genetics, Carcinoma, Squamous Cell metabolism, Carcinoma, Squamous Cell pathology, Carcinoma, Squamous Cell virology, Mouth Neoplasms genetics, Mouth Neoplasms metabolism, Mouth Neoplasms pathology, Mouth Neoplasms virology, Neoplasm Proteins biosynthesis, Neoplasm Proteins genetics, Oncogene Proteins, Viral biosynthesis, Oncogene Proteins, Viral genetics, Papillomavirus Infections
- Abstract
Human papillomavirus (HPV) is a necessary but insufficient cause of a subset of oral squamous cell carcinomas (OSCCs) that is increasing markedly in frequency. To identify contributory, secondary genetic alterations in these cancers, we used comprehensive genomics methods to compare 149 HPV-positive and 335 HPV-negative OSCC tumor/normal pairs. Different behavioral risk factors underlying the two OSCC types were reflected in distinctive genomic mutational signatures. In HPV-positive OSCCs, the signatures of APOBEC cytosine deaminase editing, associated with anti-viral immunity, were strongly linked to overall mutational burden. In contrast, in HPV-negative OSCCs, T>C substitutions in the sequence context 5'-ATN-3' correlated with tobacco exposure. Universal expression of HPV E6*1 and E7 oncogenes was a sine qua non of HPV-positive OSCCs. Significant enrichment of somatic mutations was confirmed or newly identified in PIK3CA , KMT2D , FGFR3 , FBXW7 , DDX3X , PTEN , TRAF3 , RB1 , CYLD , RIPK4 , ZNF750 , EP300 , CASZ1 , TAF5 , RBL1 , IFNGR1 , and NFKBIA Of these, many affect host pathways already targeted by HPV oncoproteins, including the p53 and pRB pathways, or disrupt host defenses against viral infections, including interferon (IFN) and nuclear factor kappa B signaling. Frequent copy number changes were associated with concordant changes in gene expression. Chr 11q (including CCND1 ) and 14q (including DICER1 and AKT1 ) were recurrently lost in HPV-positive OSCCs, in contrast to their gains in HPV-negative OSCCs. High-ranking variant allele fractions implicated ZNF750 , PIK3CA , and EP300 mutations as candidate driver events in HPV-positive cancers. We conclude that virus-host interactions cooperatively shape the unique genetic features of these cancers, distinguishing them from their HPV-negative counterparts., (© 2019 Gillison et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2019
- Full Text
- View/download PDF
14. Analytical Validation of Clinical Whole-Genome and Transcriptome Sequencing of Patient-Derived Tumors for Reporting Targetable Variants in Cancer.
- Author
-
Wrzeszczynski KO, Felice V, Abhyankar A, Kozon L, Geiger H, Manaa D, London F, Robinson D, Fang X, Lin D, Lamendola-Essel MF, Khaira D, Dikoglu E, Emde AK, Robine N, Shah M, Arora K, Basturk O, Bhanot U, Kentsis A, Mansukhani MM, Bhagat G, and Jobanputra V
- Subjects
- DNA Copy Number Variations genetics, Gene Frequency genetics, Humans, Limit of Detection, Reproducibility of Results, Genetic Variation, Neoplasms genetics, Research Report, Transcriptome genetics, Whole Genome Sequencing methods
- Abstract
We developed and validated a clinical whole-genome and transcriptome sequencing (WGTS) assay that provides a comprehensive genomic profile of a patient's tumor. The ability to fully capture the mappable genome with sufficient sequencing coverage to precisely call DNA somatic single nucleotide variants, insertions/deletions, copy number variants, structural variants, and RNA gene fusions was analyzed. New York State's Department of Health next-generation DNA sequencing guidelines were expanded for establishing performance validation applicable to whole-genome and transcriptome sequencing. Whole-genome sequencing laboratory protocols were validated for the Illumina HiSeq X Ten platform and RNA sequencing for Illumina HiSeq2500 platform for fresh or frozen and formalin-fixed, paraffin-embedded tumor samples. Various bioinformatics tools were also tested, and CIs for sensitivity and specificity thresholds in calling clinically significant somatic aberrations were determined. The validation was performed on a set of 125 tumor normal pairs. RNA sequencing was performed to call fusions and to confirm the DNA variants or exonic alterations. Here, we present our results and WGTS standards for variant allele frequency, reproducibility, analytical sensitivity, and present limit of detection analysis for single nucleotide variant calling, copy number identification, and structural variants. We show that The New York Genome Center WGTS clinical assay can provide a comprehensive patient variant discovery approach suitable for directed oncologic therapeutic applications., (Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
15. Genome-wide somatic variant calling using localized colored de Bruijn graphs.
- Author
-
Narzisi G, Corvelo A, Arora K, Bergmann EA, Shah M, Musunuri R, Emde AK, Robine N, Vacic V, and Zody MC
- Abstract
Reliable detection of somatic variations is of critical importance in cancer research. Here we present Lancet, an accurate and sensitive somatic variant caller, which detects SNVs and indels by jointly analyzing reads from tumor and matched normal samples using colored de Bruijn graphs. We demonstrate, through extensive experimental comparison on synthetic and real whole-genome sequencing datasets, that Lancet has better accuracy, especially for indel detection, than widely used somatic callers, such as MuTect, MuTect2, LoFreq, Strelka, and Strelka2. Lancet features a reliable variant scoring system, which is essential for variant prioritization, and detects low-frequency mutations without sacrificing the sensitivity to call longer insertions and deletions empowered by the local-assembly engine. In addition to genome-wide analysis, Lancet allows inspection of somatic variants in graph space, which augments the traditional read alignment visualization to help confirm a variant of interest. Lancet is available as an open-source program at https://github.com/nygenome/lancet., Competing Interests: The authors declare no competing interests.
- Published
- 2018
- Full Text
- View/download PDF
16. Whole Genome Sequencing-Based Discovery of Structural Variants in Glioblastoma.
- Author
-
Wrzeszczynski KO, Felice V, Shah M, Rahman S, Emde AK, Jobanputra V, O Frank M, and Darnell RB
- Subjects
- Biomarkers, Tumor, Computational Biology methods, DNA Copy Number Variations, ErbB Receptors genetics, Gene Expression, Glioblastoma pathology, Humans, Mutation, Polymorphism, Single Nucleotide, Precision Medicine, Genetic Variation, Genome, Human, Glioblastoma genetics, Whole Genome Sequencing
- Abstract
Next-generation DNA sequencing (NGS) technologies are currently being applied in both research and clinical settings for the understanding and management of disease. The goal is to use high-throughput sequencing to identify specific variants that drive tumorigenesis within each individual's tumor genomic profile. The significance of copy number and structural variants in glioblastoma makes it essential to broaden the search beyond oncogenic single nucleotide variants toward whole genome profiles of genetic aberrations that may contribute to disease progression. The heterogeneity of glioblastoma and its variability of cancer driver mutations necessitate a more robust examination of a patient's tumor genome. Here, we present patient whole genome sequencing (WGS) information to identify oncogenic structural variants that may contribute to glioblastoma pathogenesis. We provide WGS protocols and bioinformatics approaches to identify copy number and structural variations in 41 glioblastoma patient samples. We present how WGS can identify structural diversity within glioblastoma samples. We specifically show how to apply current bioinformatics tools to detect EGFR variants and other structural aberrations from DNA whole genome sequencing and how to validate those variants within the laboratory. These comprehensive WGS protocols can provide additional information directing more precise therapeutic options in the treatment of glioblastoma.
- Published
- 2018
- Full Text
- View/download PDF
17. Erratum: PGBD5 promotes site-specific oncogenic mutations in human tumors.
- Author
-
Henssen AG, Koche R, Zhuang J, Jiang E, Reed C, Eisenberg A, Still E, MacArthur IC, Rodríguez-Fos E, Gonzalez S, Puiggròs M, Blackford AN, Mason CE, de Stanchina E, Gönen M, Emde AK, Shah M, Arora K, Reeves C, Socci ND, Perlman E, Antonescu CR, Roberts CWM, Steen H, Mullen E, Jackson SP, Torrents D, Weng Z, Armstrong SA, and Kentsis A
- Published
- 2017
- Full Text
- View/download PDF
18. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.
- Author
-
Wrzeszczynski KO, Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde AK, Chen BJ, Arora K, Shah M, Vacic V, Norel R, Bilal E, Bergmann EA, Moore Vogel JL, Bruce JN, Lassman AB, Canoll P, Grommes C, Harvey S, Parida L, Michelini VV, Zody MC, Jobanputra V, Royyuru AK, and Darnell RB
- Abstract
Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each., Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs., Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts., Conclusions: The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible., Clinicaltrialsgov Identifier: NCT02725684.
- Published
- 2017
- Full Text
- View/download PDF
19. PGBD5 promotes site-specific oncogenic mutations in human tumors.
- Author
-
Henssen AG, Koche R, Zhuang J, Jiang E, Reed C, Eisenberg A, Still E, MacArthur IC, Rodríguez-Fos E, Gonzalez S, Puiggròs M, Blackford AN, Mason CE, de Stanchina E, Gönen M, Emde AK, Shah M, Arora K, Reeves C, Socci ND, Perlman E, Antonescu CR, Roberts CWM, Steen H, Mullen E, Jackson SP, Torrents D, Weng Z, Armstrong SA, and Kentsis A
- Subjects
- Adult, Animals, Catalytic Domain, Cell Line, Child, Child, Preschool, Chromosome Aberrations, Chromosome Breakpoints, DNA End-Joining Repair genetics, DNA, Neoplasm genetics, Gene Rearrangement genetics, Genes, Tumor Suppressor, Humans, Infant, Mice, Mice, Nude, Mutagenesis, Site-Directed, RNA Interference, Recombinant Proteins metabolism, Regulatory Sequences, Nucleic Acid, Terminal Repeat Sequences genetics, Transposases chemistry, Transposases genetics, Cell Transformation, Neoplastic genetics, Rhabdoid Tumor genetics, Transposases physiology
- Abstract
Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.
- Published
- 2017
- Full Text
- View/download PDF
20. Next-Generation Rapid Autopsies Enable Tumor Evolution Tracking and Generation of Preclinical Models.
- Author
-
Pisapia DJ, Salvatore S, Pauli C, Hissong E, Eng K, Prandi D, Sailer VW, Robinson BD, Park K, Cyrta J, Tagawa ST, Kossai M, Fontugne J, Kim R, Sigaras A, Rao R, Pancirer D, Faltas B, Bareja R, Molina AM, Nanus DM, Rajappa P, Souweidane MM, Greenfield J, Emde AK, Robine N, Elemento O, Sboner A, Demichelis F, Beltran H, Rubin MA, and Mosquera JM
- Abstract
Purpose: Patients with cancer who graciously consent for autopsy represent an invaluable resource for the study of cancer biology. To advance the study of tumor evolution, metastases, and resistance to treatment, we developed a next-generation rapid autopsy program integrated within a broader precision medicine clinical trial that interrogates pre- and postmortem tissue samples for patients of all ages and cancer types., Materials and Methods: One hundred twenty-three (22%) of 554 patients who consented to the clinical trial also consented for rapid autopsy. This report comprises the first 15 autopsies, including patients with metastatic carcinoma (n = 10), melanoma (n = 1), and glioma (n = 4). Whole-exome sequencing (WES) was performed on frozen autopsy tumor samples from multiple anatomic sites and on non-neoplastic tissue. RNA sequencing (RNA-Seq) was performed on a subset of frozen samples. Tissue was also used for the development of preclinical models, including tumor organoids and patient-derived xenografts., Results: Three hundred forty-six frozen samples were procured in total. WES was performed on 113 samples and RNA-Seq on 72 samples. Successful cell strain, tumor organoid, and/or patient-derived xenograft development was achieved in four samples, including an inoperable pediatric glioma. WES data were used to assess clonal evolution and molecular heterogeneity of tumors in individual patients. Mutational profiles of primary tumors and metastases yielded candidate mediators of metastatic spread and organotropism including CUL9 and PIGM in metastatic ependymoma and ANKRD52 in metastatic melanoma to the lung. RNA-Seq data identified novel gene fusion candidates., Conclusion: A next-generation sequencing-based autopsy program in conjunction with a pre-mortem precision medicine pipeline for diverse tumors affords a valuable window into clonal evolution, metastasis, and alterations underlying treatment. Moreover, such an autopsy program yields robust preclinical models of disease.
- Published
- 2017
- Full Text
- View/download PDF
21. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.
- Author
-
Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP, Weinert S, Froyen G, Frints SG, Laumonnier F, Zemojtel T, Love MI, Richard H, Emde AK, Bienek M, Jensen C, Hambrock M, Fischer U, Langnick C, Feldkamp M, Wissink-Lindhout W, Lebrun N, Castelnau L, Rucci J, Montjean R, Dorseuil O, Billuart P, Stuhlmann T, Shaw M, Corbett MA, Gardner A, Willis-Owen S, Tan C, Friend KL, Belet S, van Roozendaal KE, Jimenez-Pocquet M, Moizard MP, Ronce N, Sun R, O'Keeffe S, Chenna R, van Bömmel A, Göke J, Hackett A, Field M, Christie L, Boyle J, Haan E, Nelson J, Turner G, Baynam G, Gillessen-Kaesbach G, Müller U, Steinberger D, Budny B, Badura-Stronka M, Latos-Bieleńska A, Ousager LB, Wieacker P, Rodríguez Criado G, Bondeson ML, Annerén G, Dufke A, Cohen M, Van Maldergem L, Vincent-Delorme C, Echenne B, Simon-Bouy B, Kleefstra T, Willemsen M, Fryns JP, Devriendt K, Ullmann R, Vingron M, Wrogemann K, Wienker TF, Tzschach A, van Bokhoven H, Gecz J, Jentsch TJ, Chen W, Ropers HH, and Kalscheuer VM
- Subjects
- Adaptor Proteins, Signal Transducing genetics, Adolescent, Adult, Animals, Cells, Cultured, Chloride Channels genetics, Chloride Channels metabolism, Cohort Studies, Cyclin-Dependent Kinases genetics, High-Throughput Nucleotide Sequencing, Histone Acetyltransferases genetics, Humans, Intracellular Signaling Peptides and Proteins genetics, Male, Mice, Knockout, Microfilament Proteins genetics, Neurons metabolism, Neurons pathology, Nuclear Proteins genetics, RNA, Messenger metabolism, TATA-Binding Protein Associated Factors genetics, Transcription Factor TFIID genetics, Ubiquitin-Protein Ligases genetics, Genetic Variation, Mental Retardation, X-Linked genetics
- Abstract
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
- Published
- 2016
- Full Text
- View/download PDF
22. Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response.
- Author
-
Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennert H, Kossai M, Pauli C, Faltas B, Fontugne J, Park K, Banfelder J, Prandi D, Madhukar N, Zhang T, Padilla J, Greco N, McNary TJ, Herrscher E, Wilkes D, MacDonald TY, Xue H, Vacic V, Emde AK, Oschwald D, Tan AY, Chen Z, Collins C, Gleave ME, Wang Y, Chakravarty D, Schiffman M, Kim R, Campagne F, Robinson BD, Nanus DM, Tagawa ST, Xiang JZ, Smogorzewska A, Demichelis F, Rickman DS, Sboner A, Elemento O, and Rubin MA
- Subjects
- Academic Medical Centers, Animals, Computational Biology, Dose-Response Relationship, Drug, Drug Resistance, Neoplasm genetics, Feasibility Studies, Female, Humans, INDEL Mutation, Male, Mice, Molecular Targeted Therapy, Neoplasm Metastasis, Neoplasms pathology, Patient Selection, Precision Medicine, Predictive Value of Tests, Prospective Studies, Time Factors, Treatment Outcome, Tumor Cells, Cultured, Xenograft Model Antitumor Assays, Biomarkers, Tumor genetics, DNA Copy Number Variations, DNA Mutational Analysis, Exome, Gene Dosage, Genetic Testing methods, Mutation, Neoplasms drug therapy, Neoplasms genetics
- Abstract
Importance: Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer., Objective: To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response., Design, Setting, and Patients: Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response., Main Outcomes and Measures: Feasibility, use of WES for decision making, and identification of novel biomarkers., Results: A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response., Conclusions and Relevance: The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.
- Published
- 2015
- Full Text
- View/download PDF
23. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
- Author
-
Trappe K, Emde AK, Ehrlich HC, and Reinert K
- Subjects
- Humans, Sequence Alignment, Sequence Deletion, Software, Translocation, Genetic, Genomic Structural Variation, High-Throughput Nucleotide Sequencing methods, Sequence Analysis, DNA methods
- Abstract
Motivation: The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs., Results: We present Gustaf (Generic mUlti-SpliT Alignment Finder), a sound generic multi-split SV detection tool that detects and classifies deletions, inversions, dispersed duplications and translocations of ≥ 30 bp. Our approach is based on a generic multi-split alignment strategy that can identify SV breakpoints with base pair resolution. We show that Gustaf correctly identifies SVs, especially in the range from 30 to 100 bp, which we call the next-generation sequencing (NGS) twilight zone of SVs, as well as larger SVs >500 bp. Gustaf performs better than similar tools in our benchmark and is furthermore able to correctly identify size and location of dispersed duplications and translocations, which otherwise might be wrongly classified, for example, as large deletions., (© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2014
- Full Text
- View/download PDF
24. Disease variants in genomes of 44 centenarians.
- Author
-
Freudenberg-Hua Y, Freudenberg J, Vacic V, Abhyankar A, Emde AK, Ben-Avraham D, Barzilai N, Oschwald D, Christen E, Koppel J, Greenwald B, Darnell RB, Germer S, Atzmon G, and Davies P
- Abstract
To identify previously reported disease mutations that are compatible with extraordinary longevity, we screened the coding regions of the genomes of 44 Ashkenazi Jewish centenarians. Individual genome sequences were generated with 30× coverage on the Illumina HiSeq 2000 and single-nucleotide variants were called with the genome analysis toolkit (GATK). We identified 130 coding variants that were annotated as "pathogenic" or "likely pathogenic" based on the ClinVar database and that are infrequent in the general population. These variants were previously reported to cause a wide range of degenerative, neoplastic, and cardiac diseases with autosomal dominant, autosomal recessive, and X-linked inheritance. Several of these variants are located in genes that harbor actionable incidental findings, according to the recommendations of the American College of Medical Genetics. In addition, we found risk variants for late-onset neurodegenerative diseases, such as the APOE ε4 allele that was even present in a homozygous state in one centenarian who did not develop Alzheimer's disease. Our data demonstrate that the incidental finding of certain reported disease variants in an individual genome may not preclude an extraordinarily long life. When the observed variants are encountered in the context of clinical sequencing, it is thus important to exercise caution in justifying clinical decisions.
- Published
- 2014
- Full Text
- View/download PDF
25. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions.
- Author
-
Brannon AR, Vakiani E, Sylvester BE, Scott SN, McDermott G, Shah RH, Kania K, Viale A, Oschwald DM, Vacic V, Emde AK, Cercek A, Yaeger R, Kemeny NE, Saltz LB, Shia J, D'Angelica MI, Weiser MR, Solit DB, and Berger MF
- Subjects
- Adult, Aged, Aged, 80 and over, Alcohol Oxidoreductases genetics, Colorectal Neoplasms pathology, Female, Genome, Human, HEK293 Cells, Humans, Male, Middle Aged, Neoplasm Metastasis, Proto-Oncogene Proteins p21(ras), Colorectal Neoplasms genetics, GTP Phosphohydrolases genetics, High-Throughput Nucleotide Sequencing methods, Membrane Proteins genetics, Proto-Oncogene Proteins genetics, Proto-Oncogene Proteins B-raf genetics, Sequence Analysis, DNA methods, ras Proteins genetics
- Abstract
Background: Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors., Results: We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations., Conclusions: Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.
- Published
- 2014
- Full Text
- View/download PDF
26. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma.
- Author
-
Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim II, Gleason CE, Murphy JM, Rosenberg BR, Teegan L, Takacs CN, Botero S, Belote R, Germer S, Emde AK, Vacic V, Bhanot U, LaQuaglia MP, and Simon SM
- Subjects
- Carcinoma, Hepatocellular enzymology, Chromosome Deletion, Chromosomes, Human, Pair 19 genetics, Cyclic AMP-Dependent Protein Kinase Catalytic Subunits chemistry, Gene Expression Regulation, Neoplastic, HSP40 Heat-Shock Proteins chemistry, Humans, Liver Neoplasms enzymology, Protein Multimerization, Protein Structure, Tertiary, Transcription, Genetic, Tumor Cells, Cultured, Carcinoma, Hepatocellular genetics, Cyclic AMP-Dependent Protein Kinase Catalytic Subunits genetics, HSP40 Heat-Shock Proteins genetics, Liver Neoplasms genetics, Oncogene Proteins, Fusion genetics
- Abstract
Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and young adults with no history of primary liver disease or cirrhosis. We identified a chimeric transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A. Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.
- Published
- 2014
- Full Text
- View/download PDF
27. Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from single-end reads.
- Author
-
Sun R, Love MI, Zemojtel T, Emde AK, Chung HR, Vingron M, and Haas SA
- Subjects
- Artifacts, Humans, Algorithms, Computational Biology methods, Genomic Structural Variation, Sequence Analysis, DNA methods
- Abstract
Summary: We developed Breakpointer, a fast algorithm to locate breakpoints of structural variants (SVs) from single-end reads produced by next-generation sequencing. By taking advantage of local non-uniform read distribution and misalignments created by SVs, Breakpointer scans the alignment of single-end reads to identify regions containing potential breakpoints. The detection of such breakpoints can indicate insertions longer than the read length and SVs located in repetitve regions which might be missd by other methods. Thus, Breakpointer complements existing methods to locate SVs from single-end reads., Availability: https://github.com/ruping/Breakpointer, Contact: ruping@molgen.mpg.de, Supplementary Information: Supplementary material is available at Bioinformatics online.
- Published
- 2012
- Full Text
- View/download PDF
28. Detecting genomic indel variants with exact breakpoints in single- and paired-end sequencing data using SplazerS.
- Author
-
Emde AK, Schulz MH, Weese D, Sun R, Vingron M, Kalscheuer VM, Haas SA, and Reinert K
- Subjects
- Algorithms, Humans, Genomics methods, INDEL Mutation, Sequence Analysis, DNA
- Abstract
Motivation: The reliable detection of genomic variation in resequencing data is still a major challenge, especially for variants larger than a few base pairs. Sequencing reads crossing boundaries of structural variation carry the potential for their identification, but are difficult to map., Results: Here we present a method for 'split' read mapping, where prefix and suffix match of a read may be interrupted by a longer gap in the read-to-reference alignment. We use this method to accurately detect medium-sized insertions and long deletions with precise breakpoints in genomic resequencing data. Compared with alternative split mapping methods, SplazerS significantly improves sensitivity for detecting large indel events, especially in variant-rich regions. Our method is robust in the presence of sequencing errors as well as alignment errors due to genomic mutations/divergence, and can be used on reads of variable lengths. Our analysis shows that SplazerS is a versatile tool applicable to unanchored or single-end as well as anchored paired-end reads. In addition, application of SplazerS to targeted resequencing data led to the interesting discovery of a complete, possibly functional gene retrocopy variant., Availability: SplazerS is available from http://www.seqan.de/projects/ splazers., Supplementary Information: Supplementary data are available at Bioinformatics online.
- Published
- 2012
- Full Text
- View/download PDF
29. A novel and well-defined benchmarking method for second generation read mapping.
- Author
-
Holtgrewe M, Emde AK, Weese D, and Reinert K
- Subjects
- Algorithms, Animals, High-Throughput Nucleotide Sequencing, Humans, Sequence Analysis, DNA methods, Sequence Analysis, DNA standards
- Abstract
Background: Second generation sequencing technologies yield DNA sequence data at ultra high-throughput. Common to most biological applications is a mapping of the reads to an almost identical or highly similar reference genome. The assessment of the quality of read mapping results is not straightforward and has not been formalized so far. Hence, it has not been easy to compare different read mapping approaches in a unified way and to determine which program is the best for what task., Results: We present a new benchmark method, called Rabema (Read Alignment BEnchMArk), for read mappers. It consists of a strict definition of the read mapping problem and of tools to evaluate the result of arbitrary read mappers supporting the SAM output format., Conclusions: We show the usefulness of the benchmark program by performing a comparison of popular read mappers. The tools supporting the benchmark are licensed under the GPL and available from http://www.seqan.de/projects/rabema.html.
- Published
- 2011
- Full Text
- View/download PDF
30. MicroRazerS: rapid alignment of small RNA reads.
- Author
-
Emde AK, Grunert M, Weese D, Reinert K, and Sperling SR
- Subjects
- Base Sequence, Molecular Sequence Data, Algorithms, MicroRNAs genetics, Sequence Alignment methods, Sequence Analysis, RNA methods, Software
- Abstract
Motivation: Deep sequencing has become the method of choice for determining the small RNA content of a cell. Mapping the sequenced reads onto their reference genome serves as the basis for all further analyses, namely for identification and quantification. A method frequently used is Mega BLAST followed by several filtering steps, even though it is slow and inefficient for this task. Also, none of the currently available short read aligners has established itself for the particular task of small RNA mapping., Results: We present MicroRazerS, a tool optimized for mapping small RNAs onto a reference genome. It is an order of magnitude faster than Mega BLAST and comparable in speed with other short read mapping tools. In addition, it is more sensitive and easy to handle and adjust., Availability: MicroRazerS is part of the SeqAn C++ library and can be downloaded from http://www.seqan.de/projects/MicroRazerS.html.
- Published
- 2010
- Full Text
- View/download PDF
31. RazerS--fast read mapping with sensitivity control.
- Author
-
Weese D, Emde AK, Rausch T, Döring A, and Reinert K
- Subjects
- Algorithms, Animals, Drosophila melanogaster genetics, Genome, Human genetics, Genome, Insect genetics, Humans, Sensitivity and Specificity, Sequence Alignment, Time Factors, User-Computer Interface, Chromosome Mapping methods, Sequence Analysis, DNA methods, Software
- Abstract
Second-generation sequencing technologies deliver DNA sequence data at unprecedented high throughput. Common to most biological applications is a mapping of the reads to an almost identical or highly similar reference genome. Due to the large amounts of data, efficient algorithms and implementations are crucial for this task. We present an efficient read mapping tool called RazerS. It allows the user to align sequencing reads of arbitrary length using either the Hamming distance or the edit distance. Our tool can work either lossless or with a user-defined loss rate at higher speeds. Given the loss rate, we present an approach that guarantees not to lose more reads than specified. This enables the user to adapt to the problem at hand and provides a seamless tradeoff between sensitivity and running time.
- Published
- 2009
- Full Text
- View/download PDF
32. A consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads.
- Author
-
Rausch T, Koren S, Denisov G, Weese D, Emde AK, Döring A, and Reinert K
- Subjects
- Base Sequence, Computational Biology methods, Internet, Molecular Sequence Data, Sequence Analysis, DNA methods, Algorithms, Sequence Alignment methods
- Abstract
Motivation: Novel high-throughput sequencing technologies pose new algorithmic challenges in handling massive amounts of short-read, high-coverage data. A robust and versatile consensus tool is of particular interest for such data since a sound multi-read alignment is a prerequisite for variation analyses, accurate genome assemblies and insert sequencing., Results: A multi-read alignment algorithm for de novo or reference-guided genome assembly is presented. The program identifies segments shared by multiple reads and then aligns these segments using a consistency-enhanced alignment graph. On real de novo sequencing data obtained from the newly established NCBI Short Read Archive, the program performs similarly in quality to other comparable programs. On more challenging simulated datasets for insert sequencing and variation analyses, our program outperforms the other tools., Availability: The consensus program can be downloaded from http://www.seqan.de/projects/consensus.html. It can be used stand-alone or in conjunction with the Celera Assembler. Both application scenarios as well as the usage of the tool are described in the documentation.
- Published
- 2009
- Full Text
- View/download PDF
33. Segment-based multiple sequence alignment.
- Author
-
Rausch T, Emde AK, Weese D, Döring A, Notredame C, and Reinert K
- Subjects
- Algorithms, Sequence Alignment methods, Sequence Analysis methods, Software
- Abstract
Motivation: Many multiple sequence alignment tools have been developed in the past, progressing either in speed or alignment accuracy. Given the importance and wide-spread use of alignment tools, progress in both categories is a contribution to the community and has driven research in the field so far., Results: We introduce a graph-based extension to the consistency-based, progressive alignment strategy. We apply the consistency notion to segments instead of single characters. The main problem we solve in this context is to define segments of the sequences in such a way that a graph-based alignment is possible. We implemented the algorithm using the SeqAn library and report results on amino acid and DNA sequences. The benefit of our approach is threefold: (1) sequences with conserved blocks can be rapidly aligned, (2) the implementation is conceptually easy, generic and fast and (3) the consistency idea can be extended to align multiple genomic sequences., Availability: The segment-based multiple sequence alignment tool can be downloaded from http://www.seqan.de/projects/msa.html. A novel version of T-Coffee interfaced with the tool is available from http://www.tcoffee.org. The usage of the tool is described in both documentations.
- Published
- 2008
- Full Text
- View/download PDF
34. Analytical model of peptide mass cluster centres with applications.
- Author
-
Wolski WE, Farrow M, Emde AK, Lehrach H, Lalowski M, and Reinert K
- Abstract
Background: The elemental composition of peptides results in formation of distinct, equidistantly spaced clusters across the mass range. The property of peptide mass clustering is used to calibrate peptide mass lists, to identify and remove non-peptide peaks and for data reduction., Results: We developed an analytical model of the peptide mass cluster centres. Inputs to the model included, the amino acid frequencies in the sequence database, the average length of the proteins in the database, the cleavage specificity of the proteolytic enzyme used and the cleavage probability. We examined the accuracy of our model by comparing it with the model based on an in silico sequence database digest. To identify the crucial parameters we analysed how the cluster centre location depends on the inputs. The distance to the nearest cluster was used to calibrate mass spectrometric peptide peak-lists and to identify non-peptide peaks., Conclusion: The model introduced here enables us to predict the location of the peptide mass cluster centres. It explains how the location of the cluster centres depends on the input parameters. Fast and efficient calibration and filtering of non-peptide peaks is achieved by a distance measure suggested by Wool and Smilansky.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.