1. Coassembly of a Hybrid Synthetic–Biological Chitosan- g -Poly(N -isopropylacrylamide) Copolymer with DNAs of Different Lengths.
- Author
-
Karayianni, Maria, Lotos, Elena-Daniela, Mihai, Marcela, and Pispas, Stergios
- Abstract
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g., through grafting, leading to hybrid synthetic–biological copolymers with additional functionalities. In this work we report on the electrostatic interaction between a chitosan-g-poly(N-isopropylacrylamide) (Chit-g-PNIPAM) copolymer and DNA macromolecules of different lengths (i.e., 50 and 2000 bp), towards the construction of polyplexes that can serve as potential gene delivery systems. At the basic science level, the work aims to elucidate the effects of DNA length on the structural and physicochemical properties of the thermoresponsive hybrid macromolecular assemblies. The protonated amino groups on the chitosan backbone enable electrostatic binding with the anionic phosphate groups of the DNA molecules, while the PNIPAM side chains are expected to impart thermoresponsive properties to the formed polyplexes. Different amino to phosphate group (N/P) mixing ratios were examined, aiming to produce stable dispersions. The physicochemical properties of the resulting polyplexes were investigated by dynamic and electrophoretic light scattering (DLS and ELS), while their morphology was studied by scanning-transmission electron microscopy (STEM). Moreover, their response to changes in temperature and ionic strength, as well as their stability against biological media, was also examined. Finally, the binding affinity of the copolymer towards DNA was evaluated through fluorescence spectroscopy, using ethidium bromide quenching assays, while infrared spectroscopy was used to investigate the structure of the incorporated DNA chains. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF